Digoxin (BioDeep_00000000332)

 

Secondary id: BioDeep_00000325589

human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs


代谢物信息卡片


3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

化学式: C41H64O14 (780.4295844)
中文名称: 异羟洋地黄毒苷, 地高辛
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 2.15%

分子结构信息

SMILES: C1[C@@]2(C)[C@]([H])(CC[C@]3([H])[C@]2([H])C[C@@H](O)[C@@]2(C)[C@]3(O)CC[C@]2([H])C2=CC(=O)OC2)C[C@@H](O[C@H]2C[C@H](O)[C@H](O[C@H]3C[C@H](O)[C@H](O[C@H]4C[C@H](O)[C@H](O)[C@@H](C)O4)[C@@H](C)O3)[C@@H](C)O2)C1
InChI: InChI=1S/C41H64O14/c1-19-36(47)28(42)15-34(50-19)54-38-21(3)52-35(17-30(38)44)55-37-20(2)51-33(16-29(37)43)53-24-8-10-39(4)23(13-24)6-7-26-27(39)14-31(45)40(5)25(9-11-41(26,40)48)22-12-32(46)49-18-22/h12,19-21,23-31,33-38,42-45,47-48H,6-11,13-18H2,1-5H3

描述信息

Digoxin appears as clear to white crystals or white crystalline powder. Odorless. Used as a cardiotonic drug. (EPA, 1998)
Digoxin is a cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small. It has a role as an epitope, an anti-arrhythmia drug, a cardiotonic drug and an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a cardenolide glycoside and a steroid saponin. It is a conjugate acid of a digoxin(1-).
Digoxin is one of the oldest cardiovascular medications used today. It is a common agent used to manage atrial fibrillation and the symptoms of heart failure. Digoxin is classified as a cardiac glycoside and was initially approved by the FDA in 1954. This drug originates from the foxglove plant, also known as the Digitalis plant, studied by William Withering, an English physician and botanist in the 1780s. Prior to this, a Welsh family, historically referred to as the Physicians of Myddvai, formulated drugs from this plant. They were one of the first to prescribe cardiac glycosides, according to ancient literature dating as early as the 1250s.
Digoxin is a Cardiac Glycoside.
Digoxin is a natural product found in Digitalis obscura, Digitalis parviflora, and other organisms with data available.
Digoxin is a cardiac glycoside. Digoxin inhibits the sodium potassium adenosine triphosphatase (ATPase) pump, thereby increasing intracellular calcium and enhancing cardiac contractility. This agent also acts directly on the atrioventricular node to suppress conduction, thereby slowing conduction velocity. Apparently due to its effects on intracellular calcium concentrations, digoxin induces apoptosis of tumor cells via a pathway involving mitochondrial cytochrome c and caspases 8 and 3. (NCI04)
Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mos...
Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; Digoxin is a cardiotonic glycoside obtained mainly from Digitalis lanata; It consists of three sugars and the aglycone digoxigenin. Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia.
Digoxin is a cardiac glycoside extracted from the foxglove plant, digitalis. It is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and congestive heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade name Lanoxin. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) -- Pubchem; A cardiotonic glycoside obtained mainly from Digitalis lanata; Digoxin binds to a site on the extracellular aspect of the of the Na+/K+ ATPase pump in the membranes of heart cells (myocytes). This causes an increase in the level of sodium ions in the myocytes, which then leads to a rise in the level of calcium ions. The proposed mechanism is the following: inhibition of the Na+/K+ pump leads to increased Na+ levels, which in turn slows down the extrusion of Ca2+ via the Na+/Ca2+ exchange pump. Increased amounts of Ca2+ are then stored in the sarcoplasmic reticulum and released by each action potential, which is unchanged by digoxin. This is a different mechanism from that of catecholamines. -- Wikipedia; Owing to its narrow therapeutic index (the margin between effectiveness and toxicity), side effects of digoxin are inevitable. Nausea, vomiting and GIT upset are common, especially in higher doses. Decreased conduction in the AV node can lead to AV blocks, increased intracellular Ca2+ causes a type of arrhythmia called bigeminy (coupled beats), eventually ventricular tachycardia or fibrillation. An often described but rarely seen side effect of digoxin is a disturbance of color vision (mostly yellow and green color) called xanthopsia. [HMDB]
A cardenolide glycoside that is digitoxin beta-hydroxylated at C-12. A cardiac glycoside extracted from the foxglove plant, Digitalis lanata, it is used to control ventricular rate in atrial fibrillation and in the management of congestive heart failure with atrial fibrillation, but the margin between toxic and therapeutic doses is small.
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin
C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent
D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
C1907 - Drug, Natural Product
D004791 - Enzyme Inhibitors

