Glycerophosphoinositol (BioDeep_00000004622)

 

Secondary id: BioDeep_00001870376

human metabolite Endogenous natural product


代谢物信息卡片


[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid

化学式: C9H19O11P (334.0665)
中文名称: 1-甘油磷酸肌醇
谱图信息: 最多检出来源 Homo sapiens(feces) 43.77%

Reviewed

Last reviewed on 2024-10-24.

Cite this Page

Glycerophosphoinositol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/glycerophosphoinositol (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000004622). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(C(COP(=O)(O)OC1C(C(C(C(C1O)O)O)O)O)O)O
InChI: InChI=1S/C9H19O11P/c10-1-3(11)2-19-21(17,18)20-9-7(15)5(13)4(12)6(14)8(9)16/h3-16H,1-2H2,(H,17,18)/t3-,4-,5-,6+,7-,8-,9-/m1/s1

描述信息

Glycerophosphoinositol (CAS: 16824-65-0), also known as 1-(sn-glycero-3-phospho)-1D-myo-inositol, is produced through deacylation by phospholipase B of the essential phospholipid phosphatidylinositol. Glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane. Their transport is mediated by the Glut2 transporter, the human ortholog of GIT1 (PMID: 17141226). Glycerophosphoinositol is a substrate for glycerophosphoinositol inositolphosphodiesterase (EC 3.1.4.43) and is involved in the following reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = glycerol + 1D-myo-inositol 1-phosphate. It is also a substrate for glycerophosphoinositol glycerophosphodiesterase (EC 3.1.4.44) which catalyzes the chemical reaction: 1-(sn-glycero-3-phospho)-1D-myo-inositol + H2O = myo-inositol + sn-glycerol 3-phosphate.
Isolated from beef liver. Glycerylphosphoinositol is found in animal foods.

同义名列表

14 个代谢物同义名

[(2R)-2,3-dihydroxypropoxy]({[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy})phosphinic acid; (2R)-2,3-dihydroxypropoxy([(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy)phosphinic acid; 1-(sn-Glycero-3-phospho)-1D-myo-inositol; alpha-Glycerophosphoryl inositol; sn-Glycero-3-phospho-1-inositol; alpha-Glycerophosphorylinositol; α-Glycerophosphoryl inositol; α-Glycerophosphorylinositol; 3-Phosphoglyceroinositol; Glycerylphosphoinositol; Glycerophosphoinositol; Glyerophosphoinositol; SCHEMBL4668088; GroPIns



