Pantetheine 4'-phosphate (BioDeep_00000004585)
Secondary id: BioDeep_00000394108
human metabolite Endogenous
代谢物信息卡片
化学式: C11H23N2O7PS (358.0964)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(natural_products) 10.6%
分子结构信息
SMILES: CC(C)(COP(=O)(O)O)C(C(=O)NCCC(=O)NCCS)O
InChI: InChI=1S/C11H23N2O7PS/c1-11(2,7-20-21(17,18)19)9(15)10(16)13-4-3-8(14)12-5-6-22/h9,15,22H,3-7H2,1-2H3,(H,12,14)(H,13,16)(H2,17,18,19)
描述信息
Pantetheine 4-phosphate, or 4-phosphopantetheine, is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites.
4-phosphopantetheine is a metabolite in the pantothenate and coenzyme A biosynthesis pathway. It can be generated from Pantatheine (via pantothenate kinase 1) or R-4-Phospho-pantothenoyl-L-cysteine (via phosphopantothenoylcysteine decarboxylase) or Dephospho-CoA (via 4-phosphopantetheine adenylyl-transferase and ectonucleotide pyrophosphatase). In most mammals, coenzyme A can be hydrolyzed to pantetheine and pantothenate in the intestinal lumen via the following series of reactions: coenzyme A leads to phosphopantetheine leads to pantetheine leads to pantothenate. The conversion of 4-phosphopantetheine (4-PP) to dephospho-CoA, is catalyzed by 4-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. (PMID: 1746161) It has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors. In particular it is a key prosthetic group of acyl carrier protein (ACP) and peptidyl carrier proteins (PCP) and aryl carrier proteins (ArCP) derived from Coenzyme A. Phosphopantetheine fulfils two demands. Firstly, the intermediates remain covalently linked to the synthases (or synthetases) in an energy-rich thiol ester linkage. Secondly, the flexibility and length of phosphopantetheine chain (approximately 2 nm) allows the covalently tethered intermediates to have access to spatially distinct enzyme active sites. [HMDB]
同义名列表
17 个代谢物同义名
[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphonic acid; (2R)-2-Hydroxy-N-[3-[(2-mercaptoethyl)amino]-3-oxopropyl]-3,3-dimethyl-4-(phosphonooxy)butanamide; (2R)-2-Hydroxy-N-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-3,3-dimethyl-4-(phosphonooxy)butanamide; D-Pantetheine 4-phosphoric acid; Pantetheine 4-phosphoric acid; Pantetheine-4-phosphoric acid; O(4)-Phosphono-D-pantethein; D-Pantetheine 4’-phosphate; D-Pantetheine 4-phosphate; Pantetheine 4’-phosphate; Pantetheine-4-phosphate; pantetheine 4-phosphate; Pantetheine phosphate; 4’-Phosphopantetheine; 4-Phosphopantetheine; Phosphopantetheine; PSH-4-p
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:4222
- KEGG: C01134
- PubChem: 115254
- PubChem: 987
- HMDB: HMDB0001416
- Metlin: METLIN398
- DrugBank: DB03912
- Wikipedia: Phosphopantetheine
- MetaCyc: PANTETHEINE-P
- KNApSAcK: C00007448
- foodb: FDB022609
- chemspider: 103123
- CAS: 2226-71-3
- PMhub: MS000017114
- ChEBI: CHEBI:16858
- PubChem: 4365
- PDB-CCD: PNS
- 3DMET: B04774
- NIKKAJI: J1.112.929C
- RefMet: Pantetheine 4'-phosphate
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
99 个相关的代谢反应过程信息。
Reactome(24)
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
BioCyc(3)
- coenzyme A biosynthesis:
H+ + R-4'-phosphopantothenoyl-L-cysteine ⟶ 4'-phosphopantetheine + CO2
- coenzyme A biosynthesis:
H+ + R-4'-phosphopantothenoyl-L-cysteine ⟶ 4'-phosphopantetheine + CO2
- pantothenate and coenzyme A biosynthesis:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
WikiPathways(0)
Plant Reactome(66)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
ATP + PanK ⟶ ADP + PPanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
ATP + PanK ⟶ ADP + PPanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Pantothenate and coenzyme A biosynthesis III:
b-Ala + pantoyl lactone ⟶ PanK
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(6)
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
- Pantothenate and CoA Biosynthesis:
Dephospho-CoA + Water ⟶ Adenosine monophosphate + Pantetheine 4'-phosphate
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xi Meng, Guoqi Yu, Tingyu Luo, Ruiyuan Zhang, Jun Zhang, Yongjie Liu. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring.
