Gene Association: AGTR1

UniProt Search: AGTR1 (PROTEIN_CODING)
Function Description: angiotensin II receptor type 1

found 318 associated metabolites with current gene based on the text mining result from the pubmed database.

(S)-Boldine

4,16-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-5,15-diol

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). (S)-Boldine is found in sweet bay. (S)-Boldine is an alkaloid from Sassafras and the leaves of Peumus boldus (boldo). (S)-Boldine is a flavouring ingredient. Alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Flavouring ingredient. (S)-Boldine is found in sweet bay. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Tropoflavin

7,8-dihydroxy-2-phenyl-chromen-4-one;7,8-Dihydroxyflavone

C15H10O4 (254.0579)


7,8-dihydroxyflavone is a dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. It has a role as a plant metabolite, a tropomyosin-related kinase B receptor agonist, an antidepressant, an antioxidant and an antineoplastic agent. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].

   

Sudan_IV

2-Naphthalenol, 1-(2-(2-methyl-4-(2-(2-methylphenyl)diazenyl)phenyl)diazenyl)-

C24H20N4O (380.1637)


Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents

   

Tacrolimus

15,19-Epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone, 5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycycl ohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-, (3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-

C44H69NO12 (803.482)


Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription. It is used in foods as emulsifier, stabiliser, thickener, gelling agent, formulation aid and firming agent; ice-cream stabiliser, used to improve the yield of curds in soft cheese, to increase the yield of doughs and baked products, as a binder and lubricant in sausages, and as thickener or viscosity control agent in beverages, salad dressings and relishes D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors Tacrolimus (anhydrous) is a macrolide lactam containing a 23-membered lactone ring, originally isolated from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. It has a role as an immunosuppressive agent and a bacterial metabolite. Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patients immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex inhibits calcineurin which inhibits T-lymphocyte signal transduction and IL-2 transcription. Tacrolimus anhydrous is a Calcineurin Inhibitor Immunosuppressant. The mechanism of action of tacrolimus anhydrous is as a Calcineurin Inhibitor. Tacrolimus is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after transplantation. Tacrolimus therapy can be associated with mild serum enzyme elevations, and it has been linked to rare instances of clinically apparent cholestatic liver injury. Tacrolimus is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and other organisms with data available. Tacrolimus is a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. Tacrolimus Anhydrous is anhydrous from of tacrolimus, a macrolide isolated from Streptomyces tsukubaensis. Tacrolimus binds to the FKBP-12 protein and forms a complex with calcium-dependent proteins, thereby inhibiting calcineurin phosphatase activity and resulting in decreased cytokine production. This agent exhibits potent immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation. Tacrolimus possesses similar immunosuppressive properties to cyclosporine, but is more potent. A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AH - Agents for dermatitis, excluding corticosteroids L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AD - Calcineurin inhibitors C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C146638 - Calcineurin Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Trans-4-hydroxyproline

(2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid

C5H9NO3 (131.0582)


Trans-4-hydroxy-L-proline is an optically active form of 4-hydroxyproline having L-trans-configuration. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is a tautomer of a trans-4-hydroxy-L-proline zwitterion. Hydroxyproline is a neutral heterocyclic protein amino acid. It is found in collagen and as such it is common in many gelatin products. Hydroxyproline is mostly used as a diagnostic marker of bone turnover and liver fibrosis. Therapeutically, hydroxyproline is being studied as an an experimental medicine but is approved in France as a combination topical gel product called Cicactive for small, superficial wounds. Hydroxyproline is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Hydroxyproline is a nonessential amino acid derivative formed during post-translational protein modification through hydroxylation of the amino acid proline by the enzyme prolyl hydroxylase which requires vitamin C as a co-factor. Hydroxyproline is a major component of the protein collagen and plays a key role in the stability of the collagen triple helix. It can be used as an indicator to determine the amount of collagen. Increased hydroxyproline levels in the urine and/or serum are normally associated with degradation of connective tissue. Vitamin C deficiency decreases the conversion of proline to hydroxyproline, which leads to reduced collagen stability. 4-Hydroxyproline (or hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified amino acid. Hydroxyproline and proline play key roles for collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals Elevated levels of urinary hydroxyproline are also indicative of muscle damage Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (A3486, A3487, A3488, A3489). See also: Hydroxyproline; niacinamide (component of); Hydroxyproline; octinoxate (component of) ... View More ... 4-Hydroxyproline (hydroxyproline or Hyp) is a major component of the protein collagen. Hydroxyproline is produced by hydroxylation of the amino acid proline and is, therefore, a post-translationally modified, non-essential amino acid. Hydroxyproline and proline play key roles in collagen stability. In particular, they permit the sharp twisting of the collagen helix. Hydroxyproline is found in few proteins other than collagen. The only other mammalian protein which includes hydroxyproline is elastin. For this reason, hydroxyproline content has been used as an indicator to determine collagen and/or gelatin amount in tissue or biological samples. Increased serum and urine levels of hydroxyproline have been found in Pagets disease (PMID: 436278). Hydroxyproline (Hyp) content in biological fluids is used as a parameter of collagen catabolism, especially bone resorption or tissue degradation. Bedridden and elderly individuals show significantly elevated serum levels of hydroxyproline in comparison to normal, active individuals (PMID: 10706420). Elevated levels of urinary hydroxyproline are also indicative of muscle damage (PMID: 21988268). Increased reactive oxygen species (ROS) are also known to accelerate collagen degradation. Hydroxyproline levels increase in cases of depression and stress (PMID: 21483218). 4-Hydroxyproline is found to be associated with Alzheimers disease, and also hydroxyprolinemia and iminoglycinuria which are both inborn errors of metabolism. 4-Hydroxyproline is also involved in metabolic disorders such as hyperprolinemia type I, hyperornithinemia with gyrate atrophy (HOGA), L-arginine:glycine amidinotransferase deficiency, creatine deficiency, and guanidinoacetate methyltransferase deficiency. A deficiency in ascorbic acid can result in impaired hydroxyproline formation (PubChem). trans-4-Hydroxy-L-proline is a biomarker for the consumption of processed meat. Constituent of proteins [DFC]. 4-hydroxyproline is a biomarker for the consumption of processed meat An optically active form of 4-hydroxyproline having L-trans-configuration. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

Digoxin

3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C41H64O14 (780.4296)


Digoxin appears as clear to white crystals or white crystalline powder. Odorless. Used as a cardiotonic drug. (EPA, 1998) Digoxin is a cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small. It has a role as an epitope, an anti-arrhythmia drug, a cardiotonic drug and an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a cardenolide glycoside and a steroid saponin. It is a conjugate acid of a digoxin(1-). Digoxin is one of the oldest cardiovascular medications used today. It is a common agent used to manage atrial fibrillation and the symptoms of heart failure. Digoxin is classified as a cardiac glycoside and was initially approved by the FDA in 1954. This drug originates from the foxglove plant, also known as the Digitalis plant, studied by William Withering, an English physician and botanist in the 1780s. Prior to this, a Welsh family, historically referred to as the Physicians of Myddvai, formulated drugs from this plant. They were one of the first to prescribe cardiac glycosides, according to ancient literature dating as early as the 1250s. Digoxin is a Cardiac Glycoside. Digoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available. Digoxin is a cardiac glycoside. Digoxin inhibits the sodium potassium adenosine triphosphatase (ATPase) pump, thereby increasing intracellular calcium and enhancing cardiac contractility. This agent also acts directly on the atrioventricular node to suppress conduction, thereby slowing conduction velocity. Apparently due to its effects on intracellular calcium concentrations, digoxin induces apoptosis of tumor cells via a pathway involving mitochondrial cytochrome c and caspases 8 and 3. (NCI04) Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mos... Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia. Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; A cardiotonic glycoside obtained mainly from Digitalis lanata; Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia. [HMDB] A cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors Digoxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20830-75-5 (retrieved 2024-10-11) (CAS RN: 20830-75-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Methyldopa

3-(3,4-Dihydroxyphenyl)-alpha-methyl-L-a lanine

C10H13NO4 (211.0845)


Methyl dopa appears as colorless or almost colorless crystals or white to yellowish-white fine powder. Almost tasteless. In the sesquihydrate form. pH (saturated aqueous solution) about 5.0. (NTP, 1992) Alpha-methyl-L-dopa is a derivative of L-tyrosine having a methyl group at the alpha-position and an additional hydroxy group at the 3-position on the phenyl ring. It has a role as a hapten, an antihypertensive agent, an alpha-adrenergic agonist, a peripheral nervous system drug and a sympatholytic agent. It is a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. Methyldopa, or α-methyldopa, is a centrally acting sympatholytic agent and an antihypertensive agent. It is an analog of DOPA (3,4‐hydroxyphenylanine), and it is a prodrug, meaning that the drug requires biotransformation to an active metabolite for therapeutic effects. Methyldopa works by binding to alpha(α)-2 adrenergic receptors as an agonist, leading to the inhibition of adrenergic neuronal outflow and reduction of vasoconstrictor adrenergic signals. Methyldopa exists in two isomers D-α-methyldopa and L-α-methyldopa, which is the active form. First introduced in 1960 as an antihypertensive agent, methyldopa was considered to be useful in certain patient populations, such as pregnant women and patients with renal insufficiency. Since then, methyldopa was largely replaced by newer, better-tolerated antihypertensive agents; however, it is still used as monotherapy or in combination with [hydrochlorothiazide]. Methyldopa is also available as intravenous injection, which is used to manage hypertension when oral therapy is unfeasible and to treat hypertensive crisis. Methyldopa anhydrous is a Central alpha-2 Adrenergic Agonist. The mechanism of action of methyldopa anhydrous is as an Adrenergic alpha2-Agonist. Methyldopa (alpha-methyldopa or α-methyldopa) is a centrally active sympatholytic agent that has been used for more than 50 years for the treatment of hypertension. Methyldopa has been clearly linked to instances of acute and chronic liver injury that can be severe and even fatal. Methyldopa is a phenylalanine derivative and an aromatic amino acid decarboxylase inhibitor with antihypertensive activity. Methyldopa is a prodrug and is metabolized in the central nervous system. The antihypertensive action of methyldopa seems to be attributable to its conversion into alpha-methylnorepinephrine, which is a potent alpha-2 adrenergic agonist that binds to and stimulates potent central inhibitory alpha-2 adrenergic receptors. This results in a decrease in sympathetic outflow and decreased blood pressure. Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hy... Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension). Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur. Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output. When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs (Wikipedia). Methyldopa or alpha-methyldopa (brand names Aldomet, Apo-Methyldopa, Dopamet, Novomedopa) is a centrally-acting adrenergic antihypertensive medication. Its use is now deprecated following introduction of alternative safer classes of agents. However it continues to have a role in otherwise difficult to treat hypertension and gestational hypertension (formerly known as pregnancy-induced hypertension).; Methyldopa is an aromatic-amino-acid decarboxylase inhibitor in animals and in man. Only methyldopa, the L-isomer of alpha-methyldopa, has the ability to inhibit dopa decarboxylase and to deplete animal tissues of norepinephrine. In man the antihypertensive activity appears to be due solely to the L-isomer. About twice the dose of the racemate (DL-alpha-methyldopa) is required for equal antihypertensive effect. Methyldopa has no direct effect on cardiac function and usually does not reduce glomerular filtration rate, renal blood flow, or filtration fraction. Cardiac output usually is maintained without cardiac acceleration. In some patients the heart rate is slowed. Normal or elevated plasma renin activity may decrease in the course of methyldopa therapy. Methyldopa reduces both supine and standing blood pressure. Methyldopa usually produces highly effective lowering of the supine pressure with infrequent symptomatic postural hypotension. Exercise hypotension and diurnal blood pressure variations rarely occur.; Methyldopa, in its active metabolite form, is a central alpha-2 receptor agonist. Using methyldopa leads to alpha-2 receptor-negative feedback to sympathetic nervous system (SNS) (centrally and peripherally), allowing peripheral sympathetic nervous system tone to decrease. Such activity leads to a decrease in total peripheral resistance (TPR) and cardiac output.; When introduced it was a mainstay of antihypertensive therapy, but its use has declined, with increased use of other safer classes of agents. One of its important present-day uses is in the management of pregnancy-induced hypertension, as it is relatively safe in pregnancy compared to other antihypertensive drugs. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

Biotin

Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, >=99\\%

C10H16N2O3S (244.0882)


Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].

   

Kynurenic acid

InChI=1/C10H7NO3/c12-9-5-8(10(13)14)11-7-4-2-1-3-6(7)9/h1-5H,(H,11,12)(H,13,14)

C10H7NO3 (189.0426)


Kynurenic acid is a quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. It has a role as a G-protein-coupled receptor agonist, a NMDA receptor antagonist, a nicotinic antagonist, a neuroprotective agent, a human metabolite and a Saccharomyces cerevisiae metabolite. It is a monohydroxyquinoline and a quinolinemonocarboxylic acid. It is a conjugate acid of a kynurenate. Kynurenic Acid is under investigation in clinical trial NCT02340325 (FS2 Safety and Tolerability Study in Healthy Volunteers). Kynurenic acid is a natural product found in Ephedra foeminea, Ephedra intermedia, and other organisms with data available. Kynurenic acid is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (A3279, A3280).... Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375 , 16088227). KYNA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375, 16088227) [HMDB] D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists A quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. [Raw Data] CBA11_Kynurenic-acid_pos_30eV_1-3_01_673.txt [Raw Data] CBA11_Kynurenic-acid_pos_50eV_1-3_01_675.txt [Raw Data] CBA11_Kynurenic-acid_pos_40eV_1-3_01_674.txt [Raw Data] CBA11_Kynurenic-acid_neg_30eV_1-3_01_726.txt [Raw Data] CBA11_Kynurenic-acid_pos_20eV_1-3_01_672.txt [Raw Data] CBA11_Kynurenic-acid_pos_10eV_1-3_01_671.txt [Raw Data] CBA11_Kynurenic-acid_neg_20eV_1-3_01_725.txt [Raw Data] CBA11_Kynurenic-acid_neg_50eV_1-3_01_728.txt [Raw Data] CBA11_Kynurenic-acid_neg_40eV_1-3_01_727.txt [Raw Data] CBA11_Kynurenic-acid_neg_10eV_1-3_01_724.txt Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8.

   

Creatinine

2-imino-1-methylimidazolidin-4-one

C4H7N3O (113.0589)


Creatinine or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons; therefore this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 umol/l, for men 60-110 umol/l. Creatine and creatinine are metabolized in the kidneys, muscle, liver and pancreas. [HMDB]. Creatinine is a biomarker for the consumption of meat. Creatinine is found in many foods, some of which are canada blueberry, other bread, french plantain, and grape. Creatinine, or creatine anhydride, is a breakdown product of creatine phosphate in muscle. The loss of a water molecule from creatine results in the formation of creatinine. Creatinine is transferred to the kidneys by blood plasma, whereupon it is eliminated from the body by glomerular filtration and partial tubular excretion. Creatinine is usually produced at a fairly constant rate by the body. Measuring serum creatinine is a simple test and it is the most commonly used indicator of renal function. A rise in blood creatinine levels is observed only with marked damage to functioning nephrons. Therefore, this test is not suitable for detecting early kidney disease. The typical reference range for women is considered about 45-90 µmol/L; for men 60-110 µmol/L. Creatine and creatinine are metabolized in the kidneys, muscle, liver, and pancreas. Creatinine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-27-5 (retrieved 2024-07-01) (CAS RN: 60-27-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

1-Methylxanthine

2-hydroxy-1-methyl-6,9-dihydro-1H-purin-6-one

C6H6N4O2 (166.0491)


1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

Tetrahydrobiopterin

(-)-(6R)-2-Amino-6-((1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinone

C9H15N5O3 (241.1175)


Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.

   

Aldosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-2-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-15-carbaldehyde

C21H28O5 (360.1937)


Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. [HMDB] Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically, it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2819 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Norepinephrine

L-alpha-(Aminomethyl)-3,4-dihydroxybenzyl alcohol

C8H11NO3 (169.0739)


Norepinephrine is the precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic. Norepinephrine is elevated in the urine of people who consume bananas. Norepinephrine is also a microbial metabolite; urinary noradrenaline is produced by Escherichia, Bacillus, and Saccharomyces (PMID: 24621061). Norepinephrine is found in alcoholic beverages, banana peels and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum), and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. Norepinephrine has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Present in banana peel and pulp (Musa paradisiaca), red plum fruit (Prunus domestica), orange pulp (Citrus sinensis), potato tubers (Solanum tuberosum) and whole purslane (Portulaca oleracea). P. oleracea is the richest of these sources. xi-Norepinephrine is found in many foods, some of which are potato, green vegetables, alcoholic beverages, and fruits.

   

Captopril

(2S)-1-[(2S)-2-Methyl-3-sulphanylpropanoyl]pyrrolidine-2-carboxylic acid

C9H15NO3S (217.0773)


Captopril is a potent, competitive inhibitor of angiotensin-converting enzyme (ACE), the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Captopril may be used in the treatment of hypertension. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dethiobiotin

6-[(4R,5S)-5-methyl-2-oxoimidazolidin-4-yl]hexanoic acid

C10H18N2O3 (214.1317)


Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407) [HMDB]. Dethiobiotin is found in many foods, some of which are agave, garden onion, lime, and black mulberry. Dethiobiotin is a synthetic metabolite that mimic the effects of biotin on gene expression and thus have biotin-like activities. In mammals, biotin serves as a coenzyme for carboxylases such as propionyl-CoA carboxylase. (PMID 12730407). D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens KEIO_ID D075; [MS3] KO009104 KEIO_ID D075; [MS2] KO009103 KEIO_ID D075 D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].

   

Indomethacin

{1-[(4-chlorophenyl)carbonyl]-5-methoxy-2-methyl-1H-indol-3-yl}acetic acid

C19H16ClNO4 (357.0768)


Indomethacin is a non-steroidal antiinflammatory agent (NSAIA) with antiinflammatory, analgesic and antipyretic activity. Its pharmacological effect is thought to be mediated through inhibition of the enzyme cyclooxygenase (COX), the enzyme responsible for catalyzes the rate-limiting step in prostaglandin synthesis via the arachidonic acid pathway. CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9631; ORIGINAL_PRECURSOR_SCAN_NO 9627 CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9618; ORIGINAL_PRECURSOR_SCAN_NO 9614 CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9602; ORIGINAL_PRECURSOR_SCAN_NO 9599 CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9606; ORIGINAL_PRECURSOR_SCAN_NO 9605 CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9610; ORIGINAL_PRECURSOR_SCAN_NO 9609 CONFIDENCE standard compound; INTERNAL_ID 1033; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9598; ORIGINAL_PRECURSOR_SCAN_NO 9596 M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor C - Cardiovascular system > C01 - Cardiac therapy CONFIDENCE standard compound; EAWAG_UCHEM_ID 207 CONFIDENCE standard compound; INTERNAL_ID 2714 CONFIDENCE standard compound; INTERNAL_ID 8611 D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pyridoxamine

4-(AMINOMETHYL)-5-(hydroxymethyl)-2-methylpyridin-3-ol

C8H12N2O2 (168.0899)


Pyridoxamine is one form of vitamin B6. Chemically it is based on a pyridine ring structure, with hydroxyl, methyl, aminomethyl, and hydroxymethyl substituents. It differs from pyridoxine by the substituent at the 4-position. The hydroxyl at position 3 and aminomethyl group at position 4 of its ring endow pyridoxamine with a variety of chemical properties, including the scavenging of free radical species and carbonyl species formed in sugar and lipid degradation and chelation of metal ions that catalyze Amadori reactions. Pyridoxamine, also known as PM, belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Within humans, pyridoxamine participates in a number of enzymatic reactions. In particular, pyridoxamine can be converted into pyridoxal; which is mediated by the enzyme pyridoxine-5-phosphate oxidase. In addition, pyridoxamine can be converted into pyridoxamine 5-phosphate; which is catalyzed by the enzyme pyridoxal kinase. Pyridoxamine also inhibits the formation of advanced lipoxidation endproducts during lipid peroxidation reactions by reaction with dicarbonyl intermediates. In humans, pyridoxamine is involved in vitamin B6 metabolism. Outside of the human body, pyridoxamine has been detected, but not quantified in several different foods, such as nutmegs, sparkleberries, fennels, turmerics, and swiss chards. Pyridoxamine inhibits the Maillard reaction and can block the formation of advanced glycation endproducts, which are associated with medical complications of diabetes. Pyridoxamine is hypothesized to trap intermediates in the formation of Amadori products released from glycated proteins, possibly preventing the breakdown of glycated proteins by disrupting the catalysis of this process through disruptive interactions with the metal ions crucial to the redox reaction. One research study found that pyridoxamine specifically reacts with the carbonyl group in Amadori products, but inhibition of post-Amadori reactions (that can lead to advanced glycation endproducts) is due in much greater part to the metal chelation effects of pyridoxamine. The 4-aminomethyl form of vitamin B6. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate. -- Pubchem; Pyridoxamine is one of the compounds that can be called vitamin B6, along with Pyridoxal and Pyridoxine. -- Wikipedia [HMDB]. Pyridoxamine is found in many foods, some of which are cucumber, fox grape, millet, and teff. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P116 Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Amlodipine

