Phosphoglycolic acid (BioDeep_00000004533)

 

Secondary id: BioDeep_00001868778

human metabolite Endogenous


代谢物信息卡片


Glycolic acid dihydrogen phosphate

化学式: C2H5O6P (155.98237600000002)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 1.04%

分子结构信息

SMILES: C(C(=O)O)OP(=O)(O)O
InChI: InChI=1S/C2H5O6P/c3-2(4)1-8-9(5,6)7/h1H2,(H,3,4)(H2,5,6,7)

描述信息

Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans.
Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

同义名列表

17 个代谢物同义名

Glycolic acid dihydrogen phosphate; Glycolic acid di-H phosphate; 2-(phosphonooxy)acetic acid; (Phosphonooxy)-acetic acid; (Phosphonooxy)acetic acid; Glycolic acid phosphate; (Phosphonooxy)-acetate; 2-Phosphonatoglycolate; 2-Phosphoglycolic Acid; (Phosphonooxy)acetate; Glycophosphoric acid; Phosphoglycolic acid; 2-Phosphoglycolate; 2-Phosphoglicolate; Glycophosphorate; Phosphoglycolate; Glycolate-2-p



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

164 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(164)

  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
  • PCO cycle: glycolate ⟶ glyoxylate
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
  • Metabolism and regulation: L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
  • PCO cycle: Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Stefan Timm. The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochemical Society transactions. 2020 12; 48(6):2495-2504. doi: 10.1042/bst20200055. [PMID: 33300978]
  • Nico J Claassens, Giovanni Scarinci, Axel Fischer, Avi I Flamholz, William Newell, Stefan Frielingsdorf, Oliver Lenz, Arren Bar-Even. Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle. Proceedings of the National Academy of Sciences of the United States of America. 2020 09; 117(36):22452-22461. doi: 10.1073/pnas.2012288117. [PMID: 32820073]
  • Jiying Li, Sarathi M Weraduwage, Alyssa L Preiser, Stefanie Tietz, Sean E Weise, Deserah D Strand, John E Froehlich, David M Kramer, Jianping Hu, Thomas D Sharkey. A Cytosolic Bypass and G6P Shunt in Plants Lacking Peroxisomal Hydroxypyruvate Reductase. Plant physiology. 2019 06; 180(2):783-792. doi: 10.1104/pp.19.00256. [PMID: 30886114]
  • Myles Levey, Stefan Timm, Tabea Mettler-Altmann, Gian Luca Borghi, Maria Koczor, Stéphanie Arrivault, Andreas Pm Weber, Hermann Bauwe, Udo Gowik, Peter Westhoff. Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis. Journal of experimental botany. 2019 01; 70(2):575-587. doi: 10.1093/jxb/ery370. [PMID: 30357386]
  • Devin L Trudeau, Christian Edlich-Muth, Jan Zarzycki, Marieke Scheffen, Moshe Goldsmith, Olga Khersonsky, Ziv Avizemer, Sarel J Fleishman, Charles A R Cotton, Tobias J Erb, Dan S Tawfik, Arren Bar-Even. Design and in vitro realization of carbon-conserving photorespiration. Proceedings of the National Academy of Sciences of the United States of America. 2018 12; 115(49):E11455-E11464. doi: 10.1073/pnas.1812605115. [PMID: 30459276]
  • Benazir Huma, Sudip Kundu, Mark G Poolman, Nicholas J Kruger, David A Fell. Stoichiometric analysis of the energetics and metabolic impact of photorespiration in C3 plants. The Plant journal : for cell and molecular biology. 2018 12; 96(6):1228-1241. doi: 10.1111/tpj.14105. [PMID: 30257035]
  • Franziska Flügel, Stefan Timm, Stéphanie Arrivault, Alexandra Florian, Mark Stitt, Alisdair R Fernie, Hermann Bauwe. The Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch Accumulation in Arabidopsis. The Plant cell. 2017 Oct; 29(10):2537-2551. doi: 10.1105/tpc.17.00256. [PMID: 28947491]
  • Stephan Krueger, Ruben M Benstein, Sabine Wulfert, Armand D Anoman, María Flores-Tornero, Roc Ros. Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana. Methods in molecular biology (Clifton, N.J.). 2017; 1653(?):227-242. doi: 10.1007/978-1-4939-7225-8_16. [PMID: 28822137]