同义名列表

183 个代谢物同义名

3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-4-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one; 4-((3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-(((2R,4S,5S,6R)-5-(((2S,4S,5S,6R)-5-(((2S,4S,5S,6R)-4,5-dihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-12,14-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)furan-2(5H)-one; 3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one; 4-[(3S,5R,8R,9S,10S,12R,13S,14S)-3-[(2S,4S,5R,6R)-5-[(2S,4S,5R,6R)-5-[(2S,4S,5R,6R)-4,5-Dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyl-oxan-2-yl]oxy-4-hydroxy-6-methyl-oxan-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-5H-furan-2-one; 3-[(3S,5R,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one; 4-[(1R,3aS,3bR,5aR,7S,9aS,9bS,11R,11aS)-7-{[(2R,4S,5S,6R)-5-{[(2S,4S,5S,6R)-5-{[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-3a,11-dihydroxy-9a,11a-dimethyl-hexadecahydro-1H-cyclopenta[a]phenanthren-1-yl]-2,5-dihydrofuran-2-one; 4-[(1S,2S,5S,7R,10R,11S,14R,15S,16R)-5-{[(2R,4S,5S,6R)-5-{[(2S,4S,5S,6R)-5-{[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-11,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-2,5-dihydrofuran-2-one; 4-[(1S,2S,5S,7R,10R,11S,14R,15S,16R)-5-{[(2R,4S,5S,6R)-5-{[(2S,4S,5S,6R)-5-{[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-4-hydroxy-6-methyloxan-2-yl]oxy}-11,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-2,5-dihydrofuran-2-one; 4-((1S,2S,5S,11S,15S,7R,10R,14R,16R)-5-{5-[5-((2S,4S,5S,6R)-4,5-dihydroxy-6-me thyl(2H-3,4,5,6-tetrahydropyran-2-yloxy))(4S,5S,2R,6R)-4-hydroxy-6-methyl(2H-3 ,4,5,6-tetrahydropyran-2-yloxy)](4S,5S,2R,6R)-4-hydroxy-6-methyl(2H-3,4,5,6-te trahydropyran-2-yl; 3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-10,13-dimethyl-3-[(2R,4S,5S,6R)-6-methyl-5-[(2S,4S,5S,6R)-6-methyl-5-[(2S,4S,5S,6R)-6-methyl-4,5-bis(oxidanyl)oxan-2-yl]oxy-4-oxidanyl-oxan-2-yl]oxy-4-oxidanyl-oxan-2-yl]oxy-12,14-bis(oxidanyl)-1,2,3,4,5,6,7,8,9,11,12,; 3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[(2R,4S,5S,6R)-5-[(2S,4S,5S,6R)-5-[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-4-hydroxy-6-methyloxan-2-yl]oxy-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tet; 3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3-[[(2R,4S,5S,6R)-5-[[(2S,4S,5S,6R)-5-[[(2S,4S,5S,6R)-4,5-dihydroxy-6-methyl-2-oxanyl]oxy]-4-hydroxy-6-methyl-2-oxanyl]oxy]-4-hydroxy-6-methyl-2-oxanyl]oxy]-12,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,; Card-20(22)-enolide, 3-[[O-2,6-dideoxy-.beta.-D-ribo-hexopyranosyl-(1-->4)-O-2,6-dideoxy-.beta.-D-ribo-hexopyranosyl-(1-->4)-2,6-dideoxy-.beta.-D-ribo-hexopyranosyl]oxy]-12,14-dihydroxy-, (3.beta.,5.beta.,12.beta.)-; Card-20(22)-enolide, 3-((O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1.fwdarw.4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1.fwdarw.4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12,14-dihydroxy-, (3beta,5beta,12beta)-; CARD-20(22)-ENOLIDE, 3-((O-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL-(1->4)-O-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL-(1->4)-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL)OXY)-12,14-DIHYDROXY-,(3.BETA.,5.BETA.,12.BETA.)-; 3.BETA.-((O-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL-(1->4)-O-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL-(1->4)-2,6-DIDEOXY-.BETA.-D-RIBO-HEXOPYRANOSYL)OXY)-12.BETA.,14-DIHYDROXY-5.BETA.