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

15 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, CLN3, GDPD2, GIT1, GTPBP4, IKBKG, ITPR3, MAPK8, PIK3C3, PLA2G12A, PTPN6, RGS16
Endoplasmic reticulum membrane 2 CLN3, ITPR3
Cytoplasmic vesicle, autophagosome 2 CLN3, PIK3C3
Nucleus 7 AIMP2, CLN3, GTPBP4, IKBKG, MAPK8, PLCZ1, PTPN6
autophagosome 2 CLN3, PIK3C3
cytosol 11 AIMP2, CLN3, GIT1, GTPBP4, IKBKG, LCK, MAPK8, PIK3C3, PLCZ1, PRKCQ, PTPN6
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
trans-Golgi network 1 CLN3
centrosome 1 GIT1
nucleoplasm 6 GTPBP4, IKBKG, ITPR3, MAPK8, PLCZ1, PTPN6
Cell membrane 4 CLN3, GDE1, LCK, TNF
Lipid-anchor 2 LCK, RGS16
Cytoplasmic side 1 LCK
lamellipodium 2 GDPD2, GIT1
Early endosome membrane 1 CLN3
Multi-pass membrane protein 3 CLN3, GDE1, ITPR3
Golgi apparatus membrane 1 CLN3
Synapse 2 GIT1, MAPK8
cell surface 1 TNF
glutamatergic synapse 1 PIK3C3
Golgi apparatus 1 CLN3
Golgi membrane 1 CLN3
lysosomal membrane 2 CLN3, EGF
neuronal cell body 2 ITPR3, TNF
postsynapse 1 GIT1
synaptic vesicle 1 CLN3
Cytoplasm, cytosol 2 AIMP2, LCK
Lysosome 1 CLN3
Presynapse 1 GIT1
endosome 1 PIK3C3
plasma membrane 11 CLN3, EGF, F2, GDE1, GDPD2, ITPR3, LCK, PRKCQ, PTPN6, RGS16, TNF
Membrane 10 AIMP2, CLN3, EGF, GDE1, GIT1, GTPBP4, ITPR3, PIK3C3, PTPN6, RGS16
axon 1 MAPK8
brush border 1 ITPR3
caveola 1 CLN3
extracellular exosome 4 EGF, F2, LCK, PTPN6
Lysosome membrane 1 CLN3
endoplasmic reticulum 2 CLN3, ITPR3
extracellular space 3 EGF, F2, TNF
perinuclear region of cytoplasm 2 GTPBP4, PLCZ1
mitochondrion 1 GIT1
protein-containing complex 2 IKBKG, PTPN6
postsynaptic density 1 GIT1
pronucleus 1 PLCZ1
Secreted 2 F2, PLA2G12A
extracellular region 5 EGF, F2, PLA2G12A, PTPN6, TNF
centriolar satellite 1 PRKCQ
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 GIT1
nuclear membrane 1 GTPBP4
external side of plasma membrane 1 TNF
nucleolus 4 GTPBP4, ITPR3, PLCZ1, PTPN6
midbody 1 PIK3C3
Early endosome 1 CLN3
apical part of cell 1 ITPR3
cell-cell junction 1 PTPN6
recycling endosome 2 CLN3, TNF
Single-pass type II membrane protein 1 TNF
Cell projection, lamellipodium 1 GIT1
Cytoplasm, perinuclear region 1 PLCZ1
Membrane raft 3 CLN3, LCK, TNF
Cell junction, focal adhesion 1 GIT1
Cytoplasm, cytoskeleton 1 GDPD2
focal adhesion 1 GIT1
GABA-ergic synapse 1 PIK3C3
Peroxisome 1 PIK3C3
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 1 F2
axoneme 1 PIK3C3
nuclear outer membrane 1 ITPR3
Late endosome 2 CLN3, PIK3C3
receptor complex 1 ITPR3
neuron projection 2 CLN3, GIT1
Late endosome membrane 1 CLN3
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
mitotic spindle 1 IKBKG
Golgi apparatus, trans-Golgi network 1 CLN3
Nucleus, nucleolus 1 GTPBP4
spindle pole 1 IKBKG
actin filament 1 GDPD2
blood microparticle 1 F2
Cytoplasm, cytoskeleton, spindle pole 1 GIT1
Endomembrane system 1 CLN3
Membrane, caveola 1 CLN3
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cytoplasmic vesicle membrane 1 GDE1
ubiquitin ligase complex 1 IKBKG
Golgi stack 1 CLN3
secretory granule membrane 1 ITPR3
Golgi lumen 1 F2
endoplasmic reticulum lumen 1 F2
platelet alpha granule lumen 1 EGF
specific granule lumen 1 PTPN6
tertiary granule lumen 1 PTPN6
mitotic spindle pole 1 GIT1
immunological synapse 2 LCK, PRKCQ
presynaptic endosome 1 PIK3C3
aggresome 1 PRKCQ
calyx of Held 1 GIT1
IkappaB kinase complex 1 IKBKG
clathrin-coated endocytic vesicle membrane 1 EGF