  • Roxana Khoshravesh, Vanessa Lundsgaard-Nielsen, Stefanie Sultmanis, Tammy L Sage. Light Microscopy, Transmission Electron Microscopy, and Immunohistochemistry Protocols for Studying Photorespiration. Methods in molecular biology (Clifton, N.J.). 2017; 1653(?):243-270. doi: 10.1007/978-1-4939-7225-8_17. [PMID: 28822138]
  • Stéphanie Arrivault, Toshihiro Obata. Quantification of Photorespiratory Intermediates by Mass Spectrometry-Based Approaches. Methods in molecular biology (Clifton, N.J.). 2017; 1653(?):97-104. doi: 10.1007/978-1-4939-7225-8_7. [PMID: 28822128]
  • Maya Haimovich-Dayan, Judy Lieman-Hurwitz, Isabel Orf, Martin Hagemann, Aaron Kaplan. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803?. Environmental microbiology. 2015 May; 17(5):1794-804. doi: 10.1111/1462-2920.12638. [PMID: 25297829]
  • Christian Blume, Christof Behrens, Holger Eubel, Hans-Peter Braun, Christoph Peterhansel. A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism. Phytochemistry. 2013 Nov; 95(?):168-76. doi: 10.1016/j.phytochem.2013.07.009. [PMID: 23916564]
  • M Hagemann, A R Fernie, G S Espie, R Kern, M Eisenhut, S Reumann, H Bauwe, A P M Weber. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant biology (Stuttgart, Germany). 2013 Jul; 15(4):639-47. doi: 10.1111/j.1438-8677.2012.00677.x. [PMID: 23198988]
  • Marianela Rodríguez, Nacira Muñoz, Sergio Lenardon, Ramiro Lascano. The chlorotic symptom induced by Sunflower chlorotic mottle virus is associated with changes in redox-related gene expression and metabolites. Plant science : an international journal of experimental plant biology. 2012 Nov; 196(?):107-16. doi: 10.1016/j.plantsci.2012.08.008. [PMID: 23017905]
  • Hermann Bauwe, Martin Hagemann, Ramona Kern, Stefan Timm. Photorespiration has a dual origin and manifold links to central metabolism. Current opinion in plant biology. 2012 Jun; 15(3):269-75. doi: 10.1016/j.pbi.2012.01.008. [PMID: 22284850]
  • Markus Niessen, Katrin Krause, Ina Horst, Norma Staebler, Stephanie Klaus, Stefanie Gaertner, Rashad Kebeish, Wagner L Araujo, Alisdair R Fernie, Christoph Peterhansel. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice. Journal of experimental botany. 2012 Apr; 63(7):2705-16. doi: 10.1093/jxb/err453. [PMID: 22268146]
  • Hoyeun Kim, Sang Hyeon Na, So-Young Lee, Young-Min Jeong, Hyun-Ju Hwang, Jae Young Hur, Sang-Hyun Park, Je-Chang Woo, Sang-Gu Kim. Structure-function studies of a plant tyrosyl-DNA phosphodiesterase provide novel insights into DNA repair mechanisms of Arabidopsis thaliana. The Biochemical journal. 2012 Apr; 443(1):49-56. doi: 10.1042/bj20111308. [PMID: 22214184]
  • John A Raven, Mario Giordano, John Beardall, Stephen C Maberly. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2012 Feb; 367(1588):493-507. doi: 10.1098/rstb.2011.0212. [PMID: 22232762]
  • Alexandra Maier, Holger Fahnenstich, Susanne von Caemmerer, Martin K M Engqvist, Andreas P M Weber, Ulf-Ingo Flügge, Veronica G Maurino. Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement. Frontiers in plant science. 2012; 3(?):38. doi: 10.3389/fpls.2012.00038. [PMID: 22639647]
  • Nicole Linka, Christian Esser. Transport proteins regulate the flux of metabolites and cofactors across the membrane of plant peroxisomes. Frontiers in plant science. 2012; 3(?):3. doi: 10.3389/fpls.2012.00003. [PMID: 22645564]
  • Josirley de F C Carvalho, Pippa J Madgwick, Stephen J Powers, Alfred J Keys, Peter J Lea, Martin A J Parry. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC biotechnology. 2011 Nov; 11(?):111. doi: 10.1186/1472-6750-11-111. [PMID: 22104170]
  • Ramona Kern, Hermann Bauwe, Martin Hagemann. Evolution of enzymes involved in the photorespiratory 2-phosphoglycolate cycle from cyanobacteria via algae toward plants. Photosynthesis research. 2011 Sep; 109(1-3):103-14. doi: 10.1007/s11120-010-9615-z. [PMID: 21222161]