-CARD-20(22)-ENOLIDE; Card-20(22)-enolide, 3-((O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12,14-dihydroxy-, (3beta,5beta,12beta)-; CARD-20(22)-ENOLIDE, 3-((O-2,6-DIDEOXY-beta-D-RIBO-HEXOPYRANOSYL-(1->4)-O-2,6-DIDEOXY-beta-D-RIBO-HEXOPYRANOSYL-(1->4)-2,6-DIDEOXY-beta-D-RIBO-HEXOPYRANOSYL)OXY)-12,14-DIHYDROXY-,(3beta,5beta,12beta)-; Card-20(22)-enolide, 3-((O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12,14-dihydroxy-, (3beta,5beta,12beta)-; (3beta,5beta,12beta)-3-{[2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl]oxy}-12,14-dihydroxycard-20(22)-enolide; (3beta,5beta,12beta)-3-((O-2,6-Dideoxy-beta-D-ribo-hexapyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12,14-dihydroxycard-20(22)-enolide; (3beta,5beta,12beta)-3-((2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12,14-dihydroxycard-20(22)-enolide; 3beta-(2,6-Dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyloxy)-12beta,14-dihydroxy-5beta,14beta-card-20(22)-enolide; 3beta-((O-2,6-Dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12beta,14-dihydroxy-5beta-card-20(22)-enolide; 3beta-((O-2,6-Dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-O-2,6-dideoxy-beta-D-ribo-hexopyranosyl-(1-4)-2,6-dideoxy-beta-D-ribo-hexopyranosyl)oxy)-12beta,14-dihydroxy-5beta-card-20(22)-enolide; CARD-20(22)-ENOLIDE, 3-((O-2,6-DIDEOXY-BETA-D-RIBO-HEXOPYRANOSYL-(HEXOPYRANOSYL-(1-4)-2,6-DIDEOXY-BETA-D-RIBO-HEXOPYRANOSYL)OXY)-12,14-DIHYDROXY-,; 3beta,12beta,14-trihydroxy-5beta-card-20(22)-enolide 3-O-(tris-beta-D-digitoxoside); Digoxin for peak identification, European Pharmacopoeia (EP) Reference Standard; 3beta,12beta,14-Trihydroxy-5beta,14beta-card-20(22)-enolid-3-tridigitoxosid; Digoxin, Pharmaceutical Secondary Standard; Certified Reference Material; Digoxin, United States Pharmacopeia (USP) Reference Standard; Digoxin, European Pharmacopoeia (EP) Reference Standard; Digoxin, certified reference material, TraceCERT(R); 5-18-04-00381 (Beilstein Handbook Reference); 0B9662A7-264E-4ACD-94B2-9E1138C0CA5A; Digoxigenin-tridigitoxosid [German]; Proctor and gamble brand OF digoxin; GlaxoSmithKline brand 2 OF digoxin; GlaxoSmithKline brand 1 OF digoxin; Human Serum - Digoxin, high level; Human Serum - Digoxin, low level; digoxin for peak identification; Glaxo wellcome brand OF digoxin; Digoxin 1.0 mg/ml in Methanol; Digoxin, analytical standard; AWD.pharma brand OF digoxin; Digoxin, 1mg/ml in Methanol; LTMHDMANZUZIPE-PUGKRICDSA-N; DIGITOXIN, 12BETA-HYDROXY-; Digoxigenin-tridigitoxosid; Novartis brand OF digoxin; Digoxin [USP:INN:BAN:JAN]; Digoxin (USP:INN:BAN:JAN); 12 beta -Hydroxydigitoxin; Teofarma brand OF digoxin; DIGOXINUM [WHO-IP LATIN]; Bertek brand OF digoxin; DIGOXIN [USP MONOGRAPH]; R.A.N. brand OF digoxin; DIGOXIN (USP MONOGRAPH); 12beta-Hydroxydigitoxin; Chloroformic digitalin; Digoxina [INN-Spanish]; Lilly brand OF digoxin; Virco brand OF digoxin; Roche brand OF digoxin; DIGOXIN [EP MONOGRAPH]; DIGOXIN (EP MONOGRAPH); Digoxina (INN-Spanish); DIGOXIN [ORANGE BOOK]; Digoxinum (INN-Latin); Nativelle, Hemigoxine; Digoxinum [INN-Latin]; Kern brand OF digoxin; 12A-Hydroxydigitoxin; UDL brand OF digoxin; 12Β-hydroxydigitoxin; 12b-Hydroxydigitoxin; Boehringer, Digoxina; Hemigoxine Nativelle; Digoxina Boehringer; Digoxine Navtivelle; Digitalis glycoside; Nativelle, Digoxine; Digoxin (JP17/USP); Homolles digitalin; Digoxine Nativelle; Digoksyna [Polish]; Digoxin Pediatric; LANOXIN PEDIATRIC; Prestwick0_000437; Digoxinum (Latin); Prestwick1_000437; Prestwick2_000437; Prestwick3_000437; Digoxin Nativelle; DIGOXIN [WHO-DD]; DIGOXIN (USP-RS); DIGOXIN [USP-RS]; Digossina [DCIT]; Novodigal (inj.); DIGOXIN [WHO-IP]; Novodigal [inj.]; DIGOXIN [MART.]; UNII-73K4184T59; Digoxina-Sandoz; DIGOXIN [VANDF]; DIGOXIN (MART.); Lanoxicaps (TN); Digoxin-Sandoz; DIGOXIN [HSDB]; DIGOXIN [IARC]; DIGOXIN (IARC); DIGOXIN [JAN]; BPBio1_000500; DIGOXIN [INN]; Tox21_201678; [3H]-digoxin; Tox21_111025; Tox21_303050; DIGOXIN [MI]; Lanoxin (TN); Digoxin-Zori; Neodioxanin; Cardiogoxin; [3H]digoxin; Neo-Lanicor; Stillacor-; Lanacordin; Lanocardin; Lanoxin-PG; Lenoxicaps; Coragoxine; 73K4184T59; Lanoxicaps; SK-Digoxin; Lanoxin PG; Digoksyna; Digossina; Cordioxil; Digoregen; Lanacrist; Cardioxin; Digoxinum; Natigoxin; Dilanacin; Rougoxin; Digoxine; Cardoxin; Lanorale; Cardigox; Mapluxin; Purgoxin; Fargoxin; Acygoxin; Digoxina; Digonix; C01AA05; Dynamos; Vanoxin; Lenoxin; Toloxin; Digacin; Eudigox; Davoxin; Digitek; Lanicor; Digomal; Digoxin; Dimecip; Lanoxin; Saroxin; Lifusin; Lanikor; Cogoxin; Digosin; Dixina; Grexin; Digos; Digon; Digox; Dokim; 3b0w