3-Ethyl-5-methyl (+-)-2-(2-aminoethoxymethyl)-4-(O-chlorophenyl)-1,4-dihydro-6-methyl-3,5-pyridinedicarboxylic acid

C20H25ClN2O5 (408.1452)


Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium.; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. [HMDB] Amlodipine is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell; A long acting dihydropyridine calcium channel blocker. It is effective in the treatment of angina pectoris and hypertension; in angina it improves blood flow to the myocardium. Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; Amlodipine (as besylate, mesylate or maleate) is a long-acting calcium channel blocker used as an anti-hypertensive and in the treatment of angina. Amlodipine is marketed as Norvasc in North America and as Istin in the United Kingdom as well as under various other names. As other calcium channel blockers, amlodipine acts by relaxing the smooth muscle in the arterial wall, decreasing peripheral resistance and hence improving blood pressure; in angina it improves blood flow to the myocardium. It was developed under the direction of Dr. Simon Campbell. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sepiapterin

2-Amino-7,8-dihydro-6-((2S)-2-hydroxy-1-oxopropyl)-4(3H)-pteridinone acid

C9H11N5O3 (237.0862)


Sepiapterin, also known as 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one, belongs to the class of organic compounds known as pterins and derivatives. These are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. Sepiapterin is also classified as a member of the pteridine class of organic chemicals. It is a yellow fluorescing pigment. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). More specifically, sepiapterin can be metabolized into tetrahydrobiopterin via the BH(4) salvage pathway. Tetrahydrobiopterin is an essential cofactor in humans for breakdown of phenylalanine and a catalyst of the metabolism of phenylalanine, tyrosine, and tryptophan to the neurotransmitters dopamine and serotonin. A deficiency of tetrahydrobiopterin can cause toxic buildup of phenylalanine (phenylketonuria) as well as deficiencies of dopamine, norepinephrine, and epinephrine, leading to dystonia and other neurological illnesses. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency, an inborn error of metabolism. Sepiapterin reductase deficiency is a condition characterized by movement problems, most often a pattern of involuntary, sustained muscle contractions known as dystonia. Other movement problems can include muscle stiffness (spasticity), tremors, problems with coordination and balance (ataxia), and involuntary jerking movements (chorea). People with sepiapterin reductase deficiency can experience episodes called oculogyric crises. These episodes involve abnormal rotation of the eyeballs; extreme irritability and agitation; and pain, muscle spasms, and uncontrolled movements, especially of the head and neck. Movement abnormalities are often worse late in the day. Most affected individuals have delayed development of motor skills such as sitting and crawling, and they typically are not able to walk unassisted. The problems with movement tend to worsen over time. Within humans, sepiapterin participates in a number of enzymatic reactions. In particular, sepiapterin can be converted into 7,8-dihydroneopterin; which is mediated by the enzyme sepiapterin reductase. In addition, sepiapterin can be converted into 7,8-dihydroneopterin through its interaction with the enzyme carbonyl reductase [NADPH] 1. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). It is a yellow fluorescing pigment. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency. [HMDB] C307 - Biological Agent

   

Diltiazem

Acetic acid (2S,3S)-5-(2-dimethylamino-ethyl)-2-(4-methoxy-phenyl)-4-oxo-2,3,4,5-tetrahydro-benzo[b][1,4]thiazepin-3-yl ester

C22H26N2O4S (414.1613)


Diltiazem is only found in individuals that have used or taken this drug. It is a benzothiazepine derivative with vasodilating action due to its antagonism of the actions of the calcium ion in membrane functions. It is also teratogenic. [PubChem]Possibly by deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, diltiazem, like verapamil, inhibits the influx of extracellular calcium across both the myocardial and vascular smooth muscle cell membranes. The resultant inhibition of the contractile processes of the myocardial smooth muscle cells leads to dilation of the coronary and systemic arteries and improved oxygen delivery to the myocardial tissue. C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Hydrochlorothiazide

6-chloro-1,1-dioxo-3,4-dihydro-2H-1lambda6,2,4-benzothiadiazine-7-sulfonamide

C7H8ClN3O4S2 (296.9645)


Hydrochlorothiazide is a thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. -- Pubchem. Hydrochlorothiazide (Apo-Hydro, Aquazide H, Microzide, Oretic), sometimes abbreviated HCT, HCTZ, or HZT is a popular diuretic drug that acts by inhibiting the kidneys ability to retain water. This reduces the volume of the blood, decreasing peripheral vascular resistance. Chlorothiazide, a carbonic anhydrase inhibitor. --Wikipedia. A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It has been used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. -- Pubchem CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2043; ORIGINAL_PRECURSOR_SCAN_NO 2040 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2023; ORIGINAL_PRECURSOR_SCAN_NO 2022 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2034; ORIGINAL_PRECURSOR_SCAN_NO 2032 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2037; ORIGINAL_PRECURSOR_SCAN_NO 2035 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2060; ORIGINAL_PRECURSOR_SCAN_NO 2058 CONFIDENCE standard compound; INTERNAL_ID 514; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2039; ORIGINAL_PRECURSOR_SCAN_NO 2037 C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Labetalol

3-Carboxamido-4-hydroxy-alpha-((1-methyl-3-phenylpropylamino)methyl)benzyl alcohol

C19H24N2O3 (328.1787)


Labetalol is only found in individuals that have used or taken this drug. It is a blocker of both alpha- and beta-adrenergic receptors that is used as an antihypertensive (PubChem). Labetalol HCl combines both selective, competitive, alpha-1-adrenergic blocking and nonselective, competitive, beta-adrenergic blocking activity in a single substance. In man, the ratios of alpha- to beta- blockade have been estimated to be approximately 1:3 and 1:7 following oral and intravenous (IV) administration, respectively. The principal physiologic action of labetalol is to competitively block adrenergic stimulation of β-receptors within the myocardium (β1-receptors) and within bronchial and vascular smooth muscle (β2-receptors), and α1-receptors within vascular smooth muscle. This causes a decrease in systemic arterial blood pressure and systemic vascular resistance without a substantial reduction in resting heart rate, cardiac output, or stroke volume, apparently because of its combined α- and β-adrenergic blocking activity. CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7134; ORIGINAL_PRECURSOR_SCAN_NO 7131 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7100; ORIGINAL_PRECURSOR_SCAN_NO 7098 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7094; ORIGINAL_PRECURSOR_SCAN_NO 7091 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7132; ORIGINAL_PRECURSOR_SCAN_NO 7130 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3398; ORIGINAL_PRECURSOR_SCAN_NO 3397 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3392; ORIGINAL_PRECURSOR_SCAN_NO 3391 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3400; ORIGINAL_PRECURSOR_SCAN_NO 3399 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7150; ORIGINAL_PRECURSOR_SCAN_NO 7149 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3395; ORIGINAL_PRECURSOR_SCAN_NO 3393 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3466; ORIGINAL_PRECURSOR_SCAN_NO 3465 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3405; ORIGINAL_PRECURSOR_SCAN_NO 3404 CONFIDENCE standard compound; INTERNAL_ID 220; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7142; ORIGINAL_PRECURSOR_SCAN_NO 7140 C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; INTERNAL_ID 2757 CONFIDENCE standard compound; INTERNAL_ID 8188 Labetalol (AH5158) is an orally active selective α1- and non-selective β-adrenergic receptors competitive antagonist. Labetalol, an anti-hypertensive agent, can be used for the research of cardiovascular disease, such as hypertension in pregnancy[1][2][3].

   

Verapamil

2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile

C27H38N2O4 (454.2831)


Verapamil is only found in individuals that have used or taken this drug. Verapamil is a calcium channel blocker that is a class IV anti-arrhythmia agent. [PubChem]Verapamil inhibits voltage-dependent calcium channels. Specifically, its effect on L-type calcium channels in the heart causes a reduction in ionotropy and chronotropy, thuis reducing heart rate and blood pressure. Verapamils mechanism of effect in cluster headache is thought to be linked to its calcium-channel blocker effect, but which channel subtypes are involved is presently not known. [PubChem] Calcium channel antagonists can be quite toxic. In the management of poisoning, early recognition is critical. Calcium channel antagonists are frequently prescribed, and the potential for serious morbidity and mortality with over dosage is significant. Ingestion of these agents should be suspected in any patient who presents in an overdose situation with unexplained hypotension and conduction abnormalities. The potential for toxicity should be noted in patients with underlying hepatic or renal dysfunction who are receiving therapeutic doses. (PMID 8213877). C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker A calcium channel blocker that is a class IV anti-arrhythmia agent. -- Pubchem; COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 8557 CONFIDENCE standard compound; INTERNAL_ID 2260 CONFIDENCE standard compound; INTERNAL_ID 4081 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker KEIO_ID V021; [MS2] KO009311 Corona-virus KEIO_ID V021 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Candesartan

2-ethoxy-1-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-1,3-benzodiazole-7-carboxylic acid

C24H20N6O3 (440.1597)


Candesartan is an angiotensin-receptor blocker (ARB) that may be used alone or with other agents to treat hypertension. It is administered orally as the prodrug, candesartan cilexetil, which is rapidly converted to its active metabolite, candesartan, during absorption in the gastrointestinal tract. Candesartan lowers blood pressure by antagonizing the renin-angiotensin-aldosterone system (RAAS); it competes with angiotensin II for binding to the type-1 angiotensin II receptor (AT1) subtype and prevents the blood pressure increasing effects of angiotensin II. Unlike angiotensin-converting enzyme (ACE) inhibitors, ARBs do not have the adverse effect of dry cough. Candesartan may be used to treat hypertension, isolated systolic hypertension, left ventricular hypertrophy and diabetic nephropathy. It may also be used as an alternative agent for the treatment of heart failure, systolic dysfunction, myocardial infarction and coronary artery disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 79 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2804 CONFIDENCE standard compound; INTERNAL_ID 2137 CONFIDENCE standard compound; INTERNAL_ID 8182 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Candesartan (CV 11974) is an orally active angiotensin II AT1-Receptor blocker and PPAR-γ agonist. Candesartan has potent and long-lasting antihypertensive effects. Candesartan can be used for the research of hypertension, chronic heart failure (CHF) and Traumatic brain injury (TBI)[1][2][3]. Candesartan (CV 11974) is an orally active angiotensin II AT1-Receptor blocker and PPAR-γ agonist. Candesartan has potent and long-lasting antihypertensive effects. Candesartan can be used for the research of hypertension, chronic heart failure (CHF) and Traumatic brain injury (TBI)[1][2][3].

   

Eprosartan

4-({2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl}methyl)benzoic acid

C23H24N2O4S (424.1457)


Eprosartan is an angiotensin II receptor antagonist used for the treatment of high blood pressure. It acts on the renin-angiotensin system in two ways to decrease total peripheral resistance. First, it blocks the binding of angiotensin II to AT1 receptors in vascular smooth muscle, causing vascular dilatation. Second, it inhibits sympathetic norepinephrine production, further reducing blood pressure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2776 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

Irbesartan

2-butyl-3-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1,3-diazaspiro[4.4]non-1-en-4-one

C25H28N6O (428.2324)


Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It competes with angiotensin II for binding at the AT1 receptor subtype. Unlike ACE inhibitors, ARBs do not have the adverse effect of dry cough. The use of ARBs is pending revision due to findings from several clinical trials suggesting that this class of drugs may be associated with a small increased risk of cancer. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2774 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Irbesartan (SR-47436) is an orally active Ang II type 1 (AT1) receptor blocker (ARB). Irbesartan can relax the blood vessels, low blood pressure and increase the supply of blood and oxygen to the heart. Irbesartan can be used for the research of high blood pressure, heart failure, and diabetic kidney disease[1].

   

Telmisartan

2-(4-{[4-methyl-6-(1-methyl-1H-1,3-benzodiazol-2-yl)-2-propyl-1H-1,3-benzodiazol-1-yl]methyl}phenyl)benzoic acid

C33H30N4O2 (514.2369)


Telmisartan is an angiotensin II receptor antagonist (ARB) used in the management of hypertension. Generally, angiotensin II receptor blockers (ARBs) such as telmisartan bind to the angiotensin II type 1 (AT1) receptors with high affinity, causing inhibition of the action of angiotensin II on vascular smooth muscle, ultimately leading to a reduction in arterial blood pressure. Recent studies suggest that telmisartan may also have PPAR-gamma agonistic properties that could potentially confer beneficial metabolic effects. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2805 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Telmisartan is a potent, long lasting antagonist of angiotensin II type 1 receptor (AT1), selectively inhibiting the binding of 125I-AngII to AT1 receptors with IC50 of 9.2 nM.

   

Nifedipine

3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C17H18N2O6 (346.1165)


Nifedipine has been formulated as both a long- and short-acting 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nifedipine prevents calcium-dependent myocyte contraction and vasoconstriction. A second proposed mechanism for the drugs vasodilatory effects involves pH-dependent inhibition of calcium influx via inhibition of smooth muscle carbonic anhydrase. Nifedipine is used to treat hypertension and chronic stable angina. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Aminosalicylic Acid

p-Aminosalicylic acid, monosodium salt, dihydrate

C7H7NO3 (153.0426)


Aminosalicylic Acid is only found in individuals that have used or taken this drug. It is an antitubercular agent often administered in association with isoniazid. The sodium salt of the drug is better tolerated than the free acid. [PubChem]There are two mechanisms responsible for aminosalicylic acids bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slows. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank KEIO_ID A129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

20-Hydroxyeicosatetraenoic acid

(5Z,8Z,11Z,14Z)-20-Hydroxyicosa-5,8,11,14-tetraenoic acid

C20H32O3 (320.2351)


20-Hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid. Cytochrome P450 enzymes of the 4A and 4F families catalyze the omega-hydroxylation of arachidonic acid and produce 20-HETE. 20-HETE is a potent constrictor of renal, cerebral, and mesenteric arteries. The vasoconstrictor response to 20-HETE is associated with activation of protein kinase, Rho kinase, and the mitogen-activated protein (MAP) kinase pathway C. 20-HETE also increases intracellular Ca2+ by causing the depolarization of vascular smooth muscle membrane secondary to blocking the large-conductance Ca2+-activated K+-channels and by a direct effect on L-type Ca channels. Elevations in the production of 20-HETE mediate the myogenic response of skeletal, renal, and cerebral arteries to elevations in transmural pressure. There is an important interaction between nitric oxide (NO) and the formation of 20-HETE production. NO inhibits the formation of 20-HETE formation in renal and cerebral arteries. A fall in levels of 20-HETE contributes to the cyclic GMP-independent dilator effect of NO to activate the large-conductance Ca2+-activated K+-channels and to dilate the cerebral arteries (PMID: 16258232). Metabolite produced during NADPH dependent enzymatic oxidation of arachidonic acid. Potent vasoconstrictor [CCD]

   

11,12-Epoxyeicosatrienoic acid

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid

C20H32O3 (320.2351)


11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091, 17434916, 17406062, 17361113, 15581597, 11413051, 10519554). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids. 11,12-EpETrE or 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid is an epoxyeicosatrienoic acid or an EET derived from arachadonic acid. EETs function as autacrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted to natural epoxyeicosatrienoic acids (EETs) by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid to four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been show to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016). In addition, EETs have antiinflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids. [HMDB] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

2-Aminoethyl diphenylborinate

2-Aminoethyl diphenylborinate

C14H16BNO (225.1325)


   

Furosemide

4-chloro-2-{[(furan-2-yl)methyl]amino}-5-sulfamoylbenzoic acid

C12H11ClN2O5S (330.0077)


Furosemide or frusemide is a loop diuretic used in the treatment of congestive heart failure and edema. It is most commonly marketed by Aventis Pharma under the brand name Lasix. It has also been used to prevent thoroughbred race horses from bleeding through the nose during races. An antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed) It acts by inhibiting translocation during protein synthesis. Potential contaminant in cows milk arising from its use in dairy cattle for the treatment of physiological parturient edema D045283 - Natriuretic Agents > D004232 - Diuretics > D049994 - Sodium Potassium Chloride Symporter Inhibitors C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CA - Sulfonamides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D049990 - Membrane Transport Modulators Furosemide is a potent and orally active inhibitor of Na+/K+/2Cl-?(NKCC) cotransporter, NKCC1 and NKCC2[1].?Furosemide is also a GABAA?receptors antagonist and displays 100-fold selectivity for?α6-containing receptors than?α1-containing receptors. Furosemide acts as a loop diuretic and used for the study of congestive heart failure, hypertension and edema[2].

   

Pravastatin

(3R,5R)-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid

C23H36O7 (424.2461)


Pravastatin is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. Pravastatin was identified originally in a mold called Nocardia autotrophica by researchers of the Sankyo Pharma Inc; An antilipemic fungal metabolite isolated from cultures of Nocardia autotrophica. It acts as a competitive inhibitor of HMG CoA reductase (hydroxymethylglutaryl CoA reductases); In medicine and pharmacology, pravastatin (Pravachol or Selektine) is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors Pravastatin is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2859 EAWAG_UCHEM_ID 2859; CONFIDENCE standard compound D009676 - Noxae > D000963 - Antimetabolites

   

Benzophenone

Benzophenone (diphenyl-ketone)

C13H10O (182.0732)


Benzophenone is the organic compound with the formula (C6H5)2CO, generally abbreviated Ph2CO. It is a widely used building block in organic chemistry, being the parent diarylketone. Benzophenone is found in fruits. Benzophenone is present in grapes and it is also used as a flavouring agent. Benzophenone is a common photosensitizer in photochemistry. It crosses from the S1 state into the triplet state with nearly 100\\\\% yield. The resulting diradical will abstract a hydrogen atom from a suitable hydrogen donor to form a ketyl radical. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents CONFIDENCE standard compound; INTERNAL_ID 15 D003879 - Dermatologic Agents Benzophenone is an endogenous metabolite. Benzophenone is an endogenous metabolite.

   

Benazepril

2-[(3S)-3-{[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino}-2-oxo-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl]acetic acid

C24H28N2O5 (424.1998)


Benazepril, brand name Lotensin, is a medication used to treat high blood pressure (hypertension), congestive heart failure, and chronic renal failure. Upon cleavage of its ester group by the liver, benazepril is converted into its active form benazeprilat, a non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Bisoprolol

1-[(propan-2-yl)amino]-3-(4-{[2-(propan-2-yloxy)ethoxy]methyl}phenoxy)propan-2-ol

C18H31NO4 (325.2253)


Bisoprolol is a cardioselective β1-adrenergic blocking agent used for secondary prevention of myocardial infarction (MI), heart failure, angina pectoris and mild to moderate hypertension. Bisoprolol is structurally similar to metoprolol, acebutolol and atenolol in that it has two substituents in the para position of the benzene ring. The β1-selectivity of these agents is thought to be due in part to the large substituents in the para position. At lower doses (less than 20 mg daily), bisoprolol selectively blocks cardiac β1-adrenergic receptors with little activity against β2-adrenergic receptors of the lungs and vascular smooth muscle. Receptor selectivity decreases with daily doses of 20 mg or greater. Unlike propranolol and pindolol, bisoprolol does not exhibit membrane-stabilizing or sympathomimetic activity. Bisoprolol possesses a single chiral centre and is administered as a racemic mixture. Only l-bisoprolol exhibits significant β-blocking activity. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3013 CONFIDENCE standard compound; INTERNAL_ID 8595 CONFIDENCE standard compound; INTERNAL_ID 2677

   

Carvedilol

(+-)-1-(Carbazol-4-yloxy)-3-((2-(O-methoxyphenoxy)ethyl)amino)-2-propanol

C24H26N2O4 (406.1892)


Carvedilol is only found in individuals that have used or taken this drug. It is a non-selective beta blocker indicated in the treatment of mild to moderate congestive heart failure (CHF).Carvedilol is a racemic mixture in which nonselective beta-adrenoreceptor blocking activity is present in the S(-) enantiomer and alpha-adrenergic blocking activity is present in both R(+) and S(-) enantiomers at equal potency. Carvedilols beta-adrenergic receptor blocking ability decreases the heart rate, myocardial contractility, and myocardial oxygen demand. Carvedilol also decreases systemic vascular resistance via its alpha adrenergic receptor blocking properties. Carvedilol and its metabolite BM-910228 (a less potent beta blocker, but more potent antioxidant) have been shown to restore the inotropic responsiveness to Ca2+ in OH- free radical-treated myocardium. Carvedilol and its metabolites also prevent OH- radical-induced decrease in sarcoplasmic reticulum Ca2+-ATPase activity. Therefore, carvedilol and its metabolites may be beneficial in chronic heart failure by preventing free radical damage. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D000975 - Antioxidants D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Carvedilol (BM 14190) is a non-selective β/α-1 blocker[1]. Carvedilol inhibits lipid peroxidation in a dose-dependent manner with an IC50 of 5 μM. Carvedilol is a multiple action antihypertensive agent with potential use in angina and congestive heart failure[2]. Carvedilol is an autophagy inducer that inhibits the NLRP3 inflammasome[3].

