Gene Association: CFL1
UniProt Search:
CFL1 (PROTEIN_CODING)
Function Description: cofilin 1
found 28 associated metabolites with current gene based on the text mining result from the pubmed database.
Cucurbitacin_E
Cucurbitacin E is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. It is a cucurbitacin and a tertiary alpha-hydroxy ketone. Cucurbitacin E is a natural product found in Cucurbita foetidissima, Helicteres angustifolia, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 1, 5 and 23. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.
Melatonin
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Alliin
Alliin /ˈæli.ɪn/ is a sulfoxide that is a natural constituent of fresh garlic.[1] It is a derivative of the amino acid cysteine. When fresh garlic is chopped or crushed, the enzyme alliinase converts alliin into allicin, which is responsible for the aroma of fresh garlic. Allicin and other thiosulfinates in garlic are unstable and form a number of other compounds, such as diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DAT), dithiins and ajoene.[2] Garlic powder is not a source of alliin, nor is fresh garlic upon maceration, since the enzymatic conversion to allicin takes place in the order of seconds. Alliin was the first natural product found to have both carbon- and sulfur-centered stereochemistry.[3] Constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). (R)C(S)S-Alliin is found in garden onion, garlic, and onion-family vegetables. (R)C(S)S-Alliin is found in garden onion. (R)C(S)S-Alliin is a constituent of garlic oil (Allium sativum), also from ramsons (Allium ursinum). Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
Cucurbitacin
Cucurbitacin S is an 11-oxo steroid. Cucurbitacin S is a natural product found in Cucurbita foetidissima with data available. Triterpenes that derive from LANOSTEROL by a shift of the C19 methyl to the C9 position. They are found in seeds and roots of CUCURBITACEAE and other plants and are noted for intense bitterness.
Di-2-propenyl disulfide, 9CI
Di-2-propenyl disulfide, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), belongs to the class of organic compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. Di-2-propenyl disulfide is possibly neutral. An organic disulfide where the organic group specified is allyl. Di-2-propenyl disulfide has been detected, but not quantified, in soft-necked garlics. This could make di-2-propenyl disulfide a potential biomarker for the consumption of these foods. 1,2-(2-propenyl)-disulfane, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), is a member of the class of compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. 1,2-(2-propenyl)-disulfane can be found in soft-necked garlic, which makes 1,2-(2-propenyl)-disulfane a potential biomarker for the consumption of this food product. Diallyl disulfide is an organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. It has a role as an antineoplastic agent, an antifungal agent and a plant metabolite. Diallyl disulfide is a natural product found in Allium vineale, Allium chinense, and other organisms with data available. An organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].
5-Fluorouridine
5-Fluorouridine is a metabolite of fluorouracil. Fluorouracil (5-FU or f5U) (sold under the brand names Adrucil, Carac, Efudix, Efudex and Fluoroplex) is a drug that is a pyrimidine analog which is used in the treatment of cancer. It is a suicide inhibitor and works through irreversible inhibition of thymidylate synthase. It belongs to the family of drugs called antimetabolites. It is typically administered with leucovorin. (Wikipedia) 5-Fluorouridine, a metabolite of 5-fluorouracil (HY-90006), is a potent ribozyme self-cleavage inhibitor. 5-Fluorouridine incorporates into both total and poly A RNA and has antiproliferative activity. 5-Fluorouridine induces apoptosis[1][2][3].
Phalloidine
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Lapachol
Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].
Adrenic acid
Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]
Sennoside A
Senna (powdered) is a yellow-brown powder with a slight odor and taste. (NTP, 1992) Sennoside A is a member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. It is a member of sennosides and an oxo dicarboxylic acid. Senna (Cassia species) is a popular herbal laxative that is available without prescription. Senna is generally safe and well tolerated, but can cause adverse events including clinically apparent liver injury when used in high doses for longer than recommended periods. Sennoside A is a natural product found in Rheum officinale, Rheum palmatum, and other organisms with data available. Preparations of SENNA PLANT. They contain sennosides, which are anthraquinone type CATHARTICS and are used in many different preparations as laxatives. A member of the class of sennosides that is rel-(9R,9R)-9,9,10,10-tetrahydro-9,9-bianthracene-2,2-dicarboxylic acid which is substituted by hydroxy groups at positions 4 and 4, by beta-D-glucopyranosyloxy groups at positions 5 and 5, and by oxo groups at positions 10 and 10. The exact stereochemisty at positions 9 and 9 is not known - it may be R,R (as shown) or S,S. Cathartic principle from rhubarb. Sennoside A is found in green vegetables and garden rhubarb. Sennoside A is found in garden rhubarb. Cathartic principle from rhubar D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Ascaridole
Ascaridole is found in cardamom. Said to be the major constituent of oil of Peumus boldus (boldo).Ascaridole is a natural organic compound classified as a bicyclic monoterpene that has an unusual bridging peroxide functional group. It is the primary constituent of the oil of Mexican Tea (Dysphania ambrosioides, formerly Chenopodium ambrosioides). It is a colorless liquid that is soluble in most organic solvents. Like other low molecular weight organic peroxides, it is unstable and prone to explosion when heated or treated with organic acids Said to be the major constituent of oil of Peumus boldus (boldo) D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Tropolone
Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
Latrunculin A
A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.