platelet dense tubular network membrane 1 ITPR3
Synapse, synaptosome 1 CLN3
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
pericentriolar material 1 LCK
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
alpha-beta T cell receptor complex 1 PTPN6
transport vesicle membrane 1 ITPR3
Autolysosome 2 CLN3, PIK3C3
sperm head 1 PLCZ1
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
Golgi apparatus, Golgi stack 1 CLN3
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Qi Zhang, Yan Li, Ping Sui, Xue-Heng Sun, Yufei Gao, Chun-Yan Wang. MALDI mass spectrometry imaging discloses the decline of sulfoglycosphingolipid and glycerophosphoinositol species in the brain regions related to cognition in a mouse model of Alzheimer's disease. Talanta. 2023 Aug; 266(Pt 2):125022. doi: 10.1016/j.talanta.2023.125022. [PMID: 37619472]
  • Ignacio Piédrola, Sara Martínez, Ana Gradillas, Alma Villaseñor, Vanesa Alonso-Herranz, Isabel Sánchez-Vera, Esther Escudero, Isabel A Martín-Antoniano, Jose Felipe Varona, Andrés Ruiz, Jose María Castellano, Úrsula Muñoz, María C Sádaba. Deficiency in the production of antibodies to lipids correlates with increased lipid metabolism in severe COVID-19 patients. Frontiers in immunology. 2023; 14(?):1188786. doi: 10.3389/fimmu.2023.1188786. [PMID: 37426663]
  • Benjamin P Robinson, Sarah Hawbaker, Annette Chiang, Eric M Jordahl, Sanket Anaokar, Alexiy Nikiforov, Ray W Bowman, Philip Ziegler, Ceara K McAtee, Jana Patton-Vogt, Allyson F O'Donnell. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biology of the cell. 2022 Jan; 114(1):3-31. doi: 10.1111/boc.202100007. [PMID: 34562280]
  • Ana Margarida Campos, Genoveffa Nuzzo, Alessia Varone, Paola Italiani, Diana Boraschi, Daniela Corda, Angelo Fontana. Direct LC-MS/MS Analysis of Extra- and Intracellular Glycerophosphoinositol in Model Cancer Cell Lines. Frontiers in immunology. 2021; 12(?):646681. doi: 10.3389/fimmu.2021.646681. [PMID: 33737939]
  • Xinzhu Wang, Ruud Nijman, Stephane Camuzeaux, Caroline Sands, Heather Jackson, Myrsini Kaforou, Marieke Emonts, Jethro A Herberg, Ian Maconochie, Enitan D Carrol, Stephane C Paulus, Werner Zenz, Michiel Van der Flier, Ronald de Groot, Federico Martinon-Torres, Luregn J Schlapbach, Andrew J Pollard, Colin Fink, Taco T Kuijpers, Suzanne Anderson, Matthew R Lewis, Michael Levin, Myra McClure. Plasma lipid profiles discriminate bacterial from viral infection in febrile children. Scientific reports. 2019 11; 9(1):17714. doi: 10.1038/s41598-019-53721-1. [PMID: 31776453]
  • Mariangela Vessichelli, Stefania Mariggiò, Alessia Varone, Pasquale Zizza, Angelomaria Di Santo, Concetta Amore, Giuseppe Dell'Elba, Adele Cutignano, Angelo Fontana, Carmela Cacciapuoti, Gaetano Di Costanzo, Mariastella Zannini, Tiziana de Cristofaro, Virgilio Evangelista, Daniela Corda. The natural phosphoinositide derivative glycerophosphoinositol inhibits the lipopolysaccharide-induced inflammatory and thrombotic responses. The Journal of biological chemistry. 2017 08; 292(31):12828-12841. doi: 10.1074/jbc.m116.773861. [PMID: 28600357]
  • Carla D Jorge, Nuno Borges, Helena Santos. A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environmental microbiology. 2015 Jul; 17(7):2492-504. doi: 10.1111/1462-2920.12734. [PMID: 25472423]