   

Valdecoxib

4-(5-methyl-3-phenyl-1,2-oxazol-4-yl)benzene-1-sulfonamide

C16H14N2O3S (314.0725)


Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. [HMDB] Valdecoxib is a prescription drug used in the treatment of osteoarthritis, rheumatoid arthritis, and painful menstruation and menstrual symptoms. It is classified as a nonsteroidal anti-inflammatory drug, or NSAID, and should not be taken by anyone allergic to these types of medications. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

Enalaprilat

(2S)-1-[(2S)-2-{[(1S)-1-carboxy-3-phenylpropyl]amino}propanoyl]pyrrolidine-2-carboxylic acid

C18H24N2O5 (348.1685)


Enalaprilat belongs to the family of Peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. Enalaprilat is the active drug form of the ACE inhibitor Enalapril. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Fludrocortisone

(1R,2S,10S,11S,14R,15S,17S)-1-fluoro-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C21H29FO5 (380.1999)


Fludrocortisone is only found in individuals that have used or taken this drug. It is a synthetic mineralocorticoid with anti-inflammatory activity. [PubChem]Fludrocortisone binds the mineralocorticoid receptor (aldosterone receptor). This binding (or activation of the mineralocorticoid receptor by fludrocortisone) in turn causes an increase in ion and water transport and thus raises extracellular fluid volume and blood pressure and lowers potassium levels. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Guanabenz

2-{[(2,6-dichlorophenyl)methylidene]amino}guanidine

C8H8Cl2N4 (230.0126)


Guanabenz is only found in individuals that have used or taken this drug. It is an alpha-2 selective adrenergic agonist used as an antihypertensive agent. [PubChem]Guanabenzs antihypertensive effect is thought to be due to central alpha-adrenergic stimulation, which results in a decreased sympathetic outflow to the heart, kidneys, and peripheral vasculature in addition to a decreased systolic and diastolic blood pressure and a slight slowing of pulse rate. Chronic administration of guanabenz also causes a decrease in peripheral vascular resistance. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Propafenone

1-(2-(2-Hydroxy-3-(propylamino)propoxy)phenyl)-3-phenyl-1-propanone

C21H27NO3 (341.1991)


Propafenone is only found in individuals that have used or taken this drug. It is an antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. The drug is generally well tolerated. [PubChem]The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; INTERNAL_ID 2285 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Pioglitazone

(+-)-5-((4-(2-(5-Ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-2,4-thiazolidinedione

C19H20N2O3S (356.1195)


Pioglitazone is used for the treatment of diabetes mellitus type 2. Pioglitazone selectively stimulates nuclear receptor peroxisone proliferator-activated receptor gamma (PPAR-gamma). It modulates the transcription of the insulin-sensitive genes involved in the control of glucose and lipid metabolism in the lipidic, muscular tissues and in the liver. A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

Monocrotaline

5,6-dihydroxy-4,5,6-trimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione

C16H23NO6 (325.1525)


Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive disease Hepatotoxin. Causative agent of much seneciosis, e.g. accidental poisoning by S. by weed residues in bread, and characterised by venoocculosive diseas CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2249 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 131 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 121 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 151 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 141 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 111 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 161 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 171 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 101 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

Nandrolone decanoate

(1S,2R,10R,11S,14S,15S)-15-methyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl decanoate

C28H44O3 (428.329)


Nandrolone decanoate is only found in individuals that have used or taken this drug. It is a C18 steroid with androgenic and anabolic properties. It is generally prepared from alkyl ethers of estradiol to resemble testosterone but less one carbon at the 19 position. It is a schedule III drug in the U.S. Nandrolone is an androgen receptor agonist. The drug bound to the receptor complexes which allows it to enter the nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents

   

Nicardipine

3-{2-[benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C26H29N3O6 (479.2056)


A potent calcium channel blockader with marked vasodilator action. It has antihypertensive properties and is effective in the treatment of angina and coronary spasms without showing cardiodepressant effects. It has also been used in the treatment of asthma and enhances the action of specific antineoplastic agents. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3803 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3810 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7839; ORIGINAL_PRECURSOR_SCAN_NO 7837 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7818; ORIGINAL_PRECURSOR_SCAN_NO 7816 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7789; ORIGINAL_PRECURSOR_SCAN_NO 7787 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3822; ORIGINAL_PRECURSOR_SCAN_NO 3819 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3813; ORIGINAL_PRECURSOR_SCAN_NO 3811 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3884; ORIGINAL_PRECURSOR_SCAN_NO 3883 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3807; ORIGINAL_PRECURSOR_SCAN_NO 3805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7827; ORIGINAL_PRECURSOR_SCAN_NO 7825 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7806; ORIGINAL_PRECURSOR_SCAN_NO 7805 CONFIDENCE standard compound; INTERNAL_ID 442; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7845; ORIGINAL_PRECURSOR_SCAN_NO 7843 C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Nitrendipine

1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylic acid ethyl methyl ester

C18H20N2O6 (360.1321)


Nitrendipine is only found in individuals that have used or taken this drug. It is a calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. [PubChem]By deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, Nitrendipine inhibits the influx of extracellular calcium across the myocardial and vascular smooth muscle cell membranes The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; INTERNAL_ID 8498 CONFIDENCE standard compound; INTERNAL_ID 2309 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Trichlormethiazide

6-chloro-3-(dichloromethyl)-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide

C8H8Cl3N3O4S2 (378.9022)


Trichlormethiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with properties similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p830)Trichlormethiazide appears to block the active reabsorption of chloride and possibly sodium in the ascending loop of Henle, altering electrolyte transfer in the proximal tubule. This results in excretion of sodium, chloride, and water and, hence, diuresis. As a diuretic, Trichloromethiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like Trichloromethiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of Trichloromethiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

Diethylhexyl adipate

Hexanedioic acid, 1,6-bis(2-ethylhexyl) ester

C22H42O4 (370.3083)


Diethylhexyl adipate (DEHA) is an indirect food additive arising from contact with polymers and adhesives. DEHA is a plasticizer. DEHA is an ester of 2-ethylhexanol and adipic acid. Its chemical formula is C22H42O4. Indirect food additive arising from contact with polymers and adhesives

   

Cephapirin

(6R,7R)-3-[(acetyloxy)methyl]-8-oxo-7-[2-(pyridin-4-ylsulfanyl)acetamido]-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C17H17N3O6S2 (423.0559)


Cephapirin is an injectable, first-generation cephalosporin antibiotic that has a wide spectrum of activity against gram-positive and gram-negative organisms. The bactericidal activity of cephapirin results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). Cephapirin is more resistant to beta-lactamases than the penicillins, and therefore is effective against staphylococci, with the exception of methicillin-resistant staphylococci. Cephapirin is FDA approved for use in food-producing animals, especially dairy cattle. Cephapirin is used for the treatment of mastitis in cows. Production for use in humans has been discontinued in the United States. It is marketed under the trade name Cefadyl. Active against gram-positive and -negative bacteria (vet. use). FDA approved for use in food producing animals, especies dairy cattle. It is used for the treatment of mastitis in cows J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Deoxycorticosterone

(1S,2R,10S,11S,14S,15S)-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C21H30O3 (330.2195)


11-Deoxycorticosterone (also called desoxycortone, 21-hydroxyprogesterone, DOC, or simply deoxycorticosterone) is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is classified as a member of the 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Deoxycorticosterone is very hydrophobic, practically insoluble (in water), and relatively neutral. Deoxycorticosterone can be synthesized from progesterone by 21-beta-hydroxylase and is then converted to corticosterone by 11-beta-hydroxylase. Corticosterone is then converted to aldosterone by aldosterone synthase. Deoxycorticosterone stimulates the collecting tubules in the kidney to continue to excrete potassium in much the same way that aldosterone does. Deoxycorticosterone has about 1/20 of the sodium retaining power of aldosterone and about 1/5 the potassium excreting power of aldosterone (Wikipedia). Deoxycorticosterone can be found throughout all human tissues and has been detected in amniotic fluid and blood. When present in sufficiently high levels, deoxycorticosterone can act as a hypertensive agent and a metabotoxin. A hypertensive agent increases blood pressure and causes the production of more urine. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxycorticosterone are associated with congenital adrenal hyperplasia (CAH) and with adrenal tumors producing deoxycorticosterone (PMID: 20671982). High levels of this mineralocorticoid are associated with resistant hypertension, which can result in polyuria, polydipsia, increased blood volume, edema, and cardiac enlargement. Deoxycorticosterone can be used to treat adrenal insufficiency. In particular, desoxycorticosterone acetate (DOCA) is used as replacement therapy in Addisons disease. Desoxycorticosterol, also known as 21-hydroxy-4-pregnene-3,20-dione or 21-hydroxyprogesterone, is a member of the class of compounds known as 21-hydroxysteroids. 21-hydroxysteroids are steroids carrying a hydroxyl group at the 21-position of the steroid backbone. Thus, desoxycorticosterol is considered to be a steroid lipid molecule. Desoxycorticosterol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Desoxycorticosterol can be synthesized from progesterone. Desoxycorticosterol can also be synthesized into 11-deoxycorticosterone-21-hemisuccinate and 5beta-dihydrodeoxycorticosterone. Desoxycorticosterol can be found in rice, which makes desoxycorticosterol a potential biomarker for the consumption of this food product. Desoxycorticosterol can be found primarily in amniotic fluid and blood, as well as throughout all human tissues. In humans, desoxycorticosterol is involved in the steroidogenesis. Desoxycorticosterol is also involved in several metabolic disorders, some of which include corticosterone methyl oxidase I deficiency (CMO I), 21-hydroxylase deficiency (CYP21), corticosterone methyl oxidase II deficiency - CMO II, and 11-beta-hydroxylase deficiency (CYP11B1). Desoxycorticosterol is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9334; ORIGINAL_PRECURSOR_SCAN_NO 9329 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9427; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9386; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9356; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9399; ORIGINAL_PRECURSOR_SCAN_NO 9396 CONFIDENCE standard compound; INTERNAL_ID 793; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9378; ORIGINAL_PRECURSOR_SCAN_NO 9376 H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.

   

Propranolol

[2-hydroxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)amine

C16H21NO2 (259.1572)


Propranolol is a widely used non-cardioselective beta-adrenergic antagonist. Propranolol is used in the treatment or prevention of many disorders including acute myocardial infarction, arrhythmias, angina pectoris, hypertension, hypertensive emergencies, hyperthyroidism, migraine, pheochromocytoma, menopause, and anxiety. --PubChem; Propranolol is a highly lipophilic drug achieving high concentrations in the brain. The duration of action of a single oral dose is longer than the half-life indicates and may be up to 12 hours, if the single dose is high enough (e.g. 80 mg). Effective plasma concentrations are between 10-100 ng/mL. -- Wikipedia; It was the first successful beta blocker developed. Propranolol is commonly marketed by Wyeth under the trade name Inderal. A widely used non-cardioselective beta-adrenergic antagonist. Propranolol is used in the treatment or prevention of many disorders including acute myocardial infarction, arrhythmias, angina pectoris, hypertension, hypertensive emergencies, hyperthyroidism, migraine, pheochromocytoma, menopause, and anxiety. --PubChem; Propranolol is a highly lipophilic drug achieving high concentrations in the brain. The duration of action of a single oral dose is longer than the half-life indicates and may be up to 12 hours, if the single dose is high enough (e.g. 80 mg). Effective plasma concentrations are between 10-100 ng/mL. -- Wikipedia; It was the first successful beta blocker developed. Propranolol is commonly marketed by Wyeth under the trade name Inderal. [HMDB] C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 171 KEIO_ID P192; [MS2] KO009171 KEIO_ID P192 Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3].

   

Isoproterenol

4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol

C11H17NO3 (211.1208)


Isoproterenol is only found in individuals that have used or taken this drug. It is an isopropyl analog of epinephrine; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. [PubChem]The pharmacologic effects of isoproterenol are at least in part attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic AMP. Increased cyclic AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

Eplerenone

methyl (1R,2R,2S,9R,10R,11S,15S,17R)-2,15-dimethyl-5,5-dioxo-18-oxaspiro[oxolane-2,14-pentacyclo[8.8.0.0¹,¹⁷.0²,⁷.0¹¹,¹⁵]octadecan]-6-ene-9-carboxylate

C24H30O6 (414.2042)


Eplerenone, an aldosterone receptor antagonist similar to spironolactone, has been shown to produce sustained increases in plasma renin and serum aldosterone, consistent with inhibition of the negative regulatory feedback of aldosterone on renin secretion. The resulting increased plasma renin activity and aldosterone circulating levels do not overcome the effects of eplerenone. Eplerenone selectively binds to recombinant human mineralocorticoid receptors relative to its binding to recombinant human glucocorticoid, progesterone and androgen receptors. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

Chlorothiazide

6-Chloro-1,1-dioxo-1,2-dihydro-1lambda*6*-benzo[1,2,4]thiadiazine-7-sulphonic acid amide

C7H6ClN3O4S2 (294.9488)


Chlorothiazide is only found in individuals that have used or taken this drug. It is a thiazide diuretic with actions and uses similar to those of hydrochlorothiazide. (From Martindale, The Extra Pharmacopoeia, 30th ed, p812)As a diuretic, chlorothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like chlorothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of chlorothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3256 D049990 - Membrane Transport Modulators

   

Phosphatidylcholine O-34:2

Phosphorodithioic acid, O,O-diethyl S-((ethylthio)methyl) ester

C7H17O2PS3 (260.0128)


Phosphatidylcholine O-34:2, also known as Thimet or O,O-Diethyl S-ethylmercaptomethyl dithiophosphate, is classified as a member of the Dithiophosphate O-esters. Dithiophosphate O-esters are o-ester derivatives of dithiophosphates, with the general structure RSP(O)(O)=S (R = organyl group). Phosphatidylcholine O-34:2 is a non-carcinogenic (not listed by IARC) potentially toxic compound D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Ouabain

3-[(1R,3S,5S,8R,9S,10R,11R,13R,14S,17R)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H44O12 (584.2833)


Ouabain is only found in individuals that have used or taken this drug. It is a cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like digitalis. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-exchanging ATPase. [PubChem]Ouabain inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Ouabain also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6235; ORIGINAL_PRECURSOR_SCAN_NO 6233 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6272; ORIGINAL_PRECURSOR_SCAN_NO 6270 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6219; ORIGINAL_PRECURSOR_SCAN_NO 6216 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6224; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6194; ORIGINAL_PRECURSOR_SCAN_NO 6191 C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins [Raw Data] CB084_Ouabain_pos_50eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_10eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_30eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_20eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_40eV_CB000036.txt D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Spironolactone

(1S,2R,2R,9R,10R,11S,15S)-9-(acetylsulfanyl)-2,15-dimethylspiro[oxolane-2,14-tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan]-6-ene-5,5-dione

C24H32O4S (416.2021)


Latex as found in nature is a milky fluid found in 10\\\% of all flowering plants (angiosperms). It is a complex emulsion consisting of proteins, alkaloids, starches, sugars, oils, tannins, resins, and gums that coagulates on exposure to air. It is usually exuded after tissue injury. In most plants, latex is white, but some have yellow, orange, or scarlet latex. Since the 17th century, latex has been used as a term for the fluid substance in plants. It serves mainly as defense against herbivorous insects. Many people are allergic to latex. [Wikipedia]. A potassium sparing diuretic that acts by antagonism of aldosterone in the distal renal tubules. It is used mainly in the treatment of refractory edema in patients with congestive heart failure, nephrotic syndrome, or hepatic cirrhosis. Its effects on the endocrine system are utilized in the treatments of hirsutism and acne but they can lead to adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p827) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2902 Spironolactone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-01-7 (retrieved 2024-10-11) (CAS RN: 52-01-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Doxazosin

1 (4-amino-6,7-Dimethoxy-2-quinazolinyl)-4-((2,3-dihydro-1,4-benzodioxin-2-yl)carbonyl)piperazine

C23H25N5O5 (451.1856)


Doxazosin is a quinazoline-derivative that selectively antagonizes postsynaptic α1-adrenergic receptors. It may be used to mild to moderate hypertension and in the management of symptomatic benign prostatic hyperplasia (BPH). α1-Receptors mediate contraction and hypertrophic growth of smooth muscle cells. Antagonism of these receptors leads to smooth muscle relaxation in the peripheral vasculature and prostate gland. C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nitrofen

2,4,6-Trichlorophenyl 4-nitrophenyl ether

C12H7Cl2NO3 (282.9803)


Nitrofen is an herbicide of the diphenyl ether class. Because of concerns about its carcinogenicity, the use of nitrofen is banned in the European Union and in the United States. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3098 CONFIDENCE standard compound; INTERNAL_ID 43 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Fosinopril

(2S,4S)-4-cyclohexyl-1-[2-[[(1S)-2-methyl-1-(1-oxopropoxy)propoxy]-(4-phenylbutyl)phosphoryl]-1-oxoethyl]-2-pyrrolidinecarboxylic acid

C30H46NO7P (563.3012)


Fosinopril is a phosphinic acid-containing ester prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly hydrolyzed to fosinoprilat, its principle active metabolite. Fosinoprilat inhibits ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Fosinopril may be used to treat mild to moderate hypertension, as an adjunct in the treatment of congestive heart failure, and to slow the rate of progression of renal disease in hypertensive individuals with diabetes mellitus and microalbuminuria or overt nephropathy. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3324

   

Losartan

[2-butyl-4-chloro-1-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-imidazol-5-yl]methanol

C22H23ClN6O (422.1622)


Losartan is an angiotensin-receptor blocker (ARB) that may be used alone or with other agents to treat hypertension. Losartan and its longer acting metabolite, E-3174, lower blood pressure by antagonizing the renin-angiotensin-aldosterone system (RAAS); they compete with angiotensin II for binding to the type-1 angiotensin II receptor (AT1) subtype and prevents the blood pressure increasing effects of angiotensin II. Unlike angiotensin-converting enzyme (ACE) inhibitors, ARBs do not have the adverse effect of dry cough. Losartan may be used to treat hypertension, isolated systolic hypertension, left ventricular hypertrophy and diabetic nephropathy. It may also be used as an alternative agent for the treatment of systolic dysfunction, myocardial infarction, coronary artery disease, and heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2794 CONFIDENCE standard compound; INTERNAL_ID 8189 CONFIDENCE standard compound; INTERNAL_ID 8607 CONFIDENCE standard compound; INTERNAL_ID 2280 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Losartan is an angiotensin II receptor antagonist, competing with the binding of angiotensin II to AT1 receptors with IC50 of 20 nM.

   

nystatin

(1S,3R,4E,6E,8E,10E,14E,16E,18S,19R,20R,21S,25R,27R,29R,32R,33R,35S,37S,38R)-3-[(2R,3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,29,32,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10,14,16-hexaene-38-carboxylic acid

C47H75NO17 (925.5035)


A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptomyces species. It is an antifungal antibiotic used for the treatment of topical fungal infections caused by a broad spectrum of fungal pathogens comprising yeast-like and filamentous species. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptococcus species. The keto-form of nystatin A1. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3140

   

Perindopril

(2S,3aS,7aS)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxopentan-2-yl]amino}propanoyl]-octahydro-1H-indole-2-carboxylic acid

C19H32N2O5 (368.2311)


Perindopril is a nonsulfhydryl prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to perindoprilat, its active metabolite, following oral administration. Perindoprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Perindopril may be used to treat mild to moderate essential hypertension, mild to moderate congestive heart failure, and to reduce the cardiovascular risk of individuals with hypertension or post-myocardial infarction and stable coronary disease. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

Phenylephrine

(R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol

C9H13NO2 (167.0946)


Phenylephrine is an alpha-adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent (PubChem). Phenylephrine is used as a decongestant, available as an oral medicine or as a nasal spray. Phenylephrine is not the most common over-the-counter (OTC) decongestant (wikipedia). (R)-(-)-Phenylephrine is a selective α1-adrenoceptor agonist primarily used as a decongestant.