  • Roger L Chang, Lila Ghamsari, Ani Manichaikul, Erik F Y Hom, Santhanam Balaji, Weiqi Fu, Yun Shen, Tong Hao, Bernhard Ø Palsson, Kourosh Salehi-Ashtiani, Jason A Papin. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Molecular systems biology. 2011 Aug; 7(?):518. doi: 10.1038/msb.2011.52. [PMID: 21811229]
  • Li Xiang, Katrien Le Roy, Mohammad-Reza Bolouri-Moghaddam, Mieke Vanhaecke, Willem Lammens, Filip Rolland, Wim Van den Ende. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. Journal of experimental botany. 2011 Jul; 62(11):3849-62. doi: 10.1093/jxb/err069. [PMID: 21441406]
  • Jan Huege, Jan Goetze, Doreen Schwarz, Hermann Bauwe, Martin Hagemann, Joachim Kopka. Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PloS one. 2011 Jan; 6(1):e16278. doi: 10.1371/journal.pone.0016278. [PMID: 21283704]
  • Lothar Wissler, Francisco M Codoñer, Jenny Gu, Thorsten B H Reusch, Jeanine L Olsen, Gabriele Procaccini, Erich Bornberg-Bauer. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC evolutionary biology. 2011 Jan; 11(?):8. doi: 10.1186/1471-2148-11-8. [PMID: 21226908]
  • Julia Bally, Claudette Job, Maya Belghazi, Dominique Job. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins. PloS one. 2011; 6(9):e25289. doi: 10.1371/journal.pone.0025289. [PMID: 21966485]
  • Bibi Rafeiza Khan, Bethany K Zolman. pex5 Mutants that differentially disrupt PTS1 and PTS2 peroxisomal matrix protein import in Arabidopsis. Plant physiology. 2010 Dec; 154(4):1602-15. doi: 10.1104/pp.110.162479. [PMID: 20974890]
  • Ayumi Minoda, Andreas P M Weber, Kan Tanaka, Shin-ya Miyagishima. Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. Plant physiology. 2010 Nov; 154(3):1532-40. doi: 10.1104/pp.110.163188. [PMID: 20813908]
  • Xiaojun Liu, Min Zhang, Vay Liang W Go, Shen Hu. Membrane proteomic analysis of pancreatic cancer cells. Journal of biomedical science. 2010 Sep; 17(?):74. doi: 10.1186/1423-0127-17-74. [PMID: 20831833]
  • Hermann Bauwe, Martin Hagemann, Alisdair R Fernie. Photorespiration: players, partners and origin. Trends in plant science. 2010 Jun; 15(6):330-6. doi: 10.1016/j.tplants.2010.03.006. [PMID: 20403720]
  • Ralph Kissen, Per Winge, Diem Hong Thi Tran, Tommy S Jørstad, Trond R Størseth, Tone Christensen, Atle M Bones. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC genomics. 2010 Mar; 11(?):190. doi: 10.1186/1471-2164-11-190. [PMID: 20307264]
  • Christoph Peterhansel, Ina Horst, Markus Niessen, Christian Blume, Rashad Kebeish, Sophia Kürkcüoglu, Fritz Kreuzaler. Photorespiration. The arabidopsis book. 2010; 8(?):e0130. doi: 10.1199/tab.0130. [PMID: 22303256]
  • Martin Hagemann, Marion Eisenhut, Claudia Hackenberg, Hermann Bauwe. Pathway and importance of photorespiratory 2-phosphoglycolate metabolism in cyanobacteria. Advances in experimental medicine and biology. 2010; 675(?):91-108. doi: 10.1007/978-1-4419-1528-3_6. [PMID: 20532737]
  • Wendy L Allan, Shawn M Clark, Gordon J Hoover, Barry J Shelp. Role of plant glyoxylate reductases during stress: a hypothesis. The Biochemical journal. 2009 Sep; 423(1):15-22. doi: 10.1042/bj20090826. [PMID: 19740079]
  • Bhupendra Chaudhary, Ran Hovav, Lex Flagel, Ron Mittler, Jonathan F Wendel. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC genomics. 2009 Aug; 10(?):378. doi: 10.1186/1471-2164-10-378. [PMID: 19686594]
  • Kennan Kellaris Salinero, Keith Keller, William S Feil, Helene Feil, Stephan Trong, Genevieve Di Bartolo, Alla Lapidus. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics. 2009 Aug; 10(?):351. doi: 10.1186/1471-2164-10-351. [PMID: 19650930]
  • Marion Eisenhut, Jan Huege, Doreen Schwarz, Hermann Bauwe, Joachim Kopka, Martin Hagemann. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant physiology. 2008 Dec; 148(4):2109-20. doi: 10.1104/pp.108.129403. [PMID: 18945936]