Chemosphere.
2023 Sep; 341(?):140120. doi:
10.1016/j.chemosphere.2023.140120
. [PMID: 37696479] - Ivano Di Meo, Cristina Colombelli, Balaji Srinivasan, Marianne de Villiers, Jeffrey Hamada, Suh Y Jeong, Rachel Fox, Randall L Woltjer, Pieter G Tepper, Liza L Lahaye, Emanuela Rizzetto, Clara H Harrs, Theo de Boer, Marianne van der Zwaag, Branko Jenko, Alen Čusak, Jerca Pahor, Gregor Kosec, Nicola A Grzeschik, Susan J Hayflick, Valeria Tiranti, Ody C M Sibon. Acetyl-4'-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency.
Scientific reports.
2017 09; 7(1):11260. doi:
10.1038/s41598-017-11564-8
. [PMID: 28900161] - Y Izumi, K Ohtani, Y Miyamoto, A Masunaka, T Fukumoto, K Gomi, Y Tada, K Ichimura, T L Peever, K Akimitsu. A polyketide synthase gene, ACRTS2, is responsible for biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata.
Molecular plant-microbe interactions : MPMI.
2012 Nov; 25(11):1419-29. doi:
10.1094/mpmi-06-12-0155-r
. [PMID: 22835272] - Theresa A Ramelot, Paolo Rossi, Farhad Forouhar, Hsiau-Wei Lee, Yunhuang Yang, Shuisong Ni, Sarah Unser, Scott Lew, Jayaraman Seetharaman, Rong Xiao, Thomas B Acton, John K Everett, James H Prestegard, John F Hunt, Gaetano T Montelione, Michael A Kennedy. Structure of a specialized acyl carrier protein essential for lipid A biosynthesis with very long-chain fatty acids in open and closed conformations.
Biochemistry.
2012 Sep; 51(37):7239-49. doi:
10.1021/bi300546b
. [PMID: 22876860] - Philipp Wiemann, Sabine Albermann, Eva-Maria Niehaus, Lena Studt, Katharina W von Bargen, Nelson L Brock, Hans-Ulrich Humpf, Jeroen S Dickschat, Bettina Tudzynski. The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity.
PloS one.
2012; 7(5):e37519. doi:
10.1371/journal.pone.0037519
. [PMID: 22662164] - Fuyuan Jing, David C Cantu, Jarmila Tvaruzkova, Jay P Chipman, Basil J Nikolau, Marna D Yandeau-Nelson, Peter J Reilly. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.
BMC biochemistry.
2011 Aug; 12(?):44. doi:
10.1186/1471-2091-12-44
. [PMID: 21831316] - Theresa A Ramelot, Matthew J Smola, Hsiau-Wei Lee, Colleen Ciccosanti, Keith Hamilton, Thomas B Acton, Rong Xiao, John K Everett, James H Prestegard, Gaetano T Montelione, Michael A Kennedy. Solution structure of 4'-phosphopantetheine - GmACP3 from Geobacter metallireducens: a specialized acyl carrier protein with atypical structural features and a putative role in lipopolysaccharide biosynthesis.
Biochemistry.
2011 Mar; 50(9):1442-53. doi:
10.1021/bi101932s
. [PMID: 21235239] - Ling Yang, Jun Liu, Mu Liu, Meirui Qian, Minzhou Zhang, Huajun Hu. Identification of fatty acid synthase from the Pacific white shrimp, Litopenaeus vannamei and its specific expression profiles during white spot syndrome virus infection.
Fish & shellfish immunology.