   

Moxonidine

4-chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine

C9H12ClN5O (241.073)


Moxonidine (INN) is a new generation centrally acting antihypertensive drug licensed for the treatment of mild to moderate essential hypertension. It may have a role when thiazides, beta-blockers, ACE inhibitors and calcium channel blockers are not appropriate or have failed to control blood pressure. In addition, it demonstrates favourable effects on parameters of the insulin resistance syndrome, apparently independent of blood pressure reduction. It is manufactured by Solvay Pharmaceuticals under the brand name Physiotens. Moxonidine is a selective agonist at the imidazoline receptor subtype 1 (I1). This receptor subtype is found in both the rostral ventro-lateral pressor and ventromedial depressor areas of the medulla oblongata. Moxonidine therefore causes a decrease in sympathetic nervous system activity and, therefore, a decrease in blood pressure. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Amiloride

3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide

C6H8ClN7O (229.0479)


A pyrazine compound inhibiting sodium reabsorption through sodium channels in renal epithelial cells. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with diuretics to spare potassium loss. (From Gilman et al., Goodman and Gilmans The Pharmacological Basis of Therapeutics, 9th ed, p705) D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062686 - Epithelial Sodium Channel Blockers D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062646 - Acid Sensing Ion Channel Blockers C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics KEIO_ID A225; [MS2] KO008833 KEIO_ID A225

   

Enalapril

(2S)-1-[(2S)-2-{[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino}propanoyl]pyrrolidine-2-carboxylic acid

C20H28N2O5 (376.1998)


Enalapril is a prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is rapidly metabolized in the liver to enalaprilat following oral administration. Enalaprilat is a potent, competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Enalapril may be used to treat essential or renovascular hypertension and symptomatic congestive heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Candesartan cilexetil

1-{[(cyclohexyloxy)carbonyl]oxy}ethyl 2-ethoxy-1-{[2-(2H-1,2,3,4-tetrazol-5-yl)-[1,1-biphenyl]-4-yl]methyl}-1H-1,3-benzodiazole-7-carboxylic acid

C33H34N6O6 (610.254)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Candesartan Cilexetil (TCV-116) is an angiotensin II receptor inhibitor. Candesartan Cilexetil ameliorates the pulmonary fibrosis and has antiviral and skin wound healing effect. Candesartan Cilexetil can be used for the research of high blood pressure[1][2][3][4][5][6].

   

Metoprolol

1-[4-(2-methoxyethyl)phenoxy]-3-[(propan-2-yl)amino]propan-2-ol

C15H25NO3 (267.1834)


Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in the treatment of several diseases of the cardiovascular system; Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG; A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in angina pectoris, hypertension, or cardiac arrhythmias; as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

Acetovanillone

1-(4-hydroxy-3-methoxyphenyl)ethan-1-one

C9H10O3 (166.063)


Acetovanillone, also known as 4-hydroxy-3-methoxyacetophenone or acetoguaiacon, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Acetovanillone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Acetovanillone is a faint, sweet, and vanillin tasting compound found in corn and garden onion, which makes acetovanillone a potential biomarker for the consumption of these food products. Acetovanillone may be a unique S.cerevisiae (yeast) metabolite. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Pentobarbital

5-Ethyl-5-(1-methylbutyl)-2,4,6(1H,3H,5H)-pyrimidinetrione

C11H18N2O3 (226.1317)


A short-acting barbiturate that is effective as a sedative and hypnotic (but not as an anti-anxiety) agent and is usually given orally. It is prescribed more frequently for sleep induction than for sedation but, like similar agents, may lose its effectiveness by the second week of continued administration. (From AMA Drug Evaluations Annual, 1994, p236) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

Moexipril

[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride;[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride

C27H34N2O7 (498.2366)


Moexipril is a non-sulfhydryl containing precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. It is used to treat high blood pressure (hypertension). It works by relaxing blood vessels, causing them to widen. Lowering high blood pressure helps prevent strokes, heart attacks and kidney problems. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Olmesartan

4-(2-hydroxypropan-2-yl)-2-propyl-1-({4-[2-(1H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-imidazole-5-carboxylic acid

C24H26N6O3 (446.2066)


Olmesartan is an antihypertensive agent which belongs to the class of medicines called angiotensin II receptor antagonists. It acts rapidly to lower high blood pressure. It is marketed worldwide by Daiichi Sankyo, Ltd. and in the United States by Daiichi Sankyo, Inc. and Forest Laboratories. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Olmesartan (RNH-6270) is an angiotensin II receptor (AT1R) antagonist used to treat high blood pressure[1][2].

   

Quinapril

(3S)-2-[(2S)-2-{[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino}propanoyl]-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid

C25H30N2O5 (438.2155)


Quinapril is a prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is metabolized to quinaprilat (quinapril diacid) following oral administration. Quinaprilat is a competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Quinapril may be used to treat essential hypertension and congestive heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Pentetrazol

5H,6H,7H,8H,9H-[1,2,3,4]tetrazolo[1,5-a]azepine

C6H10N4 (138.0905)


R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409

   

Hydralazine

(1Z)-1(2H)-Phthalazinone hydrazone

C8H8N4 (160.0749)


Hydralazine is only found in individuals that have used or taken this drug. It is a direct-acting vasodilator that is used as an antihypertensive agent. [PubChem]Although the precise mechanism of action of hydralazine is not fully understood, the major effects are on the cardiovascular system. Hydralazine apparently lowers blood pressure by exerting a peripheral vasodilating effect through a direct relaxation of vascular smooth muscle. It has also been suggested that cyclic 3,5-adenosine monophosphate (cyclic AMP) mediates, at least partly, the relaxation of arterial smooth muscle by altering cellular calcium metabolism, which interferes with the calcium movements within the vascular smooth muscle that are responsible for initiating or maintaining the contractile state. In hypertensive patients, the hydralazine-induced decrease in blood pressure is accompanied by increased heart rate, cardiac output, and stroke volume, probably because of a reflex response to decreased peripheral resistance. The drug has no direct effect on the heart. Hydralazine may increase pulmonary arterial pressure, as well as coronary, splanchnic, cerebral, and renal blood flow. The preferential dilatation of arterioles, as compared to veins, minimizes postural hypotension and promotes the increase in cardiac output. Hydralazine usually increases renin activity in plasma, presumably as a result of increased secretion of renin by the renal juxtaglomerular cells in response to reflex sympathetic discharge. This increase in renin activity leads to the production of angiotensin II, which then causes stimulation of aldosterone and consequent sodium reabsorption. Tolerance to the antihypertensive effect of the drug develops during prolonged therapy, especially if a diuretic is not administered concurrently. In patients with CHF, hydralazine decreases systemic vascular resistance and increases cardiac output. C - Cardiovascular system > C02 - Antihypertensives > C02D - Arteriolar smooth muscle, agents acting on > C02DB - Hydrazinophthalazine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

L-Name

N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester

C7H15N5O4 (233.1124)


D004791 - Enzyme Inhibitors

   

6beta-Hydroxytestosterone

(1S,2R,8R,10R,11S,14S,15S)-8,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C19H28O3 (304.2038)


Testosterone is reported to have an acute vasodilating action in vitro, an effect that may impart a favourable haemodynamic response in patients with chronic heart failure.

   

Acetylcholine

Bournonville brand OF acetylcholine chloride

[C7H16NO2]+ (146.1181)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents IPB_RECORD: 232; CONFIDENCE confident structure COVID info from COVID-19 Disease Map Corona-virus KEIO_ID A060 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Asymmetric dimethylarginine

(2S)-2-amino-5-[(E)-[amino(dimethylamino)methylidene]amino]pentanoic acid

C8H18N4O2 (202.143)


Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally-essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide, a key chemical to endothelial and hence cardiovascular health. Asymmetric dimethylarginine is created in protein methylation, a common mechanism of post-translational protein modification. This reaction is catalyzed by an enzyme set called S-adenosylmethionine protein N-methyltransferases (protein methylases I and II). The methyl groups transferred to create ADMA are derived from the methyl group donor S-adenosylmethionine, an intermediate in the metabolism of homocysteine. (Homocysteine is an important blood chemical, because it is also a marker of cardiovascular disease). After synthesis, ADMA migrates into the extracellular space and thence into blood plasma. Asymmetric dimethylarginine is measured using high performance liquid chromatography. ADMA has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Isolated from broad bean seeds (Vicia faba). NG,NG-Dimethyl-L-arginine is found in many foods, some of which are yellow wax bean, spinach, green zucchini, and white cabbage. D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

Sarcosine

2-(methylamino)acetic acid

C3H7NO2 (89.0477)


Sarcosine is the N-methyl derivative of glycine. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine. Sarcosine is a natural amino acid found in muscles and other body tissues. In the laboratory it may be synthesized from chloroacetic acid and methylamine. Sarcosine is naturally found in the metabolism of choline to glycine. Sarcosine is sweet to the taste and dissolves in water. It is used in manufacturing biodegradable surfactants and toothpastes as well as in other applications. Sarcosine is ubiquitous in biological materials and is present in such foods as egg yolks, turkey, ham, vegetables, legumes, etc. Sarcosine is formed from dietary intake of choline and from the metabolism of methionine, and is rapidly degraded to glycine. Sarcosine has no known toxicity, as evidenced by the lack of phenotypic manifestations of sarcosinemia, an inborn error of sarcosine metabolism. Sarcosinemia can result from severe folate deficiency because of the folate requirement for the conversion of sarcosine to glycine (Wikipedia). Sarcosine has recently been identified as a biomarker for invasive prostate cancer. It was found to be greatly increased during prostate cancer progression to metastasis and could be detected in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells (PMID: 19212411). Sarcosine, also known as N-methylglycine or (methylamino)acetic acid, is a member of the class of compounds known as alpha amino acids. Alpha amino acids are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Sarcosine is soluble (in water) and a moderately acidic compound (based on its pKa). Sarcosine can be found in peanut, which makes sarcosine a potential biomarker for the consumption of this food product. Sarcosine can be found primarily in most biofluids, including blood, saliva, cerebrospinal fluid (CSF), and feces, as well as in human muscle, prostate and skeletal muscle tissues. Sarcosine exists in all living organisms, ranging from bacteria to humans. In humans, sarcosine is involved in few metabolic pathways, which include glycine and serine metabolism, methionine metabolism, and sarcosine oncometabolite pathway. Sarcosine is also involved in several metabolic disorders, some of which include homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, hyperglycinemia, non-ketotic, hypermethioninemia, and dimethylglycine dehydrogenase deficiency. Moreover, sarcosine is found to be associated with sarcosinemia. Sarcosine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Sarcosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-97-1 (retrieved 2024-07-01) (CAS RN: 107-97-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2]. Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2].

   

Imidazole

N,N-1,2-ethenediylmethanimidamide

C3H4N2 (68.0374)


Imidazole is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms. Imidazole is a heterocyclic aromatic organic compound. It is classified as an alkaloid. The ring system of the molecule is present in important biological building blocks such as histidine and histamine. Imidazole can act as a base and as a weak acid. Imidazole exists in two tautomeric forms with the hydrogen atom moving between the two nitrogens. Many drugs contain an imidazole ring, such as antifungal drugs and nitroimidazole. Imidazole is a 5 membered planar ring which is soluble in water and polar solvents. Imidazole is a base and an excellent nucleophile. It reacts at the NH nitrogen, attacking alkylating and acylating compounds. It is not particularly susceptible to electrophilic attacks at the carbon atoms, and most of these reactions are substitutions that keep the aromaticity intact. One can see from the resonance structure that the carbon-2 is the carbon most likely to have a nucleophile attack it, but in general nucleophilic substitutions are difficult with imidazole. Imidazole is incorporated into many important biological molecules. The most obvious is the amino acid histidine, which has an imidazole side chain. histidine is present in many proteins and enzymes and plays a vital part in the structure and binding functions of hemoglobin. Isolated from the seeds of Lens culinaris (lentil)and is also present in the seeds of other legumes: Macrotyloma uniflorum (horse gram), Psophocarpus tetragonolobus (winged bean), Vigna radiata (mung bean) CONFIDENCE standard compound; INTERNAL_ID 8091 D004791 - Enzyme Inhibitors KEIO_ID I046

   

Benzimidazole

Benzimidazole monohydrochloride

C7H6N2 (118.0531)


CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3587; ORIGINAL_PRECURSOR_SCAN_NO 3586 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2303; ORIGINAL_PRECURSOR_SCAN_NO 2299 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2278; ORIGINAL_PRECURSOR_SCAN_NO 2277 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3578; ORIGINAL_PRECURSOR_SCAN_NO 3577 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3557; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2260; ORIGINAL_PRECURSOR_SCAN_NO 2259 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2273; ORIGINAL_PRECURSOR_SCAN_NO 2271 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2284; ORIGINAL_PRECURSOR_SCAN_NO 2282 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3585; ORIGINAL_PRECURSOR_SCAN_NO 3584 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3606; ORIGINAL_PRECURSOR_SCAN_NO 3604 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3574 CONFIDENCE standard compound; INTERNAL_ID 1348; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2284; ORIGINAL_PRECURSOR_SCAN_NO 2282 D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics CONFIDENCE standard compound; INTERNAL_ID 8120 KEIO_ID B007

   

Cerivastatin

(E)-7-[4-(4-fluorophenyl)-5-(methoxymethyl)-2,6-di(propan-2-yl)pyridin-3-yl]-3,5-dihydroxyhept-6-enoic acid

C26H34FNO5 (459.2421)


C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites

   

Fenoldopam

6-chloro-1-(4-hydroxyphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol

C16H16ClNO3 (305.0819)


Fenoldopam is only found in individuals that have used or taken this drug. It is a dopamine D1 receptor agonist that is used as an antihypertensive agent. It lowers blood pressure through arteriolar vasodilation. [PubChem]Fenoldopam is a rapid-acting vasodilator. It is an agonist for D1-like dopamine receptors and binds with moderate affinity to α2-adrenoceptors. It has no significant affinity for D2-like receptors, α1 and β-adrenoceptors, 5HT1 and 5HT2 receptors, or muscarinic receptors. Fenoldopam is a racemic mixture with the R-isomer responsible for the biological activity. The R-isomer has approximately 250-fold higher affinity for D1-like receptors than does the S-isomer. In non-clinical studies, fenoldopam had no agonist effect on presynaptic D2-like dopamine receptors, or α or β -adrenoceptors, nor did it affect angiotensin-converting enzyme activity. Fenoldopam may increase norepinephrine plasma concentration. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Cyclic GMP

9-[(4aR,6R,7R,7aS)-2,7-dihydroxy-2-oxo-hexahydro-2λ⁵-furo[3,2-d][1,3,2]dioxaphosphinin-6-yl]-2-amino-6,9-dihydro-1H-purin-6-one

C10H12N5O7P (345.0474)


Cyclic-gmp, also known as cgmp or guanosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic-gmp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic-gmp can be found in a number of food items such as common sage, jews ear, java plum, and pepper (c. chinense), which makes cyclic-gmp a potential biomarker for the consumption of these food products. Cyclic-gmp can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. Cyclic-gmp exists in all living species, ranging from bacteria to humans. Moreover, cyclic-gmp is found to be associated with headache. Guanosine cyclic 3,5-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3- and 5-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lipoamide

5-(1,2-Dithiolan-3-yl)-pentanamide

C8H15NOS2 (205.0595)


Lipoamide is a trivial name for 6,8-dithiooctanoic amide. It is 6,8-dithiooctanoic acids functional form where the carboxyl group is attached to protein (or any other amine) by an amide linkage (containing -NH2) to an amino group. Lipoamide forms a thioester bond, oxidizing the disulfide bond, with acetaldehyde (pyruvate after it has been decarboxylated). It then transfers the acetaldehyde group to CoA which can then continue in the TCA cycle. Lipoamide is an intermediate in glycolysis/gluconeogenesis, citrate cycle (TCA cycle), alanine, aspartate and pyruvate metabolism, and valine, leucine and isoleucine degradation (KEGG:C00248). It is generated from dihydrolipoamide via the enzyme dihydrolipoamide dehydrogenase (EC:1.8.1.4) and then converted to S-glutaryl-dihydrolipoamide via the enzyme oxoglutarate dehydrogenase (EC:1.2.4.2). Lipoamide is the oxidized form of glutathione. (PMID:8957191) KEIO_ID L031; [MS2] KO009031 KEIO_ID L031

   

Methoxamine

Glaxo wellcome brand 1 OF methoxamine hydrochloride

C11H17NO3 (211.1208)


Methoxamine is only found in individuals that have used or taken this drug. It is an alpha-adrenergic agonist that causes prolonged peripheral vasoconstriction. It has little if any direct effect on the central nervous system. [PubChem]Methoxamine acts through peripheral vasoconstriction by acting as a pure alpha-1 adrenergic receptor agonist, consequently increasing systemic blood pressure (both systolic and diastolic). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M169; [MS2] KO009056 KEIO_ID M169

   

L-Targinine

(2S)-2-amino-5-(3-methylcarbamimidamido)pentanoic acid

C7H16N4O2 (188.1273)


L-Targinine is found in pulses. L-Targinine is isolated from broad bean seed L-Targinine has been identified in the human placenta (PMID: 32033212). C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors

   

p,p'-DDE

1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene

C14H8Cl4 (315.938)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

12-HETE

(5Z,8Z,10E,14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid

C20H32O3 (320.2351)


12-Hydroxyeicosatetraenoic acid (CAS: 71030-37-0), also known as 12-HETE, is an eicosanoid, a 5-lipoxygenase metabolite of arachidonic acid. 5-Lipoxygenase (LO)-derived leukotrienes are involved in inflammatory glomerular injury. LO product 12-HETE is associated with the pathogenesis of hypertension and may mediate angiotensin II and TGFbeta induced mesangial cell abnormality in diabetic nephropathy. 12-HETE is markedly elevated in the psoriatic lesions. 12-HETE is a vasoconstrictor eicosanoid that contributes to high blood pressure in (renovascular) hypertension and pregnancy-induced hypertension. A significant percentage of patients suffering from a selective increase in plasma LDL cholesterol (type IIa hyperlipoproteinemia) exhibits increased platelet reactivity. This includes enhanced platelet responsiveness against a variety of platelet-stimulating agents ex vivo and enhanced arachidonic acid metabolism associated with increased generation of arachidonic acid metabolites such as 12-HETE, and secretion of platelet-storage products (PMID: 7562532, 12480795, 17361113, 8498970, 1333255, 2119633). 12-HETE is a highly selective ligand used to label mu-opioid receptors in both membranes and tissue sections. The 12-S-HETE analog has been reported to augment tumour cell metastatic potential through activation of protein kinase C. 12-HETE has a diversity of biological actions and is generated by a number of tissues including the renal glomerulus and the vasculature. 12-HETE is one of the six monohydroxy fatty acids produced by the non-enzymatic oxidation of arachidonic acid. 12-HETE is a neuromodulator that is synthesized during ischemia. Its neuronal effects include attenuation of calcium influx and glutamate release as well as inhibition of AMPA receptor (AMPA-R) activation. 12-HETE is found to be associated with peroxisomal biogenesis defect and Zellweger syndrome, which are inborn errors of metabolism.

   

Isoguvacine

1,2,3,6-tetrahydropyridine-4-carboxylic acid

C6H9NO2 (127.0633)


Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists

   

Beta-Aminopropionitrile

β-Aminopropionitrile

C3H6N2 (70.0531)


beta-Aminopropionitrile is a toxic amino-acid derivative. On an unusual case of the Cantrell-sequence in a premature infant with associated dysmelia, aplasia of the right kidney, cerebellar hypoplasia and circumscribed aplasia of the cutis, maternal history suggested an occupational exposure to aminopropionitriles prior to pregnancy. The characteristic features of the Cantrell-sequence--anterior thoraco-abdominal wall defect with ectopia cordis and diaphragm, sternum, pericardium, and heart defects--have been observed in animals following maternal administration of beta-aminopropionitrile. Some species of lathyrus (chickling pea, Lathyrus sativus- related), notably Lathyrus odoratus, are unable to induce human lathyrism but contain beta-aminopropionitrile, that induces pathological changes in bone ("osteolathyrism") and blood vessels ("angiolathyrism") of experimental animals without damaging the nervous system. The administration of beta-aminopropionitrile has been proposed for pharmacological control of unwanted scar tissue in human beings. beta-Aminopropionitrile is a reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid. (PMID:367235, 6422318, 9394169, Am J Perinatol. 1997 Oct;14(9):567-71.). Constituent of chickling pea (Lathyrus sativus) C471 - Enzyme Inhibitor KEIO_ID A044 β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].

   

Guanethidine

((2-Hexahydro-1(2H)-azocinyl)ethyl)guanidine

C10H22N4 (198.1844)


An antihypertensive agent that acts by inhibiting selectively transmission in post-ganglionic adrenergic nerves. It is believed to act mainly by preventing the release of norepinephrine at nerve endings and causes depletion of norepinephrine in peripheral sympathetic nerve terminals as well as in tissues. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CC - Guanidine derivatives D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents KEIO_ID I063

   

Muscimol

5-(Aminomethyl)-3(2H)-isoxazolone

C4H6N2O2 (114.0429)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins KEIO_ID M115

   

Octylamine

Octylamine hydrochloride

C8H19N (129.1517)


KEIO_ID O007

   

Hexylamine

Hexylamine hydrochloride

C6H15N (101.1204)


Hexylamine is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") Acquisition and generation of the data is financially supported in part by CREST/JST. It is used as a food additive .

   

Securinine

6,10-METHANOPYRIDO(1,2-A)AZEPINE-.GAMMA.9(6H),.ALPHA.-ACETIC ACID,1,2,3,4,10,10A-HEXAHYDRO-10-HYDROXY-, .GAMMA.-LACTONE

C13H15NO2 (217.1103)


Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].