  • Laura Grauso, Stefania Mariggiò, Daniela Corda, Angelo Fontana, Adele Cutignano. An improved UPLC-MS/MS platform for quantitative analysis of glycerophosphoinositol in mammalian cells. PloS one. 2015; 10(4):e0123198. doi: 10.1371/journal.pone.0123198. [PMID: 25860666]
  • Tanya C Burch, Giorgis Isaac, Christiana L Booher, Johng S Rhim, Paul Rainville, James Langridge, Andrew Baker, Julius O Nyalwidhe. Comparative Metabolomic and Lipidomic Analysis of Phenotype Stratified Prostate Cells. PloS one. 2015; 10(8):e0134206. doi: 10.1371/journal.pone.0134206. [PMID: 26244785]
  • Graeme S V McDowell, Alexandre P Blanchard, Graeme P Taylor, Daniel Figeys, Stephen Fai, Steffany A L Bennett. Predicting glycerophosphoinositol identities in lipidomic datasets using VaLID (Visualization and Phospholipid Identification)--an online bioinformatic search engine. BioMed research international. 2014; 2014(?):818670. doi: 10.1155/2014/818670. [PMID: 24701584]
  • Chin-Lu Tseng, Jiann-Wu Wei. Homologous desensitization of histamine-mediated signal transduction system in C6 glioma cells. The Chinese journal of physiology. 2013 Apr; 56(2):90-100. doi: 10.4077/cjp.2013.bab094. [PMID: 23589925]
  • Teun Munnik. Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC. Methods in molecular biology (Clifton, N.J.). 2013; 1009(?):17-24. doi: 10.1007/978-1-62703-401-2_2. [PMID: 23681519]
  • Jana Patton-Vogt. Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochimica et biophysica acta. 2007 Mar; 1771(3):337-42. doi: 10.1016/j.bbalip.2006.04.013. [PMID: 16781190]
  • Stefania Mariggiò, Cristiano Iurisci, Jordi Sebastià, Jana Patton-Vogt, Daniela Corda. Molecular characterization of a glycerophosphoinositol transporter in mammalian cells. FEBS letters. 2006 Dec; 580(30):6789-96. doi: 10.1016/j.febslet.2006.11.039. [PMID: 17141226]
  • Claudia Almaguer, Edward Fisher, Jana Patton-Vogt. Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Current genetics. 2006 Dec; 50(6):367-75. doi: 10.1007/s00294-006-0096-8. [PMID: 16924500]
  • Shunzhong Bao, Alan Bohrer, Sasanka Ramanadham, Wu Jin, Sheng Zhang, John Turk. Effects of stable suppression of Group VIA phospholipase A2 expression on phospholipid content and composition, insulin secretion, and proliferation of INS-1 insulinoma cells. The Journal of biological chemistry. 2006 Jan; 281(1):187-98. doi: 10.1074/jbc.m509105200. [PMID: 16286468]
  • Oleg O Glebov, Nicholas A Bright, Benjamin J Nichols. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nature cell biology. 2006 Jan; 8(1):46-54. doi: 10.1038/ncb1342. [PMID: 16341206]
  • C Almaguer, D Mantella, E Perez, J Patton-Vogt. Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. Eukaryotic cell. 2003 Aug; 2(4):729-36. doi: 10.1128/ec.2.4.729-736.2003. [PMID: 12912892]
  • S S Nair, J Leitch, M L Garg. Suppression of inositol phosphate release by cardiac myocytes isolated from fish oil-fed pigs. Molecular and cellular biochemistry. 2000 Dec; 215(1-2):57-64. doi: 10.1023/a:1026538932590. [PMID: 11204456]
  • M L Uhrig, A S Couto, W Colli, R M de Lederkremer. Characterization of inositolphospholipids in Trypanosoma cruzi trypomastigote forms. Biochimica et biophysica acta. 1996 May; 1300(3):233-9. doi: 10.1016/0005-2760(96)00021-5. [PMID: 8679689]
  • U Leli, G Hauser. Chlorpromazine induces accumulation of inositol phosphates in C6 glioma cells. Biochemical and biophysical research communications. 1986 Mar; 135(2):465-72. doi: 10.1016/0006-291x(86)90017-3. [PMID: 3008721]