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(2)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

14 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Michael Baum, Susanne Dobler. Fecal Deployment: An Alternative Way of Defensive Host Plant Cardenolide Use by Lilioceris merdigera Larvae. Journal of chemical ecology. 2024 Feb; 50(1-2):63-70. doi: 10.1007/s10886-023-01465-8. [PMID: 38062246]
  • Tanja Kovačević, Branka Polić, Tatjana Ćatipović Ardalić, Davor Petrović, Luka Stričević, Maja Rogulj, Joško Markić. A suicide attempt by ingestion of oleander leaves and treatment with digoxin-specific Fab antibody fragments. Arhiv za higijenu rada i toksikologiju. 2023 Dec; 74(4):292-295. doi: 10.2478/aiht-2023-74-3752. [PMID: 38146758]
  • Eric J Lavonas, Peter D Akpunonu, Ann M Arens, Kavita M Babu, Dazhe Cao, Robert S Hoffman, Christopher O Hoyte, Maryann E Mazer-Amirshahi, Andrew Stolbach, Maude St-Onge, Trevonne M Thompson, George Sam Wang, Amber V Hoover, Ian R Drennan. 2023 American Heart Association Focused Update on the Management of Patients With Cardiac Arrest or Life-Threatening Toxicity Due to Poisoning: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2023 Sep; ?(?):. doi: 10.1161/cir.0000000000001161. [PMID: 37721023]
  • Dina El Gameel, Asmaa Fady Sharif, Osama Shoeib, Elsayed Ibrahim Elgebally, Manar Maher Fayed. Development and validation of a risk prediction nomogram for serious arrhythmias in acute digoxin toxicity among pediatrics: A multicenter study. Toxicon : official journal of the International Society on Toxinology. 2023 Aug; ?(?):107241. doi: 10.1016/j.toxicon.2023.107241. [PMID: 37558139]
  • Yoshito Minami, Atsushi Hoshino, Yusuke Higuchi, Masahide Hamaguchi, Yusaku Kaneko, Yuhei Kirita, Shunta Taminishi, Toshiyuki Nishiji, Akiyuki Taruno, Michiaki Fukui, Zoltan Arany, Satoaki Matoba. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nature communications. 2023 07; 14(1):4084. doi: 10.1038/s41467-023-39404-6. [PMID: 37443159]
  • Emily Carroll, Baradwaj Ravi Gopal, Indu Raghavan, Minakshi Mukherjee, Zhen Q Wang. A cytochrome P450 CYP87A4 imparts sterol side-chain cleavage in digoxin biosynthesis. Nature communications. 2023 Jul; 14(1):4042. doi: 10.1038/s41467-023-39719-4. [PMID: 37422531]
  • Jiayuan Gu, Zhengjun Zhang, Jonnea Japhet Tibenda, Lin Yan, Yafei Zhu, Qipeng Zhao. Observation of the Systolic Function of Isolated Right Atria from Guinea Pigs. Journal of visualized experiments : JoVE. 2023 05; ?(195):. doi: 10.3791/65483. [PMID: 37212585]
  • Ying Fan, Zhu Zhou, Lei Zhang. Effect of Oregon grape root extracts on P-glycoprotein mediated transport in in vitro cell lines. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2023; 26(?):11927. doi: 10.3389/jpps.2023.11927. [PMID: 38304488]
  • Joshua Trebach, Vincent Calleo, Sara Akbar, James Langston, Michael Filigenzi, Robert S Hoffman. Detectable Digoxin Concentrations in 3 Patients with Ramps Misadventure. Wilderness & environmental medicine. 2022 09; 33(3):340-343. doi: 10.1016/j.wem.2022.04.008. [PMID: 35691768]
  • Arimi Fujita, Saki Noguchi, Rika Hamada, Satoko Inoue, Tsutomu Shimada, Satomi Katakura, Tetsuo Maruyama, Yoshimichi Sai, Tomohiro Nishimura, Masatoshi Tomi. Limited Impact of Murine Placental MDR1 on Fetal Exposure of Certain Drugs Explained by Bypass Transfer Between Adjacent Syncytiotrophoblast Layers. Pharmaceutical research. 2022 Jul; 39(7):1645-1658. doi: 10.1007/s11095-022-03165-6. [PMID: 35083640]