2011 Feb; 30(2):744-9. doi:
10.1016/j.fsi.2010.12.026
. [PMID: 21199673] - Lei Wang, Wei Chen, Yun Feng, Yan Ren, Zhennan Gu, Haiqin Chen, Hongchao Wang, Michael J Thomas, Baixi Zhang, Isabelle M Berquin, Yang Li, Jiansheng Wu, Huanxin Zhang, Yuanda Song, Xiang Liu, James S Norris, Suriguga Wang, Peng Du, Junguo Shen, Na Wang, Yanlin Yang, Wei Wang, Lu Feng, Colin Ratledge, Hao Zhang, Yong Q Chen. Genome characterization of the oleaginous fungus Mortierella alpina.
PloS one.
2011; 6(12):e28319. doi:
10.1371/journal.pone.0028319
. [PMID: 22174787] - Daniel P Lawrence, Scott Kroken, Barry M Pryor, A Elizabeth Arnold. Interkingdom gene transfer of a hybrid NPS/PKS from bacteria to filamentous Ascomycota.
PloS one.
2011; 6(11):e28231. doi:
10.1371/journal.pone.0028231
. [PMID: 22140558] - Y Miyamoto, A Masunaka, T Tsuge, M Yamamoto, K Ohtani, T Fukumoto, K Gomi, T L Peever, Y Tada, K Ichimura, K Akimitsu. ACTTS3 encoding a polyketide synthase is essential for the biosynthesis of ACT-toxin and pathogenicity in the tangerine pathotype of Alternaria alternata.
Molecular plant-microbe interactions : MPMI.
2010 Apr; 23(4):406-14. doi:
10.1094/mpmi-23-4-0406
. [PMID: 20192828] - Schonna R Manning, John W La Claire. Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta).
Marine drugs.
2010 Mar; 8(3):678-704. doi:
10.3390/md8030678
. [PMID: 20411121] - Kathryn E Bushley, B Gillian Turgeon. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships.
BMC evolutionary biology.
2010 Jan; 10(?):26. doi:
10.1186/1471-2148-10-26
. [PMID: 20100353] - Timothy L Foley, Michael D Burkart. A homogeneous resonance energy transfer assay for phosphopantetheinyl transferase.
Analytical biochemistry.
2009 Nov; 394(1):39-47. doi:
10.1016/j.ab.2009.06.037
. [PMID: 19573516] - Wendy Maury, Jason P Price, Melinda A Brindley, ChoonSeok Oh, Jeffrey D Neighbors, David F Wiemer, Nickolas Wills, Susan Carpenter, Cathy Hauck, Patricia Murphy, Mark P Widrlechner, Kathleen Delate, Ganesh Kumar, George A Kraus, Ludmila Rizshsky, Basil Nikolau. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum.
Virology journal.
2009 Jul; 6(?):101. doi:
10.1186/1743-422x-6-101
. [PMID: 19594941] - Lori I Robins, Allison H Williams, Christian R H Raetz. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA.
Biochemistry.
2009 Jul; 48(26):6191-201. doi:
10.1021/bi900629e
. [PMID: 19456129] - Thomas Kupke, José A Caparrós-Martín, Karina J Malquichagua Salazar, Francisco A Culiáñez-Macià. Biochemical and physiological characterization of Arabidopsis thaliana AtCoAse: a Nudix CoA hydrolyzing protein that improves plant development.
Physiologia plantarum.
2009 Apr; 135(4):365-78. doi:
10.1111/j.1399-3054.2009.01205.x
. [PMID: 19340986] - Ereck Chakauya, Katy M Coxon, Ma Wei, Mary V Macdonald, Tina Barsby, Chris Abell, Alison G Smith. Towards engineering increased pantothenate (vitamin B(5)) levels in plants.
Plant molecular biology.
2008 Nov; 68(4-5):493-503. doi:
10.1007/s11103-008-9386-5
. [PMID: 18726075] - Nicholas R De Lay, John E Cronan. Genetic interaction between the Escherichia coli AcpT phosphopantetheinyl transferase and the YejM inner membrane protein.
Genetics.