  • Ki-Hong Jung, Christopher Dardick, Laura E Bartley, Peijian Cao, Jirapa Phetsom, Patrick Canlas, Young-Su Seo, Michael Shultz, Shu Ouyang, Qiaoping Yuan, Bryan C Frank, Eugene Ly, Li Zheng, Yi Jia, An-Ping Hsia, Kyungsook An, Hui-Hsien Chou, David Rocke, Geun Cheol Lee, Patrick S Schnable, Gynheung An, C Robin Buell, Pamela C Ronald. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PloS one. 2008 Oct; 3(10):e3337. doi: 10.1371/journal.pone.0003337. [PMID: 18836531]
  • Ki-Hong Jung, Jinwon Lee, Chris Dardick, Young-Su Seo, Peijian Cao, Patrick Canlas, Jirapa Phetsom, Xia Xu, Shu Ouyang, Kyungsook An, Yun-Ja Cho, Geun-Cheol Lee, Yoosook Lee, Gynheung An, Pamela C Ronald. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS genetics. 2008 Aug; 4(8):e1000164. doi: 10.1371/journal.pgen.1000164. [PMID: 18725934]
  • Delkin O Gonzalez, Lila O Vodkin. Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. BMC genomics. 2007 Dec; 8(?):468. doi: 10.1186/1471-2164-8-468. [PMID: 18093333]
  • Marion Eisenhut, Eneas Aguirre von Wobeser, Ludwig Jonas, Hendrik Schubert, Bas W Ibelings, Hermann Bauwe, Hans C P Matthijs, Martin Hagemann. Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant physiology. 2007 Aug; 144(4):1946-59. doi: 10.1104/pp.107.103341. [PMID: 17600135]
  • Sandra Schwarte, Hermann Bauwe. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant physiology. 2007 Jul; 144(3):1580-6. doi: 10.1104/pp.107.099192. [PMID: 17478634]
  • Isam Fattash, Björn Voss, Ralf Reski, Wolfgang R Hess, Wolfgang Frank. Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC plant biology. 2007 Mar; 7(?):13. doi: 10.1186/1471-2229-7-13. [PMID: 17359535]
  • Sigrun Reumann, Andreas P M Weber. Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled--others remain. Biochimica et biophysica acta. 2006 Dec; 1763(12):1496-510. doi: 10.1016/j.bbamcr.2006.09.008. [PMID: 17046077]
  • Andréa M Almeida, Clélia R A Bertoncini, Jiri Borecký, Nadja C Souza-Pinto, Aníbal E Vercesi. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate. Anais da Academia Brasileira de Ciencias. 2006 Sep; 78(3):505-14. doi: 10.1590/s0001-37652006000300010. [PMID: 16936939]
  • Marion Eisenhut, Shira Kahlon, Dirk Hasse, Ralph Ewald, Judy Lieman-Hurwitz, Teruo Ogawa, Wolfgang Ruth, Hermann Bauwe, Aaron Kaplan, Martin Hagemann. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant physiology. 2006 Sep; 142(1):333-42. doi: 10.1104/pp.106.082982. [PMID: 16877700]
  • Mahesh N Samtani, Matthias Lohle, Angela Grant, Peter W Nathanielsz, William J Jusko. Betamethasone pharmacokinetics after two prodrug formulations in sheep: implications for antenatal corticosteroid use. Drug metabolism and disposition: the biological fate of chemicals. 2005 Aug; 33(8):1124-30. doi: 10.1124/dmd.105.004309. [PMID: 15860658]
  • Gabriel P Holbrook, Alfred J Keys. Evidence for recycling of inorganic phosphate by wheat chloroplasts during photosynthesis at air levels of CO2 and O2. Journal of plant physiology. 2003 Nov; 160(11):1351-60. doi: 10.1078/0176-1617-01117. [PMID: 14658388]
  • T G Mamedov, K Suzuki, K Miura, K Kucho Ki, H Fukuzawa. Characteristics and sequence of phosphoglycolate phosphatase from a eukaryotic green alga Chlamydomonas reinhardtii. The Journal of biological chemistry. 2001 Dec; 276(49):45573-9. doi: 10.1074/jbc.m103882200. [PMID: 11581250]
  • C R Bertoncini, R Meneghini. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini. Nucleic acids research. 1995 Aug; 23(15):2995-3002. doi: 10.1093/nar/23.15.2995. [PMID: 7659523]
  • C R Meyer, P Rustin, R T Wedding. A kinetic study of the effects of phosphate and organic phosphates on the activity of phosphoenolpyruvate carboxylase from Crassula argentea. Archives of biochemistry and biophysics. 1989 May; 271(1):84-97. doi: 10.1016/0003-9861(89)90258-0. [PMID: 2712576]