  • Jocelyn Yabut, Robert Houle, Shubing Wang, Andy Liaw, Ravi Katwaru, Hannah Collier, Lucinda Hittle, Xiaoyan Chu. Selection of an Optimal In Vitro Model to Assess P-gp Inhibition: Comparison of Vesicular and Bidirectional Transcellular Transport Inhibition Assays. Drug metabolism and disposition: the biological fate of chemicals. 2022 Jul; 50(7):909-922. doi: 10.1124/dmd.121.000807. [PMID: 35489778]
  • Ryuta Asaumi, Ken-Ichi Nunoya, Yoshiyuki Yamaura, Kunal S Taskar, Yuichi Sugiyama. Robust physiologically based pharmacokinetic model of rifampicin for predicting drug-drug interactions via P-glycoprotein induction and inhibition in the intestine, liver, and kidney. CPT: pharmacometrics & systems pharmacology. 2022 07; 11(7):919-933. doi: 10.1002/psp4.12807. [PMID: 35570332]
  • Seok Hwee Koo, Gaik Hong Soon, Alain Pruvost, Henri Benech, Tiing Leong Ang, Edmund Jon Deoon Lee, Daphne Shih Wen Ang. Evaluation of a six-probe cocktail (caffeine, tolbutamide, omeprazole, dextromethorphan, midazolam, and digoxin) approach to estimate hepatic drug detoxification capability and dosage requirements after a single oral dosing in healthy Chinese volunteers. Naunyn-Schmiedeberg's archives of pharmacology. 2022 07; 395(7):815-826. doi: 10.1007/s00210-022-02235-1. [PMID: 35394133]
  • Wern Yew Ding, Giuseppe Boriani, Francisco Marin, Carina Blomström-Lundqvist, Tatjana S Potpara, Laurent Fauchier, Gregory Y H Lip. Outcomes of digoxin vs. beta blocker in atrial fibrillation: report from ESC-EHRA EORP AF Long-Term General Registry. European heart journal. Cardiovascular pharmacotherapy. 2022 Jun; 8(4):372-382. doi: 10.1093/ehjcvp/pvab076. [PMID: 34665249]
  • Flory T Muanda, Matthew A Weir, Fatemeh Ahmadi, Eric McArthur, Jessica M Sontrop, Richard B Kim, Amit X Garg. Digoxin Dosing and the Risk of Toxicity in Older Adults With CKD. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2022 06; 79(6):912-917. doi: 10.1053/j.ajkd.2021.09.024. [PMID: 34808297]
  • S Aishwarya, K Gunasekaran, A Anita Margret. Computational gene expression profiling in the exploration of biomarkers, non-coding functional RNAs and drug perturbagens for COVID-19. Journal of biomolecular structure & dynamics. 2022 05; 40(8):3681-3696. doi: 10.1080/07391102.2020.1850360. [PMID: 33228475]
  • Marco Ballotari, Francesco Taus, Giulia Tolle, Elisa Danese, Romolo M Dorizzi, Franco Tagliaro, Rossella Gottardo. Development of a new ultra-high-performance liquid chromatography-tandem mass spectrometry method for the determination of digoxin and digitoxin in plasma: Comparison with a clinical immunoassay. Electrophoresis. 2022 05; 43(9-10):1019-1026. doi: 10.1002/elps.202100290. [PMID: 35132652]
  • Srinivasu Poondru, Vitalii Ghicavii, Reza Khosravan, Pooja Manchandani, Nakyo Heo, Selina Moy, Tomasz Wojtkowski, Melanie Patton, Gabriel P Haas. Effect of enzalutamide on PK of P-gp and BCRP substrates in cancer patients: CYP450 induction may not always predict overall effect on transporters. Clinical and translational science. 2022 05; 15(5):1131-1142. doi: 10.1111/cts.13229. [PMID: 35118821]
  • Antonella Colella, Serena Digiaro, Marco Fiorentino, Beatrice Greco, Mariateresa Sasanelli, Paola Paradies. Serum digoxin concentrations in dogs with atrial fibrillation under long term digoxin treatment. Open veterinary journal. 2022 May; 12(3):360-369. doi: 10.5455/ovj.2022.v12.i3.9. [PMID: 35821778]