2008 Mar; 178(3):1327-37. doi:
10.1534/genetics.107.081836
. [PMID: 18245839] - Xiaomin Zhang, Gohar Azhar, Scott Helms, Ying Zhong, Jeanne Y Wei. Identification of a subunit of NADH-dehydrogenase as a p49/STRAP-binding protein.
BMC cell biology.
2008 Jan; 9(?):8. doi:
10.1186/1471-2121-9-8
. [PMID: 18230186] - Günter Pappenberger, Tanja Schulz-Gasch, Eric Kusznir, Francis Müller, Michael Hennig. Structure-assisted discovery of an aminothiazole derivative as a lead molecule for inhibition of bacterial fatty-acid synthesis.
Acta crystallographica. Section D, Biological crystallography.
2007 Dec; 63(Pt 12):1208-16. doi:
10.1107/s0907444907049852
. [PMID: 18084068] - Yousang Hwang, Surajit Ganguly, Anthony K Ho, David C Klein, Philip A Cole. Enzymatic and cellular study of a serotonin N-acetyltransferase phosphopantetheine-based prodrug.
Bioorganic & medicinal chemistry.
2007 Mar; 15(5):2147-55. doi:
10.1016/j.bmc.2006.12.016
. [PMID: 17258461] - Anna Roujeinikova, William J Simon, John Gilroy, David W Rice, John B Rafferty, Antoni R Slabas. Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates.
Journal of molecular biology.
2007 Jan; 365(1):135-45. doi:
10.1016/j.jmb.2006.09.049
. [PMID: 17059829] - Silvia Rubio, Tony R Larson, Miguel Gonzalez-Guzman, Santiago Alejandro, Ian A Graham, Ramón Serrano, Pedro L Rodriguez. An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment.
Plant physiology.
2006 Mar; 140(3):830-43. doi:
10.1104/pp.105.072066
. [PMID: 16415216] - A G Moĭseenok, V A Gurinovich, S N Omel'ianchik, V S Slyshenkov. [Coenzyme A biosynthesis as universal mechanism of conjugation of exogenous and multiple pantothenic acid functions].
Ukrains'kyi biokhimichnyi zhurnal (1999 ).
2004 Jul; 76(4):68-81. doi:
. [PMID: 19621759]
- Harald H Ottenhof, Jennifer L Ashurst, Heather M Whitney, S Adrian Saldanha, Florian Schmitzberger, Hyun Soon Gweon, Tom L Blundell, Chris Abell, Alison G Smith. Organisation of the pantothenate (vitamin B5) biosynthesis pathway in higher plants.
The Plant journal : for cell and molecular biology.
2004 Jan; 37(1):61-72. doi:
10.1046/j.1365-313x.2003.01940.x
. [PMID: 14675432] - Bing-Bing Wang, Volker Brendel. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing.
Genome biology.
2004; 5(12):R102. doi:
10.1186/gb-2004-5-12-r102
. [PMID: 15575968] - Thomas Kupke, Pilar Hernández-Acosta, Francisco A Culiáñez-Macià. 4'-phosphopantetheine and coenzyme A biosynthesis in plants.
The Journal of biological chemistry.
2003 Oct; 278(40):38229-37. doi:
10.1074/jbc.m306321200
. [PMID: 12860978] - Stefan Steinbacher, Pilar Hernández-Acosta, Bastian Bieseler, Michael Blaesse, Robert Huber, Francisco Antonio Culiáñez-Macià, Thomas Kupke. Crystal structure of the plant PPC decarboxylase AtHAL3a complexed with an ene-thiol reaction intermediate.
Journal of molecular biology.
2003 Mar; 327(1):193-202. doi:
10.1016/s0022-2836(03)00092-5
. [PMID: 12614618] - Pilar Hernández-Acosta, Dietmar G Schmid, Günther Jung, Francisco A Culiáñez-Macià, Thomas Kupke. Molecular characterization of the Arabidopsis thaliana flavoprotein AtHAL3a reveals the general reaction mechanism of 4'-phosphopantothenoylcysteine decarboxylases.
The Journal of biological chemistry.