   

Mangiferol

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Ergotamine

(4R,7R)-N-[(1S,2S,4R,7S)-7-benzyl-2-hydroxy-4-methyl-5,8-dioxo-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C33H35N5O5 (581.2638)


Ergotamine is only found in individuals that have used or taken this drug. It is a vasoconstrictor found in ergot of Central Europe. It is an alpha-1 selective adrenergic agonist and is commonly used in the treatment of migraine disorders. [PubChem]Ergotamine acts on migraine by one of two proposed mechanisms: 1) activation of 5-HT1D receptors located on intracranial blood vessels, including those on arterio-venous anastomoses, leads to vasoconstriction, which correlates with the relief of migraine headache, and 2) activation of 5-HT1D receptors on sensory nerve endings of the trigeminal system results in the inhibition of pro-inflammatory neuropeptide release. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics

   

11,12-DiHETrE

(+/-)-11,12-dihydroxy-5Z,8Z,14Z,17Z-eicosatetraenoic acid

C20H34O4 (338.2457)


11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572) [HMDB] 11,12-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Arachidonic acid may be oxygenated by cytochrome P450 in several ways. Epoxidation of the double bonds leads to the regio- and enantioselective formation of four epoxyeicosatrienoic acids (EETs), which are hydrolyzed by epoxide hydrolase to vicinal diols (DHETs). 11,12-DiHETrE excretion is increased in healthy pregnant women compared with nonpregnant female volunteers, and increased even further in patients with pregnancy-induced hypertension (PIH). The physiological significance of arachidonic acid epoxides has been debated and it is unknown whether they play a role in pregnancy and parturition. Vasodilative effects, inhibition of cyclooxygenase, or inhibition of platelet aggregation by EETs have been observed only at micromolar concentrations. On the other hand, effects on the stimulus-secretion coupling during hormone release have been found in the nanomolar and picomolar range. (PMID: 9440131, 2198572).

   

14,15-DiHETrE

(±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid

C20H34O4 (338.2457)


14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR ). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR . shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065) [HMDB] 14,15-DiHETrE is a Cytochrome P450 (P450) eicosanoid. Eicosanoids generated from arachidonic acid metabolism by cytochrome P450 (P450) enzymes are important autocrine and paracrine factors that have diverse biological functions. P450 eicosanoids are involved in the regulation of vascular tone, renal tubular transport, cardiac contractility, cellular proliferation, and inflammation. Regulation of P450 eicosanoid levels is determined by many factors, including the induction or repression of the P450 enzymes responsible for their formation. Fibrate drugs are part of a diverse group of compounds known as peroxisome proliferators, which also include herbicides and phthalate ester plasticizers. Peroxisome proliferators act via peroxisome proliferator-activated receptor (PPAR). This receptor is a member of the PPAR nuclear receptor family that also consists of the PPAR and PPAR isoforms. PPAR is mainly expressed in the heart, liver, and kidney, whereas the expression of PPAR is predominantly in the adipose tissue. The biological role of PPAR as a lipid sensor has been well established. 14,15-DiHETrE is a potent activators of PPAR and PPAR, shown to induce the binding of PPAR to a peroxisome proliferator response element (PPRE). Furthermore, 14,15-DiHETrE behaves like peroxisome proliferators in that is able to alter apoA-I and apoA-II mRNA expression. 14,15-DiHETrE is the most potent PPARalpha activator in a COS-7 cell expression system producing a 12-fold increase in PPARalpha-mediated luciferase activity. (PMID: 17431031, 16113065).

   

mercaptoacetic acid

2-Mercaptoacetate, calcium salt (2:1) salt, trihydrate

C2H4O2S (91.9932)


   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Water

oxidane

H2O (18.0106)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Bradykinin

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-(2-{[(2S)-1-[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidine-2-carbonyl]pyrrolidin-2-yl]formamido}acetamido)-3-phenylpropanamido]-3-hydroxypropanoyl]pyrrolidin-2-yl]formamido}-3-phenylpropanamido]-5-carbamimidamidopentanoic acid

C50H73N15O11 (1059.5614)


Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens ([alpha] 2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein. (PMID: 11975815) [HMDB] Bradykinin is a vasoactive kinin that is liberated from its substrate kininogen by the action of kallikrein, and is known to be involved in a wide range of biologic processes. It may play an important role in blood pressure regulation and the maintenance of normal blood flow. Moreover, in various pathologic states of the cardiovascular system, it appears to provide protective actions against ischemic injury, ventricular hypertrophy, congestive heart failure, and thrombosis. Bradykinin is a potent vasodilator that acts through endothelial B2 kinin receptors to stimulate the release of nitric oxide and endothelium-derived hyperpolarizing factor. Bradykinin deficiency states may play a role in some forms of hypertension, and a relative deficiency in bradykinin may be a contributing factor to worsening heart failure. Experimental studies revealed that mice lacking the B2 receptor gene were more likely to develop hypertension, cardiac hypertrophy, and myocardial damage. Kinins exert several biologic actions. They are involved in nociception, inflammation, capillary permeability, reactive hyperemia, and stimulation of cellular glucose uptake. Bradykinin is a polypeptide that circulates in the plasma in very low concentrations in comparison with the amount of bradykinin found in various body tissues. Kininogens ([alpha] 2 globulins) are synthesized in the liver and circulate at high concentrations in the plasma. There are two kininogenases that convert kininogens into bradykinin: plasma kallikrein, also known as Fletcher factor, and glandular kallikrein, also known as tissue kallikrein. (PMID: 11975815). D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Bradykinin is an effective endothelium-dependent vasodilator that can lower blood pressure. Bradykinin can induce contraction of bronchial and intestinal non-vascular smooth muscle, increase vascular permeability, and participate in the mechanism of pain[1][2][3][4][5].

   

3-Hydroxy-3-methylglutaryl-CoA

(3S)-5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-3-hydroxy-3-methyl-5-oxopentanoic acid

C27H44N7O20P3S (911.1575)


3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) (CAS: 1553-55-5) is formed when acetyl-CoA condenses with acetoacetyl-CoA in a reaction that is catalyzed by the enzyme HMG-CoA synthase in the mevalonate pathway or mevalonate-dependent (MAD) route, an important cellular metabolic pathway present in virtually all organisms. HMG-CoA reductase (EC 1.1.1.34) inhibitors, more commonly known as statins, are cholesterol-lowering drugs that have been widely used for many years to reduce the incidence of adverse cardiovascular events. HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway and these agents lower cholesterol by inhibiting its synthesis in the liver and in peripheral tissues. Androgen also stimulates lipogenesis in human prostate cancer cells directly by increasing transcription of the fatty acid synthase and HMG-CoA-reductase genes (PMID: 14689582). (s)-3-hydroxy-3-methylglutaryl-coa, also known as hmg-coa or hydroxymethylglutaroyl coenzyme a, is a member of the class of compounds known as (s)-3-hydroxy-3-alkylglutaryl coas (s)-3-hydroxy-3-alkylglutaryl coas are 3-hydroxy-3-alkylglutaryl-CoAs where the 3-hydroxy-3-alkylglutaryl component has (S)-configuration. Thus, (s)-3-hydroxy-3-methylglutaryl-coa is considered to be a fatty ester lipid molecule (s)-3-hydroxy-3-methylglutaryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). (s)-3-hydroxy-3-methylglutaryl-coa can be found in a number of food items such as watercress, burdock, spirulina, and chicory, which makes (s)-3-hydroxy-3-methylglutaryl-coa a potential biomarker for the consumption of these food products (s)-3-hydroxy-3-methylglutaryl-coa may be a unique S.cerevisiae (yeast) metabolite.

   

Prostaglandin H2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O5 (352.225)


Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin . D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Nitric oxide

Endothelium-derived relaxing factor

NO (29.998)


The biologically active molecule nitric oxide (NO) is a simple, membrane-permeable gas with unique chemistry. It is formed by the conversion of L-arginine to L-citrulline, with the release of NO. The enzymatic oxidation of L-arginine to L-citrulline takes place in the presence of oxygen and NADPH using flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, thiol, and tetrahydrobiopterin as cofactors. The enzyme responsible for the generation of NO is nitric oxide synthase (E.C. 1.7.99.7; NOS). Three NOS isoforms have been described and shown to be encoded on three distinct genes: neuronal NOS (nNOS, NOS type I), inducible NOS (NOS type II), and endothelial NOS (eNOS, NOS type III). Two of them are constitutively expressed and dependent on the presence of calcium ions and calmodulin to function (nNOS and eNOS), while iNOS is considered non-constitutive and calcium-independent. However, experience has shown that constitutive expression of nNOS and eNOS is not as rigid as previously thought (i.e. either present or absent), but can be dynamically controlled during development and in response to injury. Functionally, NO may act as a hormone, neurotransmitter, paracrine messenger, mediator, cytoprotective molecule, and cytotoxic molecule. NO has multiple cellular molecular targets. It influences the activity of transcription factors, modulates upstream signaling cascades, mRNA stability and translation, and processes the primary gene products. In the brain, many processes are linked to NO. NO activates its receptor, soluble guanylate cyclase by binding to it. The stimulation of this enzyme leads to increased synthesis of the second messenger, cGMP, which in turn activates cGMP-dependent kinases in target cells. NO exerts a strong influence on glutamatergic neurotransmission by directly interacting with the N-methyl-D-aspartate (NMDA) receptor. Neuronal NOS is connected to NMDA receptors (see below) and sharply increases NO production following activation of this receptor. Thus, the level of endogenously produced NO around NMDA synapses reflects the activity of glutamate-mediated neurotransmission. However, there is recent evidence showing that non-NMDA glutamate receptors (i.e. AMPA and type I metabotropic receptors) also contribute to NO generation. Besides its influence on glutamate, NO is known to have effects on the storage, uptake and/or release of most other neurotransmitters in the CNS (acetylcholine, dopamine, noradrenaline, GABA, taurine, and glycine) as well as of certain neuropeptides. Finally, since NO is a highly diffusible molecule, it may reach extrasynaptic receptors at target cell membranes that are some distance away from the place of NO synthesis. NO is thus capable of mediating both synaptic and nonsynaptic communication processes. NO is a potent vasodilator (a major endogenous regulator of vascular tone), and an important endothelium-dependent relaxing factor. NO is synthesized by NO synthases (NOS) and NOS are inhibited by asymmetrical dimethylarginine (ADMA). ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) and excreted in the kidneys. Lower ADMA levels in pregnant women compared to non-pregnant controls suggest that ADMA has a role in vascular dilatation and blood pressure changes. Several studies show an increase in ADMA levels in pregnancies complicated with preeclampsia. Elevated ADMA levels in preeclampsia are seen before clinical symptoms have developed; these findings suggest that ADMA has a role in the pathogenesis of preeclampsia. In some pulmonary hypertensive states such as ARDS, the production of endogenous NO may be impaired. Nitric oxide inhalation selectively dilates the pulmonary circulation. Significant systemic vasodilation does not occur because NO is inactivated by rapidly binding to hemoglobin. In an injured lung with pulmonary hypertension, inhaled NO produces local vasodilation of well-ventilated lung units and may "steal" blood flow away from unventil... D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants R - Respiratory system

   

Superoxide

Superoxide anion radical

O2- (31.9898)


Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress. Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the superoxide scavenging enzyme, superoxide dismutase, or SOD. SOD is an extremely efficient enzyme; it catalyzes the neutralization of superoxide nearly as fast as the two can diffuse together spontaneously in solution. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice. The latter species dies around 21 days after birth if the mitochondrial variant of SOD (Mn-SOD) is inactivated, and suffers from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts and female infertility when the cytoplasmic (Cu, Zn -SOD) variant is inactivated. With one unpaired electron, the superoxide ion is a free radical and therefore paramagnetic. In living organisms, superoxide dismutase protects the cell from the deleterious effects of superoxides. Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress.; Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Angiotensin I

(2S)-2-[(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-[(2S,3S)-2-[(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carboxypropanamido]-5-[(diaminomethylidene)amino]pentanamido]-3-methylbutanamido]-3-(4-hydroxyphenyl)propanamido]-3-methylpentanamido]-3-(1H-imidazol-5-yl)propanoyl]pyrrolidin-2-yl]formamido}-3-phenylpropanamido]-3-(1H-imidazol-5-yl)propanamido]-4-methylpentanoic acid

C62H89N17O14 (1295.6775)


Angiotensin I appears to have no biological activity and exists solely as a precursor to angiotensin 2. Angiotensin I is formed by the action of renin on angiotensinogen. Renin cleaves the peptide bond between the leucine (Leu) and valine (Val) residues on angiotensinogen, creating the ten-amino acid peptide (des-Asp) angiotensin I. Renin is produced in the kidneys in response to renal sympathetic activity, decreased intrarenal blood pressure at the juxtaglomerular cells, or decreased delivery of Na+ and Cl- to the macula densa.[3] If less Na+ is sensed by the macula densa, renin release by juxtaglomerular cells is increased. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from WikiPathways, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin I (human, mouse, rat) is the precursor to the vasoconstrictor peptide angiotensin II, cleaved by the angiotensin-converting enzyme (ACE).

   

myo-Inositol 1-phosphate

{[(1S,2R,3R,4S,5S,6R)-2,3,4,5,6-pentahydroxycyclohexyl]oxy}phosphonic acid

C6H13O9P (260.0297)


myo-Inositol 1-phosphate, also known as I1P or ins(1)p, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. myo-Inositol 1-phosphate is a metabolite of inositol phosphate metabolism and the phosphatidylinositol signalling system. Inositol phosphatases (EC:3.1.3.25) play a crucial role in the phosphatidylinositol signalling pathway. Expression is substantially higher in the subcortical regions of the brain, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder (OMIM: 605922). Myo-inositol 1-phosphate is a metabolite of the Inositol phosphate metabolism and the Phosphatidylinositol signaling system. Inositol phosphatases [EC:3.1.3.25] play a crucial role in the phosphatidylinositol signaling pathway; in brain, the expression is substantially higher in the subcortical regions, most prominently in the caudate. The phosphatidylinositol pathway is thought to be modified by lithium, a commonly prescribed medication in treating bipolar disorder. (OMIM 605922) [HMDB]

   

Ethyl carbamate

Urethane + ethanol (combination)

C3H7NO2 (89.0477)


Ethyl carbamate, also known as aethylurethan or uretan, belongs to the class of organic compounds known as carboximidic acids and derivatives. Carboximidic acids and derivatives are compounds containing a carboximidic group, with the general formula R-C(=NR1)OR2. Ethyl carbamate has been detected, but not quantified, in alcoholic beverages. This could make ethyl carbamate a potential biomarker for the consumption of these foods. Ethyl carbamate is formally rated as a probable carcinogen (by IARC 2A) and is also a potentially toxic compound. It is readily absorbed from the gastrointestinal tract and the skin. It also tends to induce specific mutations in the Kras oncogene in codon 61 of exon 2 including A:T transversions and A-->G transitions in the second base and A-->T transversions in the third base. Urethane, formerly marketed as an inactive ingredient in Profenil injection, was determined to be carcinogenic and was removed from the Canadian, US, and UK markets in 1963. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. In case of contact with eyes, irrigate opened eyes for several minutes under running water. Metabolism is mediated by cytochrome P450 2E1. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].

   

AMASTATIN

CHEMBL27693

C21H38N4O8 (474.269)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

GTPgammaS

5-Guanosine-diphosphate-monothiophosphate

C10H16N5O13P3S (538.9678)


   

Angiotensin II

(3S)-3-amino-3-{[(1S)-1-{[(1S)-1-{[(1S)-1-{[(1S,2S)-1-{[(2S)-1-[(2S)-2-{[(1S)-1-carboxy-2-phenylethyl]carbamoyl}pyrrolidin-1-yl]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]carbamoyl}-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-methylpropyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid

C50H71N13O12 (1045.5345)


Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feedback mechanisms in turn modulate the activity of the brain Angiotensin II systems. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated. (PMID: 17147923, 16672146, 16601568, 16481883, 16075377). Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides COVID info from WikiPathways, clinicaltrial, clinicaltrials, clinical trial, clinical trials D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C307 - Biological Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].

   

Thromboxane A2

(5Z,9α,11α,13E,15S)-9,11-Epoxy-15-hydroxythromboxa-5,13- dien-1-oic acid

C20H32O5 (352.225)


A thromboxane which is produced by activated platelets and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation.

   

Nitroarginine

N(gamma)-nitro-L-arginine

C6H13N5O4 (219.0967)


An L-arginine derivative that is L-arginine in which the terminal nitrogen of the guanidyl group is replaced by a nitro group. C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors

   

N-Methylphenylethanolamine

N-Methylphenylethanolamine hydrochloride, (+-)-isomer

C9H13NO (151.0997)


N-Methylphenylethanolamine is an intermediate in the metabolism of Tyrosine. It is a substrate for Phenylethanolamine N-methyltransferase. [HMDB] N-Methylphenylethanolamine is an intermediate in the metabolism of Tyrosine. It is a substrate for Phenylethanolamine N-methyltransferase.

   

20alpha-Hydroxycholesterol

(1S,2R,5S,10S,11S,14S,15S)-14-[(2R)-2-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C27H46O2 (402.3498)


20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

Cysteineglutathione disulfide

(2S)-2-Amino-4-{[(1R)-2-[(2-amino-2-carboxyethyl)disulphanyl]-1-[(carboxymethyl)-C-hydroxycarbonimidoyl]ethyl]-C-hydroxycarbonimidoyl}butanoic acid

C13H22N4O8S2 (426.0879)


Cysteineglutathione disulfide is a molecule that is formed upon oxidative stress of glutathione, that will form mixed disulfides with protein thiol groups, causing reversible S-glutathionylation. S-glutathionylation is an important post-translational modification responsible for transducing oxidant signals. S-glutathionylation of thiols confers protection against their irreversible oxidation, like for instance the formation of sulphonic acid moieties. If the targeted cysteine is a functionally critical amino acid, S-glutathionylation will however also modify protein function. (PMID 16515838). S-sulfonation and S-thiolation of transthyretin Phe33Cys has been detected in a patient with familial transthyretin amyloidosis. (PMID 12876326). In Cystinotic human skin fibroblasts in tissue culture there is an accumulation of cystine. Stored cystine in cystinotic tissues may derive in part from glutathione-cysteine mixed disulfide via transpeptidation. (PMID 6130452). Cystinosis is an autosomal recessive disorder caused by an impaired transport of cystine out of lysosomes. (PMID 15042893). Cysteineglutathione disulfide is a molecule that is formed upon oxidative stress of glutathione, that will form mixed disulfides with protein thiol groups, causing reversible S-glutathionylation. [HMDB]

   

Biphenyl

Aromatic hydrocarbons, biphenyl-rich

C12H10 (154.0782)


Fungistat, especies for citrus fruits. It is used as food preservative and flavouring agent. Detected in bilberry, wine grape, carrot, peas, rum, potato, bell pepper, tomato, butter, milk, smoked fatty fish, cocoa, coffee, roast peanuts, olive, buckwheat and tamarind. Generally, the fruit packaging is impregnated with biphenyl, which evaporates into the air space surrounding the fruit. Some biphenyl is absorbed by the fruit skins. Biphenyl is found in many foods, some of which are lovage, carrot, alcoholic beverages, and nuts. Biphenyl is found in alcoholic beverages. Fungistat, especially for citrus fruits. Biphenyl is used as food preservative and flavouring agent. Biphenyl is detected in bilberry, wine grape, carrot, peas, rum, potato, bell pepper, tomato, butter, milk, smoked fatty fish, cocoa, coffee, roast peanuts, olive, buckwheat and tamarind. Generally, the fruit packaging is impregnated with biphenyl, which evaporates into the air space surrounding the fruit. Some biphenyl is absorbed by the fruit skin D016573 - Agrochemicals D010575 - Pesticides

   

Silver

Silver atomic spectroscopy standard concentrate 1.00 g ag

Ag (106.9051)