  • Betty S Chan, Geoffrey K Isbister, Angela Chiew, Katherine Isoardi, Nicholas A Buckley. Clinical experience with titrating doses of digoxin antibodies in acute digoxin poisoning. (ATOM-6). Clinical toxicology (Philadelphia, Pa.). 2022 Apr; 60(4):433-439. doi: 10.1080/15563650.2021.1968422. [PMID: 34424803]
  • Yiming Cheng, Xiaomin Wang, Zeen Tong, Josephine Reyes, Leon Carayannopoulos, Simon Zhou, Yan Li. Assessment of Transporter-Mediated Drug Interactions for Enasidenib Based on a Cocktail Study in Patients With Relapse or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome. Journal of clinical pharmacology. 2022 04; 62(4):494-504. doi: 10.1002/jcph.1979. [PMID: 34617279]
  • Ken Kurosawa, Saki Noguchi, Tomohiro Nishimura, Masatoshi Tomi, Koji Chiba. Transplacental Pharmacokinetic Model of Digoxin Based on Ex Vivo Human Placental Perfusion Study. Drug metabolism and disposition: the biological fate of chemicals. 2022 03; 50(3):287-298. doi: 10.1124/dmd.121.000648. [PMID: 34903589]
  • Ashit Trivedi, Winnie Sohn, Cheng-Pang Hsu, Pegah Jafarinasabian, Hanze Zhang, Shauna Hutton, Stephen Flach, Siddique Abbasi, Sandeep Dutta, Edward Lee. Pharmacokinetic Drug-Drug Interaction Study of Omecamtiv Mecarbil With Amiodarone and Digoxin in Healthy Subjects. Clinical pharmacology in drug development. 2022 03; 11(3):388-396. doi: 10.1002/cpdd.1028. [PMID: 34634185]
  • Amitava Dasgupta, Tamal K Sengupta, Elaine M Trinh, Alejandra Russell. Technical Note: Negative Interference of Ashwagandha, an Indian Ayurveda Medicine Indicated for Preventing COVID-19, in IL-6 Immunoassay. Annals of clinical and laboratory science. 2022 Mar; 52(2):336-338. doi: . [PMID: 35414513]
  • Toshinori Hirai, Hidefumi Kasai, Miyoko Naganuma, Nobuhisa Hagiwara, Tsuyoshi Shiga. Population pharmacokinetic analysis and dosage recommendations for digoxin in Japanese patients with atrial fibrillation and heart failure using real-world data. BMC pharmacology & toxicology. 2022 02; 23(1):14. doi: 10.1186/s40360-022-00552-y. [PMID: 35144695]
  • Koen R Maes, Pieter Depuydt, Joris Vermassen, Peter De Paepe, Walter Buylaert, Cathelijne Lyphout. Foxglove poisoning: diagnostic and therapeutic differences with medicinal digitalis glycosides overdose. Acta clinica Belgica. 2022 Feb; 77(1):101-107. doi: 10.1080/17843286.2020.1773652. [PMID: 32496148]
  • Stephan Schaller, Frederico S Martins, Pavel Balazki, Sonja Böhm, Joachim Baumgart, Ralf A Hilger, Dietrich W Beelen, Claudia Hemmelmann, Arne Ring. Evaluation of the drug-drug interaction potential of treosulfan using a physiologically-based pharmacokinetic modelling approach. British journal of clinical pharmacology. 2022 02; 88(4):1722-1734. doi: 10.1111/bcp.15081. [PMID: 34519068]
  • Andreas Gerakaris, Francesk Mulita, Ioanna Koniari, Eleni Artopoulou, Virginia Mplani, Grigorios Tsigkas, Mohammed Abo-Elseoud, Nicholas Kounis, Dimitrios Velissaris. Digoxin Impact on Heart Failure Patients with Atrial Fibrillation. Medical archives (Sarajevo, Bosnia and Herzegovina). 2022 Feb; 76(1):23-28. doi: 10.5455/medarh.2022.76.23-28. [PMID: 35422570]
  • C Combe, J Guitton, A Daudé, T Le Bricon, N Guibert, C Bosset, T Girardot. [Multidisciplinary management of voluntary pink oleander poisoning: How to estimate the quantities ingested?]. Annales pharmaceutiques francaises. 2022 Jan; 80(1):76-80. doi: 10.1016/j.pharma.2021.04.003. [PMID: 33878309]