Senna
Sennosides (also known as senna glycoside or senna) is a medication used to treat constipation and empty the large intestine before surgery. The medication is taken by mouth or via the rectum. It typically begins working in minutes when given by rectum and within twelve hours when given by mouth. It is a weaker laxative than bisacodyl or castor oil. Sennoside A, one of the sennosides present in the laxative medication, has recently proven effective in inhibiting the ribonuclease H (RNase H) activity of human immunodeficiency virus (HIV) reverse transcriptase. Sennosides is anthraquinone glycosides found in senna plant, usually referring to the sennosides A and B, with laxative activity. Sennosides act on and irritate the lining of the intestine wall, thereby causing increased intestinal muscle contractions leading to vigorous bowel movement. Medications derived from SENNA EXTRACT that are used to treat CONSTIPATION. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Usnic_acid
7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Alliin
Alliin, also known as (S)-S-allyl-L-cysteine sulfoxide or (S)-3-(allylsulphinyl)-L-alanine, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. Alliin is soluble (in water) and a moderately acidic compound (based on its pKa). Alliin can be found in a number of food items such as red rice, mandarin orange (clementine, tangerine), ceylon cinnamon, and olive, which makes alliin a potential biomarker for the consumption of these food products. Garlic has been used since antiquity as a therapeutic remedy for certain conditions now associated with oxygen toxicity, and, when this was investigated, garlic did indeed show strong antioxidant and hydroxyl radical-scavenging properties, it is presumed owing to the alliin contained within. Alliin has also been found to affect immune responses in blood . 3-(Allylsulphinyl)-L-alanine is a L-alpha-amino acid. Alliin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=556-27-4 (retrieved 2024-07-01) (CAS RN: 556-27-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Alliin is the main active component of garlic. (±)-Alliin is a putative inhibitor of the main protease of SARS-CoV-2 (Mpro)[1]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].
lapachol
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].
Senna
D005765 - Gastrointestinal Agents > D054368 - Laxatives Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2]. Sennoside A is an anthraquinone glycoside, found in Senna (Cassia angustifolia)[1]. Sennoside A is a HIV-1 inhibitor effective on HIV-1 replication[2].
Cucurbitacin E
Cucurbitacin e is a member of the class of compounds known as cucurbitacins. Cucurbitacins are polycyclic compounds containing the tetracyclic cucurbitane nucleus skeleton, 19-(10->9b)-abeo-10alanost-5-ene (also known as 9b-methyl-19-nor lanosta-5-ene), with a variety of oxygenation functionalities at different positions. Cucurbitacin e is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitacin e is a bitter tasting compound found in cucumber, muskmelon, and watermelon, which makes cucurbitacin e a potential biomarker for the consumption of these food products. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex. Cucurbitacin E is a natural compound which from Cucurbitaceae plants. Cucurbitacin E significantly suppresses the activity of the cyclin B1/CDC2 complex.
Tropolone
Tropolone is a cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. It has a role as a bacterial metabolite, a toxin and a fungicide. It is a cyclic ketone, an enol and an alpha-hydroxy ketone. It derives from a hydride of a cyclohepta-1,3,5-triene. A seven-membered aromatic ring compound. It is structurally related to a number of naturally occurring antifungal compounds (ANTIFUNGAL AGENTS). A cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
AI3-35128
D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].
Tecomin
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].
ASCARIDOLE
A p-menthane monoterpenoid that is p-menth-2-ene with a peroxy group across position 1 to 4. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
3-(Allylsulfinyl)-L-alanine
D000970 - Antineoplastic Agents D007004 - Hypoglycemic Agents Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2]. Alliin, an orally active sulfoxide compound derived from garlic, exhibits hypoglycemic, antioxidant and anti-inflammatory activities[1][2].