Among metals, pure silver has the highest thermal conductivity (the non-metal diamond and superfluid helium II are higher) and one of the highest optical reflectivity. (Aluminium slightly outdoes silver in parts of the visible spectrum, and silver is a poor reflector of ultraviolet light). Silver also has the lowest contact resistance of any metal. Silver halides are photosensitive and are remarkable for their ability to record a latent image that can later be developed chemically. Silver is stable in pure air and water, but tarnishes when it is exposed to air or water containing ozone or hydrogen sulfide to form a black layer of silver sulfide which can be cleaned off with dilute hydrochloric acid. The most common oxidation state of silver is +1 (for example, silver nitrate: AgNO3); in addition, +2 compounds (for example, silver(II) fluoride: AgF2) and +3 compounds (for example, potassium tetrafluoroargentate: K[AgF4]) are known.; Hippocrates, the "father of medicine", wrote that silver had beneficial healing and anti-disease properties, and the Phoenicians used to store water, wine, and vinegar in silver bottles to prevent spoiling. In the early 1900s people would put silver dollars in milk bottles to prolong the milks freshness. Its germicidal effects increased its value in utensils and as jewellery. The exact process of silvers germicidal effect is still not well understood, although theories exist. One of these is the oligodynamic effect, which explains the effect on microorganisms but would not explain antiviral effects.; Jewellery and silverware are traditionally made from sterling silver (standard silver), an alloy of 92.5\\% silver with 7.5\\% copper. In the United States, only an alloy consisting of at least 92.5\\% fine silver can be marketed as "silver". Sterling silver is harder than pure silver, and has a lower melting point (893 °C) than either pure silver or pure copper. Britannia silver is an alternative hallmark-quality standard containing 95.8\\% silver, often used to make silver tableware and wrought plate. With the addition of germanium, the patented modified alloy Argentium Sterling Silver is formed, with improved properties including resistance to firescale.; Silver bromide is a yellow, low hardness salt.; Silver is a chemical element with the chemical symbol Ag (Latin: argentum) and atomic number 47. A soft, white, lustrous transition metal, it has the highest electrical conductivity of any element and the highest thermal conductivity of any metal. The metal occurs naturally in its pure, free form (native silver), as an alloy with gold (electrum) and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a by-product of copper, gold, lead, and zinc refining.; Silver is a constituent of almost all colored carat gold alloys and carat gold solders, giving the alloys paler colour and greater hardness. White 9 carat gold contains 62.5\\% silver and 37.5\\% gold, while 22 carat gold contains up to 8.4\\% silver or 8.4\\% copper.; Silver is a very ductile and malleable (slightly harder than gold) monovalent coinage metal with a brilliant white metallic luster that can take a high degree of polish. It has the highest electrical conductivity of all metals, even higher than copper, but its greater cost and tarnishability have prevented it from being widely used in place of copper for electrical purposes, though 13,540 tons were used in the electromagnets used for enriching uranium during World War II (mainly because of the wartime shortage of copper). Another notable exception is in high-end audio cables.; Silver is commonly used in catheters. Silver alloy catheters are more effective than standard catheters for reducing bacteriuria in adults in hospital having short term catheterisation.This meta-analysis clarifies discrepant results among trials of silver-coated urinary catheters by revealing that silver alloy catheters are significantly more effective in preventing urinary tract infectio... Silver is widely distributed in the earths crust and is found in soil, fresh and sea water, and the air. It is readily absorbed into the human body with food and drink and through inhalation, but the low levels of silver commonly present in the bloodstream (< 2.3 b.mu g/L) and in key tissues like liver and kidney have not been associated with any disease or disability. Silver is not an acknowledged trace element in the human body and fulfills no physiological or biochemical role in any tissue even though it interacts with several essential elements including zinc and calcium. Physiologically, it exists as an ion in the body. Silver has a long history in the treatment of human diseases, including epilepsy, neonatal eye disease, venereal diseases, and wound infections. It has been employed in water purification and is currently used to safeguard hospital hot water systems against Legionella infections. Principle routes of human exposure to silver nowadays are through its widespread use as an antimicrobial agent in wound care products and medical devices, including in-dwelling catheters, bone cements, cardiac valves and prostheses, orthopedic pins, and dental devices. In each case, the antimicrobial properties of silver are dependent upon release of biologically active silver ion (Ag*) from metallic silver (including nanocrystalline forms), silver nitrate, silver sulfadiazine, and other silver compounds incorporated in the various devices, and its lethal effect on pathogenic organisms. Experience has shown that a large proportion of the silver ion released from medical devices not required for antimicrobial action is disseminated into tissue fluids and exudates, where it combines with albumins and macroglobulins. These silver-protein complexes are absorbed into the systemic circulation to be deposited in key soft tissues, including the skin, liver, kidney, spleen, lungs, and brain. As a xenobiotic material, silver must be presumed to present a health risk to exposed persons under some circumstances. Unlike the well-documented neurotoxic metals including lead and mercury, silver does not appear to be a cumulative poison and is eliminated from the body through the urine and feces. Excretion of silver by these routes may be a measure of mean daily intake, but since this view is based largely on the clinical use of silver nitrate and silver sulfadiazine used in burn wound therapy, its true relevance in the metabolism of silver used in the wider context of medical devices is questionable. Argyria is the most widely publicized clinical condition associated with silver accumulation in blood and soft tissues. It commonly occurs in individuals exposed to high levels of silver occupationally (metallurgy, photography, and mining industries), or consuming or inhaling silver hygiene products (including colloidal silver products) for long periods. Silver is absorbed into the body and deposited in the perivascular regions of the skin and other soft tissues as black granules of silver sulfide or silver selenide. The resulting slate grey discoloration of the skin occasionally associated with melanogenic changes, is semipermanent and cosmetically undesirable but is not known to be life-threatening. (PMID: 17453933). D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Bethanechol

(2-Hydroxypropyl)trimethylammonium carbamic acid

C7H17N2O2+ (161.129)


Bethanechol is a synthetic ester structurally and pharmacologically related to acetylcholine. A slowly hydrolyzed muscarinic agonist with no nicotinic effects, bethanechol is generally used to increase smooth muscle tone, as in the GI tract following abdominal surgery or in urinary retention in the absence of obstruction. It may cause hypotension, cardiac rate changes, and bronchial spasms. [PubChem] N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AB - Choline esters C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Desmopressin

(2S)-2-({[(2S)-1-[(4R,7S,10S,13S,16S)-13-benzyl-6,9,12,15,18-pentahydroxy-10-[2-(C-hydroxycarbonimidoyl)ethyl]-7-[(C-hydroxycarbonimidoyl)methyl]-16-[(4-hydroxyphenyl)methyl]-1,2-dithia-5,8,11,14,17-pentaazacycloicosa-5,8,11,14,17-pentaene-4-carbonyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamido-N-[(C-hydroxycarbonimidoyl)methyl]pentanimidate

C46H64N14O12S2 (1068.4269)


Desmopressin is a chemical that is similar to Antidiuretic Hormone (ADH) which is found naturally in the body. It increases urine concentration and decreases urine production. Desmopressin is used to prevent and control excessive thirst, urination, and dehydration caused by injury, surgery, and certain medical conditions, allowing you to sleep through the night without awakening to urinate. It is also used to treat specific types of diabetes insipidus and conditions after head injury or pituitary surgery. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

Mibefradil

2-methoxyacetic acid [2-[2-[3-(1H-benzimidazol-2-yl)propyl-methylamino]ethyl]-6-fluoro-1-propan-2-yl-3,4-dihydro-1H-naphthalen-2-yl] ester

C29H38FN3O3 (495.2897)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Streptozocin

3-methyl-3-nitroso-1-[(2S,3R,4R,5S,6R)-2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]urea

C8H15N3O7 (265.091)


Streptozocin is only found in individuals that have used or taken this drug.It is an antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. [PubChem]Although its mechanism of action is not completely clear, streptozocin is known to inhibit DNA synthesis, interfere with biochemical reactions of NAD and NADH, and inhibit some enzymes involved in gluconeogenesis. Its activity appears to occur as a result of formation of methylcarbonium ions, which alkylate or bind with many intracellular molecular structures including nucleic acids. Its cytotoxic action is probably due to cross-linking of strands of DNA, resulting in inhibition of DNA synthesis. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

Nitroglycerin

1,3-bis(nitrooxy)propan-2-yl nitrate

C3H5N3O9 (227.0026)


Nitroglycerin is only found in individuals that have used or taken this drug. It is a volatile vasodilator which relieves angina pectoris by stimulating guanylate cyclase and lowering cytosolic calcium. [PubChem]Similar to other nitrites and organic nitrates, nitroglycerin is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase. This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isosorbide Dinitrate

(3S,3aS,6R,6aS)-6-(nitrooxy)-hexahydrofuro[3,2-b]furan-3-yl nitrate

C6H8N2O8 (236.0281)


Isosorbide Dinitrate is only found in individuals that have used or taken this drug. It is a vasodilator used in the treatment of angina pectoris. Its actions are similar to nitroglycerin but with a slower onset of action. [PubChem]Similar to other nitrites and organic nitrates, isosorbide dinitrate is converted to nitric oxide (NO), an active intermediate compound which activates the enzyme guanylate cyclase (atrial natriuretic peptide receptor A). This stimulates the synthesis of cyclic guanosine 3,5-monophosphate (cGMP) which then activates a series of protein kinase-dependent phosphorylations in the smooth muscle cells, eventually resulting in the dephosphorylation of the myosin light chain of the smooth muscle fiber. The subsequent release of calcium ions results in the relaxation of the smooth muscle cells and vasodilation. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

hexamethonium

hexamethonium

C12H30N2+2 (202.2409)


C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D006584 - Hexamethonium Compounds D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Succimer

Butanedioic acid, 2,3-dimercapto-, (r*,s*)-isomer

C4H6O4S2 (181.9708)


Succimer is only found in individuals that have used or taken this drug. It is a mercaptodicarboxylic acid used as an antidote to heavy metal poisoning because it forms strong chelates with them. [PubChem]Succimer is a heavy metal chelator. It binds with high specificity to ions of lead in the blood to form a water-soluble complex that is subsequently excreted by the kidneys. Succimer can also chelate mercury, cadmium, and arsenic in this manner. D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes

   

Nisoldipine

3-methyl 5-(2-methylpropyl) 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

C20H24N2O6 (388.1634)


Nisoldipine is a 1,4-dihydropyridine calcium channel blocker. It acts primarily on vascular smooth muscle cells by stabilizing voltage-gated L-type calcium channels in their inactive conformation. By inhibiting the influx of calcium in smooth muscle cells, nisoldipine prevents calcium-dependent smooth muscle contraction and subsequent vasoconstriction. Nisoldipine may be used in alone or in combination with other agents in the management of hypertension. C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Paricalcitol

(1R,3R)-5-{2-[(1R,3aS,4E,7aR)-1-[(2R,3E,5S)-6-hydroxy-5,6-dimethylhept-3-en-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}cyclohexane-1,3-diol

C27H44O3 (416.329)


Paricalcitol is only found in individuals that have used or taken this drug. It is a synthetic vitamin D analog. Paricalcitol has been used to reduce parathyroid hormone levels. Paricalcitol is indicated for the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure.Paricalcitol is biologically active vitamin D analog of calcitriol with modifications to the side chain (D2) and the A (19-nor) ring. Preclinical andin vitro studies have demonstrated that paricalcitols biological actions are mediated through binding of the VDR, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion. H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols

   

Methylprednisolone acetate

6α-METHYLPREDNISOLONE ACETATE

C24H32O6 (416.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Doxercalciferol

(1R,3S,5Z)-5-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5S)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol

C28H44O2 (412.3341)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents

   

alpha-Antiarin

Antiarigenin 3-O-beta-D-antiaroside

C29H42O11 (566.2727)


   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   

(E)-Arachidin II

5-[(Z)-2-(4-hydroxyphenyl)ethenyl]-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol

C19H20O3 (296.1412)


(Z)-Arachidin II is found in nuts. (Z)-Arachidin II is a constituent of peanuts (Arachis hypogaea). Constituent of peanuts (Arachis hypogaea). (E)-Arachidin II is found in peanut and nuts.

   

Tefluthrin

(Z)-(1R)-cis-tefluthrin

C17H14ClF7O2 (418.057)


   

Isofenphos

2-[[Ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]benzoic acid 1-methylethyl ester

C15H24NO4PS (345.1164)


Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Chymostatin

2-[[1-(2-Amino-1,4,5,6-tetrahydropyrimidin-6-yl)-2-[[4-methyl-1-oxo-1-[(1-oxo-3-phenylpropan-2-yl)amino]pentan-2-yl]amino]-2-oxoethyl]carbamoylamino]-3-phenylpropanoic acid

C31H41N7O6 (607.3118)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors

   

Temocaprilat

(2S)-2-{[(2S,6R)-4-(carboxymethyl)-5-oxo-2-(thiophen-2-yl)-1,4-thiazepan-6-yl]amino}-4-phenylbutanoic acid

C21H24N2O5S2 (448.1127)


Temocaprilat belongs to the class of organic compounds known as phenylpropylamines. These are compounds containing a phenylpropylamine moiety, which consists of a phenyl group substituted at the third carbon by an propan-1-amine.

   

BQ-123

Cyclo[D-trp-D-asp-L-pro-D-val-L-leu]

C31H42N6O7 (610.3115)


D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D065128 - Endothelin Receptor Antagonists BQ-123 is a potent and selective endothelin A (ETA) receptor antagonist with an IC50 of 7.3 nM and a Ki of 25 nM. BQ-123 inhibits endothelin-1-mediated proliferation of human pulmonary artery smooth muscle cells and lowers blood pressure in different rat models of hypertension[1][2][3].

   

FA 7:1

(2E)-2,4-dimethylpent-2-enoic acid

C7H12O2 (128.0837)


   

I-123 BMIPP

I-123-beta-methyl-p-iodophenyl-methylpentadecanoic acid

C22H35IO2 (458.1682)


C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate Same as: D06608

   

Sodium chloride (NaCl)

Sodium chloride, (24)nacl

ClNa (57.9586)


Preservative, chilling medium, curing agent, flavour enhancer, firming agent, pH control agent, antimicrobial agent, separation/filtration aid, moisture control agent, texturizer, colourant aid, emulsifier, material handling aid, leavening agent and clarifying/flocculating agent B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056

   

Benzamil

3,5-diamino-N-(N-benzylcarbamimidoyl)-6-chloropyrazine-2-carboxamide

C13H14ClN7O (319.0948)


   

Thiourea

Thiocarbonic acid diamide

CH4N2S (76.0095)


Thiourea is an organic compound of carbon, nitrogen, sulfur and hydrogen, with the formula CSN2H4 or (NH2)2CS. It is similar to urea, except that the oxygen atom is replaced by a sulfur atom. The properties of urea and thiourea differ significantly because of the relative electronegativities of sulfur and oxygen. Thiourea is a versatile reagent in organic synthesis. "Thioureas" refers to a broad class of compounds with the general structure (R1R2N)(R3R4N)C=S. Thioureas are related to thioamides, e.g. RC(S)NR2, where R is methyl, ethyl, etc. Thiourea is prohibited from use in food. Industrial uses of thiourea include production of flame retardant resins, and vulcanization accelerators. Thiourea is used as an auxiliary agent in diazo paper (light-sensitive photocopy paper) and almost all other types of copy paper. It is also used to tone silver-gelatin photographic prints. The liquid silver cleaning product TarnX is essentially a solution of thiourea. A leaching agent for gold leaching and silver leaching can be created by selectively oxidizing thiourea, bypassing the steps of cyanide use and smelting. Another common application for use of thiourea is a common sulfur source for making semiconductor cadmium sulfide nanoparticle. Thiourea is a planar molecule. The C=S bond distance is 1.60±0.1 for a wide range of derivatives. This narrow range indicates that the C=S bond is insensitive to the nature of the substitutent. Thus, the thioamide, which is similar to an amide group, is difficult to perturb. Thiourea reduces peroxides to the corresponding diols. The intermediate of the reaction is an unstable epidioxide which can only be identified at -100 °C. Epidioxide is similar to epoxide except with two oxygen atoms. This intermediate reduces to diol by thiourea D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Prohibited from use in food

   

16alpha-Hydroxytestosterone

16alpha,17beta-Dihydroxy-4-androsten-3-one

C19H28O3 (304.2038)


   

PD 123319

1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(1-oxo-2,2-diphenylethyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid

C31H32N4O3 (508.2474)


D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

E-3174

2-butyl-4-chloro-1-({4-[2-(2H-1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl)-1H-imidazole-5-carboxylic acid

C22H21ClN6O2 (436.1414)


EXP3174 is a metabolite of losartan (previous name DuP753), which is a non-peptide angiotensin II receptor antagonist. EXP3174, a metabolite of losartan (MK 954, DuP 753) is more potent than losartan in blocking the angiotensin II-induced responses in vascular smooth muscle cells. (PMID: 8385175) D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Losartan Carboxylic Acid (E-3174), an active carboxylic acid metabolite of Losartan, is an angiotensin II receptor type 1 (AT1) antagonist. The Ki values are 0.97, 0.57, 0.67 nM for rat AT1B/AT1A and human AT1, respectively. Losartan Carboxylic Acid blocks the angiotensin II-induced responses in vascular smoothmuscle cells (VSMC). Losartan Carboxylic Acid elevates plasma renin activities and reduces mean arterial pressure[1][2][3][4].

   

2-Chloro-5-nitro-N-phenylbenzamide

2-Chloro-5-nitro-N-phenylbenzene-1-carboximidate

C13H9ClN2O3 (276.0302)


CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4257; ORIGINAL_PRECURSOR_SCAN_NO 4255 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3923; ORIGINAL_PRECURSOR_SCAN_NO 3921 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4307; ORIGINAL_PRECURSOR_SCAN_NO 4305 CONFIDENCE standard compound; INTERNAL_ID 929; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3920; ORIGINAL_PRECURSOR_SCAN_NO 3918 GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.

   

6-ECDCA

6alpha-Ethyl-chenodeoxycholic acid

C26H44O4 (420.3239)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D09360

   

Angiotensin III

(2S)-2-({[(2S)-1-[(2S)-2-{[(2S,3S)-2-{[(2S)-2-{[(2S)-2-{[(2S)-2-amino-5-carbamimidamido-1-hydroxypentylidene]amino}-1-hydroxy-3-methylbutylidene]amino}-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxy-3-methylpentylidene]amino}-3-(1H-imidazol-5-yl)propanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-phenylpropanoate

C46H66N12O9 (930.5075)


Angiotensin III (AngIII) is one of the N-terminal angiotensin degradation products of angiotensin II. AngIII shares some of its properties with Ang II, including chemotaxis and production of growth factors and chemokines. AngIII generated within the brain acts within neural circuits of the central nervous system to regulate body fluid balance. The stimulation of vasopressin release by AngIII is thought to be one of the mechanisms by which AngIII controls volume homeostasis under conditions of hypovolemia, by reducing renal water loss and increasing blood pressure. Brain aminopeptidase A, the enzyme forming central AngIII, could constitute a putative central therapeutic target for the treatment of hypertension. (PMID: 17210474, 11751722, 11295571) [HMDB] Angiotensin III (AngIII) is one of the N-terminal angiotensin degradation products of angiotensin II. AngIII shares some of its properties with Ang II, including chemotaxis and production of growth factors and chemokines. AngIII generated within the brain acts within neural circuits of the central nervous system to regulate body fluid balance. The stimulation of vasopressin release by AngIII is thought to be one of the mechanisms by which AngIII controls volume homeostasis under conditions of hypovolemia, by reducing renal water loss and increasing blood pressure. Brain aminopeptidase A, the enzyme forming central AngIII, could constitute a putative central therapeutic target for the treatment of hypertension. (PMID: 17210474, 11751722, 11295571). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin III, human, mouse is a heptapeptide, acts as an endogenous angiotensin type 2 receptor (AT2R) agonist, with IC50s of 0.648 nM and 21.1 nM for AT2R and AT1R, respectively. Angiotensin III, human, mouse is a heptapeptide, acts as an endogenous angiotensin type 2 receptor (AT2R) agonist, with IC50s of 0.648 nM and 21.1 nM for AT2R and AT1R, respectively.

   

Cobalt sulfate

Cobalt sulfate

CoO4S (154.8849)


Once used in fermented malt beverages as a foam stabiliser; now prohibited from use in food. Cobalt sulfate is found in alcoholic beverages.

   

Cytarabine

4-amino-1-[(2R,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.

   

ST 19:2;O3

(3S,7R,8R,9S,10R,13S,14S)-3,7-dihydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-one

C19H28O3 (304.2038)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 17beta-hydroxy steroid that is testosterone bearing an additional hydroxy substituent at the 6beta-position. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1740 - Aromatase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist

   

Apocynin

InChI=1/C9H10O3/c1-6(10)7-3-4-8(11)9(5-7)12-2/h3-5,11H,1-2H

C9H10O3 (166.063)


Apocynin is an aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an antirheumatic drug, a peripheral nervous system drug, an EC 1.6.3.1. [NAD(P)H oxidase (H2O2-forming)] inhibitor and a plant metabolite. It is a member of acetophenones, a methyl ketone and an aromatic ketone. Acetovanillone has been used in trials studying the treatment of Bronchial Asthma and Chronic Obstructive Pulmonary Disease. Acetovanillone is a natural product found in Iris tectorum, Apocynum cannabinum, and other organisms with data available. Acetovanillone is a metabolite found in or produced by Saccharomyces cerevisiae. An aromatic ketone that is 1-phenylethanone substituted by a hydroxy group at position 4 and a methoxy group at position 3. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Thromboxane A2

7-[3-(3-Hydroxy-1-octenyl)-2,6-dioxabicyclo[3.1.1]hept-4-yl]-[1S-[1alpha,3alpha(1E,3R*),4beta(Z),5alpha]]-5-heptenoic acid

C20H32O5 (352.225)


Thromboxane A2 is an unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS).Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Glycosides

4-[(1S,2R,3S,5S,7R,10R,11R,14S,15R,17R)-3,7,11,17-tetrahydroxy-2-(hydroxymethyl)-15-methyl-5-{[(2R,3R,4R,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-2,5-dihydrofuran-2-one

C29H44O12 (584.2833)


Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Glycosides is found in allspice, fig, and apricot. Glycosides is found in allspice. Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Nystatin A1

33-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,7,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,25,27,29,31-hexaene-36-carboxylic acid

C47H75NO17 (925.5035)


   

3-Hydroxy-alpha-methyl-DL-tyrosine

2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Fasudil

5-(1,4-Diazepane-1-sulphonyl)isoquinoline

C14H17N3O2S (291.1041)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Scarlet red

1-(2-{2-methyl-4-[2-(2-methylphenyl)diazen-1-yl]phenyl}diazen-1-yl)naphthalen-2-ol

C24H20N4O (380.1637)


D004396 - Coloring Agents

   

Creatinine

Creatinine

C4H7N3O (113.0589)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

Hydroxyproline

trans-4-hydroxy-L-proline

C5H9NO3 (131.0582)


L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. L-Hydroxyproline, one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals.