  • Jürgen Scheuenpflug, Dirk Kropeit, Katharina Erb-Zohar, Jochen G W Theis, Hans-Peter Stobernack, David McCormick, Holger Zimmermann, Helga Rübsamen-Schaeff. The Effect of Oral Letermovir Administration on the Pharmacokinetics of a Single Oral Dose of P-Glycoprotein Substrate Digoxin in Healthy Volunteers. Clinical pharmacology in drug development. 2022 01; 11(1):6-15. doi: 10.1002/cpdd.1043. [PMID: 34812580]
  • Artem M Tverskoi, Yuri M Poluektov, Elizaveta A Klimanova, Vladimir A Mitkevich, Alexander A Makarov, Sergei N Orlov, Irina Yu Petrushanko, Olga D Lopina. Depth of the Steroid Core Location Determines the Mode of Na,K-ATPase Inhibition by Cardiotonic Steroids. International journal of molecular sciences. 2021 Dec; 22(24):. doi: 10.3390/ijms222413268. [PMID: 34948068]
  • Ken Ogasawara, Rebecca N Wood-Horrall, Mark Thomas, Michael Thomas, Liangang Liu, Mary Liu, Yongjun Xue, Sekhar Surapaneni, Leonidas N Carayannopoulos, Simon Zhou, Maria Palmisano, Gopal Krishna. Impact of fedratinib on the pharmacokinetics of transporter probe substrates using a cocktail approach. Cancer chemotherapy and pharmacology. 2021 12; 88(6):941-952. doi: 10.1007/s00280-021-04346-7. [PMID: 34477937]
  • Hee Jin Jeong, Song Hee Lee, Hee Eun Kang. Changes in digoxin pharmacokinetics associated with hepatic P-glycoprotein upregulation in rats with non-alcoholic fatty liver disease. Fundamental & clinical pharmacology. 2021 Dec; 35(6):1100-1108. doi: 10.1111/fcp.12687. [PMID: 33914974]
  • Congmin Liu, Li Wang, Lixuan Pan, Wenqing Hou, Zhihui Hao, Lihua Qu. An automated streamlined method for the therapeutic drug monitoring of digoxin based on the online-solid-phase extraction liquid chromatography tandem high-resolution mass spectrometry. Rapid communications in mass spectrometry : RCM. 2021 Nov; 35(22):e9191. doi: 10.1002/rcm.9191. [PMID: 34490670]
  • Hung Caohuy, Ofer Eidelman, Tinghua Chen, Shufeng Liu, Qingfeng Yang, Alakesh Bera, Nathan I Walton, Tony T Wang, Harvey B Pollard. Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells. Scientific reports. 2021 11; 11(1):22195. doi: 10.1038/s41598-021-01690-9. [PMID: 34773067]
  • Seyma Oncu, Anil Baskurt, Bihter Senturk, Ozgur Aslan, Tuncay Kume, Reyhan Ucku, Ayse Gelal. Educational intervention to improve appropriate digoxin therapeutic drug monitoring: a quasi-experimental study. European journal of hospital pharmacy : science and practice. 2021 11; 28(6):320-324. doi: 10.1136/ejhpharm-2019-002078. [PMID: 34697048]
  • Parin Shah, Pierpaolo Pellicori, Ian Hanning, Jufen Zhang, Andrew L Clark, Sunil Bhandari. The effect of digoxin on renal function in patients with heart failure. BMC nephrology. 2021 10; 22(1):349. doi: 10.1186/s12882-021-02562-0. [PMID: 34702219]
  • Ghada N El-Sarnagawy, Sara I El Sharkawy, Nadia E Helal. Predictive Factors for Recurrence of Serious Arrhythmias in Patients with Acute Digoxin Poisoning. Cardiovascular toxicology. 2021 10; 21(10):835-847. doi: 10.1007/s12012-021-09673-y. [PMID: 34259994]
  • Arezoo Mohammadzadeh, Paria Pashazadeh-Panahi, Mohammad Hasanzadeh. Visual monitoring and optical recognition of digoxin by functionalized AuNPs and triangular AgNPs as efficient optical nano-probes. Journal of molecular recognition : JMR. 2021 10; 34(10):e2917. doi: 10.1002/jmr.2917. [PMID: 34106492]
  • Kengo Sakurai, Tomohiro Kuroda, Jun Abe, Hiroshi Toda, Sachiko Kitamoto. Identification of the organic anion transporting polypeptides responsible for the hepatic uptake of the major metabolite of epyrifenacil, S-3100-CA, in mice. Pharmacology research & perspectives. 2021 10; 9(5):e00877. doi: 10.1002/prp2.877. [PMID: 34619012]