2002 Jun; 277(23):20490-8. doi:
10.1074/jbc.m201557200
. [PMID: 11923307] - Anna Roujeinikova, Clair Baldock, William J Simon, John Gilroy, Patrick J Baker, Antoine R Stuitje, David W Rice, John B Rafferty, Antoni R Slabas. Crystallization and preliminary X-ray crystallographic studies on acyl-(acyl carrier protein) from Escherichia coli.
Acta crystallographica. Section D, Biological crystallography.
2002 Feb; 58(Pt 2):330-2. doi:
10.1107/s0907444901020091
. [PMID: 11807267] - H D Mootz, R Finking, M A Marahiel. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis.
The Journal of biological chemistry.
2001 Oct; 276(40):37289-98. doi:
10.1074/jbc.m103556200
. [PMID: 11489886] - T Kupke, P Hernandez-Acosta, S Steinbacher, F A Culianez-Macia. Arabidopsis thaliana flavoprotein AtHAL3a catalyzes the decarboxylation of 4'-Phosphopantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis.
The Journal of biological chemistry.
2001 Jun; 276(22):19190-6. doi:
10.1074/jbc.m100776200
. [PMID: 11279129] - J A Broadwater, B G Fox. Spinach holo-acyl carrier protein: overproduction and phosphopantetheinylation in Escherichia coli BL21(DE3), in vitro acylation, and enzymatic desaturation of histidine-tagged isoform I.
Protein expression and purification.
1999 Apr; 15(3):314-26. doi:
10.1006/prep.1998.1016
. [PMID: 10092491] - O Geiger, H P Spaink, E P Kennedy. Isolation of the Rhizobium leguminosarum NodF nodulation protein: NodF carries a 4'-phosphopantetheine prosthetic group.
Journal of bacteriology.
1991 May; 173(9):2872-8. doi:
10.1128/jb.173.9.2872-2878.1991
. [PMID: 2019559] - M D Fernandez, G K Lamppa. Acyl carrier protein import into chloroplasts. Both the precursor and mature forms are substrates for phosphopantetheine attachment by a soluble chloroplast holo-acyl carrier protein synthase.
The Journal of biological chemistry.
1991 Apr; 266(11):7220-6. doi:
. [PMID: 1849904]
- M D Fernandez, G K Lamppa. Acyl carrier protein (ACP) import into chloroplasts does not require the phosphopantetheine: evidence for a chloroplast holo-ACP synthase.
The Plant cell.
1990 Mar; 2(3):195-206. doi:
10.1105/tpc.2.3.195
. [PMID: 1967053] - J G Jaworski, M A Post-Beittenmiller, J B Ohlrogge. Site-directed mutagenesis of the spinach acyl carrier protein-I prosthetic group attachment site.
European journal of biochemistry.
1989 Oct; 184(3):603-9. doi:
10.1111/j.1432-1033.1989.tb15056.x
. [PMID: 2553397] - H Therisod, E P Kennedy. The function of acyl carrier protein in the synthesis of membrane-derived oligosaccharides does not require its phosphopantetheine prosthetic group.
Proceedings of the National Academy of Sciences of the United States of America.
1987 Dec; 84(23):8235-8. doi:
10.1073/pnas.84.23.8235
. [PMID: 3479786] - S Jackowski, C O Rock. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein.
The Journal of biological chemistry.
1984 Feb; 259(3):1891-5. doi:
"
. [PMID: 6363417] - G Mechkov, D Dimov, Iu Iordanova. [Proceedings: Serum gamma-glutamyl tranapeptidase activity after the induction and inhibition of liver microsomal enzymes in nonconjugated hyperbilirubinemia].
Vutreshni bolesti.
1976; 15(1):93-5. doi:
NULL
. [PMID: 4927] - M S Brownfield, B A Wunder. Relative medullary area: a new structural index for estimating urinary concentrating capacity of mammals.
Comparative biochemistry and physiology. A, Comparative physiology.
1976; 55(1):69-75. doi:
10.1016/0300-9629(76)90125-0
. [PMID: 8249] - J Harkness. Why urinalysis?.
The Central African journal of medicine.
1975 Aug; 21(8):178-83. doi:
NULL
. [PMID: 1150] - . .
.
. doi:
. [PMID: 11415433]
- . .
.
. doi:
. [PMID: 17464044]