   

hydrochlorothiazide

6-Chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide

C7H8ClN3O4S2 (296.9645)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2610 D049990 - Membrane Transport Modulators

   

Frusemide

furosemide

C12H11ClN2O5S (330.0077)


D045283 - Natriuretic Agents > D004232 - Diuretics > D049994 - Sodium Potassium Chloride Symporter Inhibitors C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CA - Sulfonamides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; EAWAG_UCHEM_ID 2600 D049990 - Membrane Transport Modulators Furosemide is a potent and orally active inhibitor of Na+/K+/2Cl-?(NKCC) cotransporter, NKCC1 and NKCC2[1].?Furosemide is also a GABAA?receptors antagonist and displays 100-fold selectivity for?α6-containing receptors than?α1-containing receptors. Furosemide acts as a loop diuretic and used for the study of congestive heart failure, hypertension and edema[2].

   

Verapamil

Verapamil

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 674 EAWAG_UCHEM_ID 674; CONFIDENCE standard compound D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

metoprolol

metoprolol

C15H25NO3 (267.1834)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 172 Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

Monocrotaline

2H-(1,6)DIOXACYCLOUNDECINO(2,3,4-GH)PYRROLIZINE-2,6(3H)-DIONE, 4,5,8,10,12,13,13A,13B-OCTAHYDRO-4,5-DIHYDROXY-3,4,5-TRIMETHYL-, (3R-(3R*,4R*,5R*,13AR*,13BR*))-

C16H23NO6 (325.1525)


Monocrotaline is a pyrrolizidine alkaloid. Monocrotaline is a natural product found in Crotalaria novae-hollandiae, Crotalaria recta, and other organisms with data available. A pyrrolizidine alkaloid and a toxic plant constituent that poisons livestock and humans through the ingestion of contaminated grains and other foods. The alkaloid causes pulmonary artery hypertension, right ventricular hypertrophy, and pathological changes in the pulmonary vasculature. Significant attenuation of the cardiopulmonary changes are noted after oral magnesium treatment. Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.154 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.142 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.145 Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8]. Monocrotaline is an 11-membered macrocyclic pyrrolizidine alkaloid. Monocrotaline inhibits OCT-1 and OCT-2 with IC50s of 36.8 μM and 1.8 mM, respectively. Monocrotaline has antitumor activity and is cytotoxic to hepatocellular carcinoma cells. Monocrotaline is used to induce a model of pulmonary hypertension in rodents. [2][6][8].

   

Mangiferin

1,3,6,7-Tetrahydroxy-2-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

3-Aminopropanenitrile

3-Aminopropanenitrile

C3H6N2 (70.0531)


C471 - Enzyme Inhibitor β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].

   

7,8-Dihydroxyflavone

7,8-Dihydroxyflavone

C15H10O4 (254.0579)


7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].

   

H2O

oxidane

H2O (18.0106)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms. Water. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7732-18-5 (retrieved 2024-10-17) (CAS RN: 7732-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Digoxin

Digoxin

C41H64O14 (780.4296)


C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2 C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 1.276 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.282 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.275

   

Fasudil

Fasudil

C14H17N3O2S (291.1041)


C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

metoprolol

metoprolol

C15H25NO3 (267.1834)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in the treatment of several diseases of the cardiovascular system; Metoprolol is a selective beta1 receptor blocker used in treatment of several diseases of the cardiovascular system. It is marketed under the brand name Lopressor by Novartis, and Toprol (in the USA); Seleken or Selokeen (elsewhere); as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG; A selective adrenergic beta-1-blocking agent with no stimulatory action. Its binding to plasma albumin is weaker than alprenolol and it may be useful in angina pectoris, hypertension, or cardiac arrhythmias; as Minax by Alphapharm (in Australia), as Betaloc by AstraZeneca and as Corvitol by Berlin-Chemie AG. [HMDB] CONFIDENCE standard compound; INTERNAL_ID 1107 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 81 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1080 CONFIDENCE standard compound; INTERNAL_ID 4072 CONFIDENCE Reference Standard (Level 1) Metoprolol is an orally active, selective β1-adrenoceptor antagonist. Metoprolol shows anti-inflammation, antitumor and anti-angiogenic properties[1][2][3].

   

propranolol

propranolol

C16H21NO2 (259.1572)


A propanolamine that is propan-2-ol substituted by a propan-2-ylamino group at position 1 and a naphthalen-1-yloxy group at position 3. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7445; ORIGINAL_PRECURSOR_SCAN_NO 7444 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7453; ORIGINAL_PRECURSOR_SCAN_NO 7452 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7471; ORIGINAL_PRECURSOR_SCAN_NO 7467 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7471; ORIGINAL_PRECURSOR_SCAN_NO 7469 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7478; ORIGINAL_PRECURSOR_SCAN_NO 7476 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7485; ORIGINAL_PRECURSOR_SCAN_NO 7484 CONFIDENCE standard compound; INTERNAL_ID 1108 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 61 CONFIDENCE standard compound; INTERNAL_ID 8556 Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3].

   

amlodipine

Amlodipine (Norvasc)

C20H25ClN2O5 (408.1452)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1544

   

irbesartan

irbesartan

C25H28N6O (428.2324)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1074 CONFIDENCE standard compound; INTERNAL_ID 2094 CONFIDENCE standard compound; INTERNAL_ID 8187 Irbesartan (SR-47436) is an orally active Ang II type 1 (AT1) receptor blocker (ARB). Irbesartan can relax the blood vessels, low blood pressure and increase the supply of blood and oxygen to the heart. Irbesartan can be used for the research of high blood pressure, heart failure, and diabetic kidney disease[1].

   

candesartan

candesartan

C24H20N6O3 (440.1597)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2137 Candesartan (CV 11974) is an orally active angiotensin II AT1-Receptor blocker and PPAR-γ agonist. Candesartan has potent and long-lasting antihypertensive effects. Candesartan can be used for the research of hypertension, chronic heart failure (CHF) and Traumatic brain injury (TBI)[1][2][3]. Candesartan (CV 11974) is an orally active angiotensin II AT1-Receptor blocker and PPAR-γ agonist. Candesartan has potent and long-lasting antihypertensive effects. Candesartan can be used for the research of hypertension, chronic heart failure (CHF) and Traumatic brain injury (TBI)[1][2][3].

   

Pioglitazone

5-(4-(2-(5-Ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione

C19H20N2O3S (356.1195)


A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins > A10BG - Thiazolidinediones C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98241 - Thiazolidinedione Antidiabetic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3418; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3413; ORIGINAL_PRECURSOR_SCAN_NO 3410 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3422; ORIGINAL_PRECURSOR_SCAN_NO 3421 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3410; ORIGINAL_PRECURSOR_SCAN_NO 3408 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3260; ORIGINAL_PRECURSOR_SCAN_NO 3258 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3419; ORIGINAL_PRECURSOR_SCAN_NO 3417 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7097 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7118; ORIGINAL_PRECURSOR_SCAN_NO 7116 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7127; ORIGINAL_PRECURSOR_SCAN_NO 7125 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7146; ORIGINAL_PRECURSOR_SCAN_NO 7145 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7154; ORIGINAL_PRECURSOR_SCAN_NO 7153 CONFIDENCE standard compound; INTERNAL_ID 289; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7069; ORIGINAL_PRECURSOR_SCAN_NO 7068 CONFIDENCE standard compound; INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 2203 CONFIDENCE standard compound; INTERNAL_ID 8526 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3286 Pioglitazone (U 72107) is an orally active and selective PPARγ (peroxisome proliferator-activated receptor) agonist with high affinity binding to the PPARγ ligand-binding domain with EC50 of 0.93 and 0.99 μM for human and mouse PPARγ, respectively. Pioglitazone can be used in diabetes research[2][3][4].

   

fosinopril

(2S,4S)-4-cyclohexyl-1-[2-[[(1S)-2-methyl-1-(1-oxopropoxy)propoxy]-(4-phenylbutyl)phosphoryl]-1-oxoethyl]-2-pyrrolidinecarboxylic acid

C30H46NO7P (563.3012)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; INTERNAL_ID 2247

   

Telmisartan

Telmisartan aka 2-[4-[[4-methyl-6-(1-methylbenzimidazol-2-yl)-2-propylbenzimidazol-1-yl]methyl]phenyl]benzoic acid

C33H30N4O2 (514.2369)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 63 CONFIDENCE standard compound; INTERNAL_ID 8191 This spectrum was obtained at The Multidisciplinary Research Laboratory at Antenor Orrego Private University, Trujillo, La Libertad, Peru.The sample was obtained from a pharmacy.; The sample was dissolved in 1:1 acetonitrile:water and passed through a ACQUITY UPLC BEH C18 1.7um column at 0.6 mL/min in ramp of MPA: 0.1\\\% Formic Acid in water; MPB: 0.1\\\% Formic Acid in Acetonitrile; Contact us: http://www.upao.edu.pe/labinm/ Telmisartan is a potent, long lasting antagonist of angiotensin II type 1 receptor (AT1), selectively inhibiting the binding of 125I-AngII to AT1 receptors with IC50 of 9.2 nM.

   

Fk-506

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R,19R,26aS)-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-Hexadecahydro-5,19-dihydroxy-3-[(1E)-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetramethyl-8-(2-propen-1-yl)-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)-tetrone

C44H69NO12 (803.482)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D016559 - Tacrolimus D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors CONFIDENCE standard compound; EAWAG_UCHEM_ID 2807

   

Diltiazem

Dilacor XR

C22H26N2O4S (414.1613)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DB - Benzothiazepine derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker CONFIDENCE standard compound; EAWAG_UCHEM_ID 3017

   

Perindopril

Perindopril

C19H32N2O5 (368.2311)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3026 Perindopril (S-9490) is an orally available, long-acting angiotensin-converting enzyme (ACE) inhibitor. Perindopril inhibits inflammatory cell influx and intimal thickening, preserving elastin on the inside of the aorta. Perindopril effectively inhibits experimental abdominal aortic aneurysm (AAA) formation in a rat model and reduces pulmonary vasoconstriction in rats with pulmonary hypertension[1][2][3][4].

   

doxazosin

Doxazosin, (R)-

C23H25N5O5 (451.1856)


C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CA - Alpha-adrenoreceptor antagonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; EAWAG_UCHEM_ID 3293

   

BISOPROLOL

BISOPROLOL

C18H31NO4 (325.2253)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE Reference Standard (Level 1)

   

hydrochlorothiazide

hydrochlorothiazide

C7H8ClN3O4S2 (296.9645)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators CONFIDENCE Reference Standard (Level 1)

   

Boldine

4H-Dibenzo[de,g]quinoline-2,9-diol, 5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-, (6aS)-

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (s)-boldine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof (s)-boldine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-boldine can be found in sweet bay, which makes (s)-boldine a potential biomarker for the consumption of this food product. Origin: Plant; Formula(Parent): C19H21NO4; Bottle Name:Boldine hydrochloride; PRIME Parent Name:Boldine; PRIME in-house No.:V0322; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.487 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.480 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.482 IPB_RECORD: 841; CONFIDENCE confident structure Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

furosemide

furosemide

C12H11ClN2O5S (330.0077)


D045283 - Natriuretic Agents > D004232 - Diuretics > D049994 - Sodium Potassium Chloride Symporter Inhibitors C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CA - Sulfonamides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D000890 - Anti-Infective Agents > D013424 - Sulfanilamides D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3731; ORIGINAL_PRECURSOR_SCAN_NO 3727 CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3749; ORIGINAL_PRECURSOR_SCAN_NO 3747 CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3780; ORIGINAL_PRECURSOR_SCAN_NO 3777 CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3741; ORIGINAL_PRECURSOR_SCAN_NO 3739 CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3729; ORIGINAL_PRECURSOR_SCAN_NO 3727 CONFIDENCE standard compound; INTERNAL_ID 635; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3727; ORIGINAL_PRECURSOR_SCAN_NO 3723 CONFIDENCE standard compound; INTERNAL_ID 2692 CONFIDENCE standard compound; INTERNAL_ID 4078 CONFIDENCE standard compound; INTERNAL_ID 8501 Furosemide is a potent and orally active inhibitor of Na+/K+/2Cl-?(NKCC) cotransporter, NKCC1 and NKCC2[1].?Furosemide is also a GABAA?receptors antagonist and displays 100-fold selectivity for?α6-containing receptors than?α1-containing receptors. Furosemide acts as a loop diuretic and used for the study of congestive heart failure, hypertension and edema[2].

   

Enalapril

Enalapril

C20H28N2O5 (376.1998)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; INTERNAL_ID 2718 CONFIDENCE standard compound; INTERNAL_ID 8616 INTERNAL_ID 8616; CONFIDENCE standard compound

   

Enalaprilat

Enalaprilat

C18H24N2O5 (348.1685)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Kynurenic acid

1,4-Dihydro-4-oxoquinoline-2-carboxylic acid

C10H7NO3 (189.0426)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; HCZHHEIFKROPDY-UHFFFAOYSA-N_STSL_0005_Kynurenic acid_2000fmol_180410_S2_LC02_MS02_66; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists relative retention time with respect to 9-anthracene Carboxylic Acid is 0.374 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.376 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.370 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.372 Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Transtorine is a quinoline alkaloid, found from Ephedra transitoria, with antibacterial activity[1]. Transtorine is a quinoline alkaloid, found from Ephedra transitoria, with antibacterial activity[1].

   

Verapamil

Verapamil aka "Benzeneacetonitrile, Alpha-[3-[[2-(3,4-dimethoxyphenyl)ethyl]methylamino]propyl]-3,4-dimethoxy-Alpha-(1-methylethyl)-, (R)- [CAS]"

C27H38N2O4 (454.2831)


C - Cardiovascular system > C08 - Calcium channel blockers > C08D - Selective calcium channel blockers with direct cardiac effects > C08DA - Phenylalkylamine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.908

   

Ouabain

3-[(1R,3S,5S,8R,9S,10R,11R,13R,14S,17R)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3R,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H44O12 (584.2833)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins A steroid hormone that is a multi-hydroxylated alpha-L-rhamnosyl cardenoloide. It binds to and inhibits the plasma membrane Na(+)/K(+)-ATPase (sodium pump). It has been isolated naturally from Strophanthus gratus. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors relative retention time with respect to 9-anthracene Carboxylic Acid is 0.613 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.614

   

Captopril

Captopril

C9H15NO3S (217.0773)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Annotation level-1 CONFIDENCE standard compound; INTERNAL_ID 2721 CONFIDENCE standard compound; INTERNAL_ID 8619

   

labetalol

labetalol

C19H24N2O3 (328.1787)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Labetalol (AH5158) is an orally active selective α1- and non-selective β-adrenergic receptors competitive antagonist. Labetalol, an anti-hypertensive agent, can be used for the research of cardiovascular disease, such as hypertension in pregnancy[1][2][3].

   

Eplerenone

Eplerenone

C24H30O6 (414.2042)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics

   

Indometacin

"Indomethacin (Indocid, Indocin)"

C19H16ClNO4 (357.0768)


A member of the class of indole-3-acetic acids that is indole-3-acetic acid in which the indole ring is substituted at positions 1, 2 and 5 by p-chlorobenzoyl, methyl, and methoxy groups, respectively. A non-steroidal anti-inflammatory drug, it is used in the treatment of musculoskeletal and joint disorders including osteoarthritis, rheumatoid arthritis, gout, bursitis and tendinitis. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents > D006074 - Gout Suppressants C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor C - Cardiovascular system > C01 - Cardiac therapy D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

nisoldipine

Nisoldipine (Sular)

C20H24N2O6 (388.1634)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

nifedipine

Nifedipine (Adalat)

C17H18N2O6 (346.1165)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

carvedilol

carvedilol

C24H26N2O4 (406.1892)


C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AG - Alpha and beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D000975 - Antioxidants D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Carvedilol (BM 14190) is a non-selective β/α-1 blocker[1]. Carvedilol inhibits lipid peroxidation in a dose-dependent manner with an IC50 of 5 μM. Carvedilol is a multiple action antihypertensive agent with potential use in angina and congestive heart failure[2]. Carvedilol is an autophagy inducer that inhibits the NLRP3 inflammasome[3].

   

nitrendipine

nitrendipine

C18H20N2O6 (360.1321)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Valdecoxib

Valdecoxib

C16H14N2O3S (314.0725)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

Creatinine

Creatinine,anhydrous

C4H7N3O (113.0589)


A lactam obtained by formal cyclocondensation of creatine. It is a metabolite of creatine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DDRJAANPRJIHGJ-UHFFFAOYSA-N_STSL_0026_Creatinine_2000fmol_180410_S2_LC02_MS02_34; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

pyridoxamine

Pyridoxylamine

C8H12N2O2 (168.0899)


A monohydroxypyridine that is pyridine substituted by a hydroxy group at position 3, an aminomethyl group at position 4, a hydroxymethyl group at position 5 and a methyl group at position 2. The 4-aminomethyl form of vitamin B6, it is used (in the form of the hydrochloride salt) for treatment of diabetic nephropathy. D018977 - Micronutrients > D014815 - Vitamins Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

dethiobiotin

dl-Dithiobiotin

C10H18N2O3 (214.1317)


A hexanoic acid having a 5-methyl-2-oxoimidazolidin-4-yl group at the 6-position. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].

   

Hexylamine

1-Hexanamine

C6H15N (101.1204)


A 6-carbon primary aliphatic amine.

   

Pravastatin

(3R,5R)-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-{[(2S)-2-methylbutanoyl]oxy}-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid

C23H36O7 (424.2461)


A carboxylic ester resulting from the formal condensation of (S)-2-methylbutyric acid with the hydroxy group adjacent to the ring junction of (3R,5R)-7-[(1S,2S,6S,8S,8aR)-6,8-dihydroxy-2-methyl-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid. Derived from microbial transformation of mevastatin, pravastatin is a reversible inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA). The sodium salt is used for lowering cholesterol and preventing cardiovascular disease. It is one of the lower potency statins, but has the advantage of fewer side effects compared with lovastatin and simvastatin. C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4302; ORIGINAL_PRECURSOR_SCAN_NO 4300 CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4318; ORIGINAL_PRECURSOR_SCAN_NO 4317 CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4275; ORIGINAL_PRECURSOR_SCAN_NO 4273 CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4300; ORIGINAL_PRECURSOR_SCAN_NO 4298 CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4285; ORIGINAL_PRECURSOR_SCAN_NO 4283 CONFIDENCE standard compound; INTERNAL_ID 659; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4289 CONFIDENCE standard compound; INTERNAL_ID 2342 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8558

   

Norepinephrine

4-(2-Amino-1-hydroxyethyl)benzene-1,2-diol

C8H11NO3 (169.0739)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

sarcosine

2-(methylamino)acetic acid

C3H7NO2 (89.0477)


A N-alkylglycine that is the N-methyl derivative of glycine. It is an intermediate in the metabolic pathway of glycine. Sarcosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-97-1 (retrieved 2024-07-01) (CAS RN: 107-97-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2]. Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2].

   

losartan

losartan

C22H23ClN6O (422.1622)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Losartan is an angiotensin II receptor antagonist, competing with the binding of angiotensin II to AT1 receptors with IC50 of 20 nM.

   

EXP 3174

Losartan carboxylic acid [EXP3174]

C22H21ClN6O2 (436.1414)


A biphenylyltetrazole that is losartan with the hydroxymethyl group at position 5 on the imidazole ring replaced with a carboxylic acid. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Losartan Carboxylic Acid (E-3174), an active carboxylic acid metabolite of Losartan, is an angiotensin II receptor type 1 (AT1) antagonist. The Ki values are 0.97, 0.57, 0.67 nM for rat AT1B/AT1A and human AT1, respectively. Losartan Carboxylic Acid blocks the angiotensin II-induced responses in vascular smoothmuscle cells (VSMC). Losartan Carboxylic Acid elevates plasma renin activities and reduces mean arterial pressure[1][2][3][4].

   

Sepiapterin

L-Sepiapterin

C9H11N5O3 (237.0862)


C307 - Biological Agent

   

Cysteineglutathione disulfide

L-CYSTEINE-GLUTATHIONE DISULFIDE

C13H22N4O8S2 (426.0879)


   

imidazole

imidazole

C3H4N2 (68.0374)


D004791 - Enzyme Inhibitors

   

Phenylephrine

(R)-(-)-Phenylephrine

C9H13NO2 (167.0946)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics > S01GA - Sympathomimetics used as decongestants R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents (R)-(-)-Phenylephrine is a selective α1-adrenoceptor agonist primarily used as a decongestant.

   

AMILORIDE

3,5-diamino-6-chloro-N-(diaminomethylidene)pyrazine-2-carboxamide

C6H8ClN7O (229.0479)


D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062686 - Epithelial Sodium Channel Blockers D049990 - Membrane Transport Modulators > D026941 - Sodium Channel Blockers > D062646 - Acid Sensing Ion Channel Blockers C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2314; ORIGINAL_PRECURSOR_SCAN_NO 2312 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2312; ORIGINAL_PRECURSOR_SCAN_NO 2311 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2313 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2304; ORIGINAL_PRECURSOR_SCAN_NO 2302 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2373; ORIGINAL_PRECURSOR_SCAN_NO 2370 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2315; ORIGINAL_PRECURSOR_SCAN_NO 2314 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4866; ORIGINAL_PRECURSOR_SCAN_NO 4864 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4878; ORIGINAL_PRECURSOR_SCAN_NO 4875 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4900; ORIGINAL_PRECURSOR_SCAN_NO 4899 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4909; ORIGINAL_PRECURSOR_SCAN_NO 4907 INTERNAL_ID 1085; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4909; ORIGINAL_PRECURSOR_SCAN_NO 4907 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4914; ORIGINAL_PRECURSOR_SCAN_NO 4912 CONFIDENCE standard compound; INTERNAL_ID 1085; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4905; ORIGINAL_PRECURSOR_SCAN_NO 4903 CONFIDENCE standard compound; INTERNAL_ID 9; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) INTERNAL_ID 9; CONFIDENCE standard compound; HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu); Flow Injection Flow Injection; CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu) CONFIDENCE Reference Standard (Level 1); HBM4EU - science and policy for a healthy future (https://www.hbm4eu.eu)

   

Benazepril

Benazepril

C24H28N2O5 (424.1998)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

fenoldopam

fenoldopam

C16H16ClNO3 (305.0819)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

methoxamine

methoxamine

C11H17NO3 (211.1208)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

MOXONIDINE

MOXONIDINE

C9H12ClN5O (241.073)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

N,N-Dimethylarginine

L-Arg(Me, Me)-OH (asymmetrical)

C8H18N4O2 (202.143)


D004791 - Enzyme Inhibitors Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase (NOS), and functions as a marker of endothelial dysfunction in a number of pathological states.

   

Olmesartan

Olmesartan

C24H26N6O3 (446.2066)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Olmesartan (RNH-6270) is an angiotensin II receptor (AT1R) antagonist used to treat high blood pressure[1][2].

   

1-Methylxanthine

1-Methylxanthine

C6H6N4O2 (166.0491)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].

   

ergotamine

Ergotaminum

C33H35N5O5 (581.2638)


A peptide ergot alkaloid that is dihydroergotamine in which a double bond replaces the single bond between positions 9 and 10. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist > C61751 - Ergotamine D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D012102 - Reproductive Control Agents > D010120 - Oxytocics CONFIDENCE Claviceps purpurea sclerotia

   

Spironolactone

Spironolactone

C24H32O4S (416.2021)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000451 - Mineralocorticoid Receptor Antagonists C - Cardiovascular system > C03 - Diuretics > C03D - Aldosterone antagonists and other potassium-sparing agents > C03DA - Aldosterone antagonists C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49186 - Potassium-Sparing Diuretic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

pentobarbital

pentobarbital

C11H18N2O3 (226.1317)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators

   

propafenone

propafenone

C21H27NO3 (341.1991)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Methyldopa

1H-INDAZOLE-3,6-DICARBOXYLICACID,6-METHYLESTER

C10H13NO4 (211.0845)


CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1003; ORIGINAL_PRECURSOR_SCAN_NO 1001 C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1000; ORIGINAL_PRECURSOR_SCAN_NO 997 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 999; ORIGINAL_PRECURSOR_SCAN_NO 998 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 998; ORIGINAL_PRECURSOR_SCAN_NO 996 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1004; ORIGINAL_PRECURSOR_SCAN_NO 1001 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 996; ORIGINAL_PRECURSOR_SCAN_NO 994 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1895; ORIGINAL_PRECURSOR_SCAN_NO 1893 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1905; ORIGINAL_PRECURSOR_SCAN_NO 1903 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1906; ORIGINAL_PRECURSOR_SCAN_NO 1904 CONFIDENCE standard compound; INTERNAL_ID 1284; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1906; ORIGINAL_PRECURSOR_SCAN_NO 1903 Methyldopa (L-(-)-α-Methyldopa), a potent antihyoertensive agent, is an alpha-adrenergic agonist (selective for α2-adrenergic receptors). Methyldopa is a proagent and is metabolized (α-Methylepinephrine) in the central nervous system[1][2].

   

nicardipine

nicardipine

C26H29N3O6 (479.2056)


C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects > C08CA - Dihydropyridine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

4-Aminosalicylic acid

4-Aminosalicylic acid

C7H7NO3 (153.0426)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WUBBRNOQWQTFEX-UHFFFAOYSA-N_STSL_0188_4-Aminosalicylic Acid_0125fmol_180831_S2_L02M02_81; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Desoxycortone

Desoxycorticosterone

C21H30O3 (330.2195)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D008901 - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Animal, Pregnanes Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor. Deoxycorticosterone is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as an aldosterone precursor.

   

Kynurenate

1,4-Dihydro-4-oxoquinoline-2-carboxylic acid

C10H7NO3 (189.0426)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8. Transtorine is a quinoline alkaloid, found from Ephedra transitoria, with antibacterial activity[1]. Transtorine is a quinoline alkaloid, found from Ephedra transitoria, with antibacterial activity[1].

   

Cyclic GMP

3,5-cyclic GMP

C10H12N5O7P (345.0474)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

THIOUREA

THIOUREA

CH4N2S (76.0095)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Acetylcholine

(2-acetoxyethyl)trimethylammonium

C7H16NO2+ (146.1181)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Actylcholine is an ester of acetic acid and choline, which acts as a neurotransmitter. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-heptenoic acid

δ-heptenoic acid

C7H12O2 (128.0837)


   

12-Hete

(5Z,8Z,10E,14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid

C20H32O3 (320.2351)


A HETE that is icosa-5,8,10,14-tetraenoic acid substituted by a hydroxy group at position 12. It is a metabolite of arachidonic acid. A HETE having a (12S)-hydroxy group and (5Z)-, (8Z)-, (10E)- and (14Z)-double bonds.

   

Cobalt brown

Sulfuric acid, cobalt(2+) salt (1:1)

CoO4S (154.8849)


   

Arachidin II

5-[(Z)-2-(4-hydroxyphenyl)ethenyl]-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol

C19H20O3 (296.1412)


   

FA 20:4;O

(5E,8E)-10-{3-[(2E)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C20H32O3 (320.2351)


An EET obtained by formal epoxidation of the 14,15-double bond of arachidonic acid. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

FA 20:3;O2

(5R,8E,10E,12R,14Z)-5,12-dihydroxyicosa-8,10,14-trienoic acid

C20H34O4 (338.2457)


   

Prostaglandin H2

9S,11R-epidioxy-15S-hydroxy-5Z,13E-prostadienoic acid

C20H32O5 (352.225)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

fludrocortisone

9alpha-fluoro-11beta,17alpha,21-trihydroxy-pregn-4-ene-3,20-dione

C21H29FO5 (380.1999)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

Paricalcitol

(1R,3R,7E)-17beta-[(2R,3E,5S)-6-hydroxy-5,6-dimethylhept-3-en-2-yl]-9,10-secoestra-5,7-diene-1,3-diol

C27H44O3 (416.329)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols

   

silver

silver

Ag (106.9051)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AL - Silver compounds COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Obeticholic acid

Obeticholic acid

C26H44O4 (420.3239)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

Iodofiltic acid (123I)

Iodofiltic acid (123I)

C22H35IO2 (458.1682)


C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate

   

apocynin

InChI=1\C9H10O3\c1-6(10)7-3-4-8(11)9(5-7)12-2\h3-5,11H,1-2H

C9H10O3 (166.063)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5]. Apocynin is a selective NADPH-oxidase inhibitor with an IC50 of 10 μM[1][2]. Apocynin improves acute lung inflammation in Carrageenan (HY-125474)-induced pleurisy mice model[3]. Apocynin can also be used for cancer research[4]. Apocynin reverses the aging process in mesenchymal stem cells to promote osteogenesis and increases bone mass[5].

   

Sodium chloride

Fast green FCF aluminium salt

ClNa (57.9586)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CB - Salt solutions A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent S - Sensory organs > S01 - Ophthalmologicals Same as: D02056 FDA permitted colourant for foods and food contact paper or board [DFC]

   

Pentetrazol

Pentylenetetrazole

C6H10N4 (138.0905)


R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AB - Respiratory stimulants D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant Same as: D07409

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Chinoinin

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-9-xanthenone

C19H18O11 (422.0849)


Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Xenene

InChI=1\C12H10\c1-3-7-11(8-4-1)12-9-5-2-6-10-12\h1-10

C12H10 (154.0782)


D016573 - Agrochemicals D010575 - Pesticides

   

Uretan

InChI=1\C3H7NO2\c1-2-6-3(4)5\h2H2,1H3,(H2,4,5

C3H7NO2 (89.0477)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].

   

Krebiozen

InChI=1\C4H7N3O\c1-7-2-3(8)6-4(7)5\h2H2,1H3,(H2,5,6,8

C4H7N3O (113.0589)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles. Creatinine (NSC13123) is a breakdown product of creatine phosphate in muscles.

   

WLN: RVR

InChI=1\C13H10O\c14-13(11-7-3-1-4-8-11)12-9-5-2-6-10-12\h1-10

C13H10O (182.0732)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D003879 - Dermatologic Agents Benzophenone is an endogenous metabolite. Benzophenone is an endogenous metabolite.

   

Acetylcholine

Bournonville brand OF acetylcholine chloride

C7H16NO2+ (146.1181)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Occurs in Capsella bursa-pastoris (shepherds purse) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

nitric oxide

Nitrogen oxides

NO (29.998)


D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors A nitrogen oxide which is a free radical, each molecule of which consists of one nitrogen and one oxygen atom. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants R - Respiratory system It is used as a food additive .

   

phorate

6Z-8-Hydroxygeraniol 8-O-glucoside

C7H17O2PS3 (260.0128)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals Constituent of fresh ginger (Zingiber officinale). 6Z-8-Hydroxygeraniol 8-O-glucoside is found in herbs and spices.

   

Sapropterin

Sapropterin

C9H15N5O3 (241.1175)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products A tetrahydropterin that is 2-amino-5,6,7,8-tetrahydropteridin-4(3H)-one in which a hydrogen at position 6 is substituted by a 1,2-dihydroxypropyl group (6R,1R,2S-enantiomer). C26170 - Protective Agent > C275 - Antioxidant Sapropterin is converted from 7,8-dihydroneopterin triphosphate by 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase. It is essential in the formation of neurotransmitters and for nitric oxide synthase (PMID 16946131). [HMDB] Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.

   

(6S)-1-[4-(dimethylamino)-3-methylbenzyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid

(6S)-1-[4-(dimethylamino)-3-methylbenzyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid

C31H32N4O3 (508.2474)


D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

BENZOPHENONE

BENZOPHENONE

C13H10O (182.0732)


The simplest member of the class of benzophenones, being formaldehyde in which both hydrogens are replaced by phenyl groups. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D003879 - Dermatologic Agents Benzophenone is an endogenous metabolite. Benzophenone is an endogenous metabolite.

   

urethane

urethane

C3H7NO2 (89.0477)


A carbamate ester obtained by the formal condensation of ethanol with carbamic acid. It has been found in alcoholic beverages. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1]. Urethane (Ethyl carbamate), the ethyl ester of carbamic acid, is a byproduct of fermentation found in various food products. Urethane has the ability to suppress bacterial, protozoal, sea urchin egg, and plant tissue growth in vitro[1].

   

Biphenyl

Biphenyl

C12H10 (154.0782)


D016573 - Agrochemicals D010575 - Pesticides

   

BENZIMIDAZOLE

BENZIMIDAZOLE

C7H6N2 (118.0531)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics

   

muscimol

muscimol

C4H6N2O2 (114.0429)


A member of the class of isoxazoles that is 1,2-oxazol-3(2H)-one substituted by an aminomethyl group at position 5. It has been isolated from mushrooms of the genus Amanita. D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

isosorbide dinitrate

isosorbide dinitrate

C6H8N2O8 (236.0281)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Cephapirin

Cephapirin

C17H17N3O6S2 (423.0559)


A cephalosporin with acetoxymethyl and 2(pyridin-4-ylsulfanyl)acetamido substituents at positions 3 and 7, respectively, of the cephem skeleton. It is used (as its sodium salt) as an antibiotic, being effective against gram-negative and gram-positive organisms. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Streptozocin

Streptozocin

C8H15N3O7 (265.091)


An N-nitrosourea that is an antibiotic produced by Streptomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas D000970 - Antineoplastic Agents

   

p,p-DDE

p,p-DDE

C14H8Cl4 (315.938)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

chlorothiazide

chlorothiazide

C7H6ClN3O4S2 (294.9488)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

trichlormethiazide

trichlormethiazide

C8H8Cl3N3O4S2 (378.9022)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain D045283 - Natriuretic Agents > D004232 - Diuretics > D049993 - Sodium Chloride Symporter Inhibitors C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D049990 - Membrane Transport Modulators

   

hydralazine

1-Hydrazino-phthalazine

C8H8N4 (160.0749)


C - Cardiovascular system > C02 - Antihypertensives > C02D - Arteriolar smooth muscle, agents acting on > C02DB - Hydrazinophthalazine derivatives C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

nitroglycerin

1,2,3-Propanetriyl trinitrate

C3H5N3O9 (227.0026)


C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AE - Muscle relaxants C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D053834 - Explosive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thioglycolic acid

mercaptoacetic acid

C2H4O2S (91.9932)


   

Succimer

Succimer

C4H6O4S2 (181.9708)


D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes

   

Nandrolone decanoate

Nandrolone decanoate

C28H44O3 (428.329)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D050071 - Bone Density Conservation Agents

   

Candesartan cilexetil

Candesartan cilexetil

C33H34N6O6 (610.254)


C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Candesartan Cilexetil (TCV-116) is an angiotensin II receptor inhibitor. Candesartan Cilexetil ameliorates the pulmonary fibrosis and has antiviral and skin wound healing effect. Candesartan Cilexetil can be used for the research of high blood pressure[1][2][3][4][5][6].

   

Eprosartan

Eprosartan

C23H24N2O4S (424.1457)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D057912 - Angiotensin II Type 2 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Eprosartan (SKF-108566J free base) is a selective, competitive, nonpeptid and orally active angiotensin II receptor antagonist, used as an antihypertensive. Eprosartan binds angiotensin II receptor with IC50s of 9.2 nM and 3.9 nM in rat and human adrenal cortical membranes, respectively [1].

   

isoproterenol

DL-Isoproterenol

C11H17NO3 (211.1208)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

GUANETHIDINE

GUANETHIDINE

C10H22N4 (198.1844)


C - Cardiovascular system > C02 - Antihypertensives > C02C - Antiadrenergic agents, peripherally acting > C02CC - Guanidine derivatives D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents

   

Angiotensin II

Angiotensin II acetate salt

C50H71N13O12 (1045.5345)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides COVID info from WikiPathways, clinicaltrial, clinicaltrials, clinical trial, clinical trials D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C307 - Biological Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4]. Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].

   

Aldosterone

(+)-aldosterone

C21H28O5 (360.1937)


A pregnane-based steroidal hormone produced by the outer-section (zona glomerulosa) of the adrenal cortex in the adrenal gland, and acts on the distal tubules and collecting ducts of the kidney to cause the conservation of sodium, secretion of potassium, increased water retention, and increased blood pressure. The overall effect of aldosterone is to increase reabsorption of ions and water in the kidney. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Quinapril

Quinapril

C25H30N2O5 (438.2155)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Octylamine

Octylamine

C8H19N (129.1517)


   

guanabenz

guanabenz

C8H8Cl2N4 (230.0126)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Moexipril

Moexipril

C27H34N2O7 (498.2366)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Bethanechol

Bethanechol

C7H17N2O2+ (161.129)


N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AB - Choline esters C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010277 - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Bradykinin

Bradykinin

C50H73N15O11 (1059.5614)


A linear nonapeptide messenger belonging to the kinin group of proteins, with amino acid sequence RPPGFSPFR. Enzymatically produced from kallidin in the blood, it is a powerful vasodilator that causes smooth muscle contraction, and may mediate inflammation. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Bradykinin is an effective endothelium-dependent vasodilator that can lower blood pressure. Bradykinin can induce contraction of bronchial and intestinal non-vascular smooth muscle, increase vascular permeability, and participate in the mechanism of pain[1][2][3][4][5].

   

Angiotensin I

Angiotensin I

C62H89N17O14 (1295.6775)


A ten amino acid peptide formed by renin cleavage of angiotensinogen. Angiotensin I has no direct biological function except that high levels can stimulate catecholamine production. It is metabolized to its biologically active byproduct angiotensin II, a potent vasoconstrictor, by angiotensin converting enzyme (ACE) through cleavage of the two terminal amino acids. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from WikiPathways, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin I (human, mouse, rat) is the precursor to the vasoconstrictor peptide angiotensin II, cleaved by the angiotensin-converting enzyme (ACE).

   

Tilarginine

Tilarginine

C7H16N4O2 (188.1273)


C471 - Enzyme Inhibitor > C29574 - Nitric Oxide Synthase Inhibitor D004791 - Enzyme Inhibitors

   

N-Methylphenylethanolamine

DL-ALPHA-(METHYLAMINOMETHYL)BENZYL ALCOHOL

C9H13NO (151.0997)


An alkaloid that is ethanolamine having the phenyl group at the 1-position and a methyl group attached to the nitrogen. It has been isolated from Halostachys caspica.

   

Inositol 1-phosphate

Inositol 1-phosphate

C6H13O9P (260.0297)


   
   

Superoxide

Superoxide

O2- (31.9898)


D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Desthiobiotin

dl-Dithiobiotin

C10H18N2O3 (214.1317)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D050258 - Mitosis Modulators > D008934 - Mitogens D-Desthiobiotin is a biotin derivative used in affinity chromatography and protein chromatography. D-Desthiobiotin also can be used for protein and cell labeling, detection and isolation[1].

   

THIORPHAN

THIORPHAN

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

20-Hydroxycholesterol

20(S)-Hydroxycholesterol

C27H46O2 (402.3498)


An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].

   

DESMOPRESSIN

(Deamino-Cys1,D-Arg8)-Vasopressin acetate salt

C46H64N14O12S2 (1068.4269)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BA - Vasopressin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C80212 - Antidiuretic Hormone Analogue D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D014667 - Vasopressins D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D050034 - Antidiuretic Agents

   

GW 9662

2-Chloro-5-nitro-N-phenylbenzamide

C13H9ClN2O3 (276.0302)


GW9662 is a potent and selective PPARγ antagonist with an IC50 of 3.3 nM, showing 10 and 1000-fold selectivity over PPARα and PPARδ, respectively.

   

BIS(2-ETHYLHEXYL) ADIPATE

BIS(2-ETHYLHEXYL) ADIPATE

C22H42O4 (370.3083)


   

NITROFEN

NITROFEN

C12H7Cl2NO3 (282.9803)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

UNII:0514MAW53A

UNII:0514MAW53A

C15H24NO4PS (345.1164)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

L-Methyldopa

3-Hydroxy-alpha-methyl-DL-tyrosine

C10H13NO4 (211.0845)


C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AB - Methyldopa D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

isoguvacine

Isoguvacine hydrochloride

C6H9NO2 (127.0633)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists

   

Angiotensin III

Angiotensin III, human, mouse(Acetate)

C46H66N12O9 (930.5075)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Angiotensin III, human, mouse is a heptapeptide, acts as an endogenous angiotensin type 2 receptor (AT2R) agonist, with IC50s of 0.648 nM and 21.1 nM for AT2R and AT1R, respectively. Angiotensin III, human, mouse is a heptapeptide, acts as an endogenous angiotensin type 2 receptor (AT2R) agonist, with IC50s of 0.648 nM and 21.1 nM for AT2R and AT1R, respectively.