  • Hope Onohuean, Hayder M Al-Kuraishy, Ali I Al-Gareeb, Safaa Qusti, Eida M Alshammari, Gaber El-Saber Batiha. Covid-19 and development of heart failure: mystery and truth. Naunyn-Schmiedeberg's archives of pharmacology. 2021 10; 394(10):2013-2021. doi: 10.1007/s00210-021-02147-6. [PMID: 34480616]
  • Jennifer Lang, Ludwig Vincent, Marylore Chenel, Kayode Ogungbenro, Aleksandra Galetin. Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2021 Oct; 165(?):105932. doi: 10.1016/j.ejps.2021.105932. [PMID: 34260894]
  • Shuyi Liao, Wenmin Yang, Ting Yu, Lu Dai, Xiaoliang Liu, Jiangping Zhang, Jinghong Zhao, Chi Liu. Establishment of a Drug Screening Model for Cardiac Complications of Acute Renal Failure. Biomolecules. 2021 09; 11(9):. doi: 10.3390/biom11091370. [PMID: 34572583]
  • Jan Škubník, Jiří Bejček, Vladimíra Svobodová Pavlíčková, Silvie Rimpelová. Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses. Molecules (Basel, Switzerland). 2021 Sep; 26(18):. doi: 10.3390/molecules26185627. [PMID: 34577097]
  • Mehmet Baran Karataş, Yiğit Çanga, Nizamettin Selçuk Yelgeç, Ahmet Zengin, Özge Güzelburç, Semih Eren, Ayşe Emre. Modified SAMe-TT2R2 score for predicting the therapeutic range of digoxin. Herz. 2021 Aug; 46(4):359-366. doi: 10.1007/s00059-020-04965-5. [PMID: 32632549]
  • Yuming Pan, Chongyu Shao, Ling Zhang, Yu He, Jintao Yang, Wei Fu, Jiehong Yang, Haitong Wan. The effect of Guanxin Shutong capsule on alleviating the myocardial fibrosis in heart failure rats. Journal of ethnopharmacology. 2021 Jul; 275(?):114169. doi: 10.1016/j.jep.2021.114169. [PMID: 33932513]
  • Donglu Zhang, Cong Wei, Cornelis E C A Hop, Matthew R Wright, Ming Hu, Yurong Lai, S Cyrus Khojasteh, W Griff Humphreys. Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. Journal of medicinal chemistry. 2021 06; 64(11):7045-7059. doi: 10.1021/acs.jmedchem.0c01720. [PMID: 34010555]
  • Chuntao Wu, Rania Boiron, Hayet Kechemir, Sampada Gandhi, Stephen Lin, Mattias Wieloch, Juhaeri Juhaeri. Evaluating the Risk of Digitalis Intoxication Associated With Concomitant Use of Dronedarone and Digoxin Using Real-World Data. Clinical therapeutics. 2021 05; 43(5):852-858.e2. doi: 10.1016/j.clinthera.2021.03.014. [PMID: 33888353]
  • Mariam Abdel Jalil, Noura Abdullah, Mervat Alsous, Khawla Abu-Hammour. Population Pharmacokinetic Studies of Digoxin in Adult Patients: A Systematic Review. European journal of drug metabolism and pharmacokinetics. 2021 May; 46(3):325-342. doi: 10.1007/s13318-021-00672-6. [PMID: 33616855]
  • Maryam Shirani, Heibatullah Kalantari, Mohammad Javad Khodayar, Maryam Kouchak, Nadereh Rahbar. An ultra-sensitive optical aptasensor based on gold nanoparticles/poly vinyl alcohol hydrogel as acceptor/emitter pair for fluorometric detection of digoxin with on/off/on strategy. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2021 Apr; 250(?):119345. doi: 10.1016/j.saa.2020.119345. [PMID: 33465528]
  • Ana Teijeiro, Amanda Garrido, Anna Ferre, Cristian Perna, Nabil Djouder. Inhibition of the IL-17A axis in adipocytes suppresses diet-induced obesity and metabolic disorders in mice. Nature metabolism. 2021 04; 3(4):496-512. doi: 10.1038/s42255-021-00371-1. [PMID: 33859430]
  • Gabriela Machado Parreira, Jéssica Alves Faria, Sarah Melo Silva Marques, Israel José Pereira Garcia, Isabella Ferreira Silva, Luciana Estefani Drumond De Carvalho, José Augusto Ferreira Perez Villar, Matthews Vieira Machado, Maira de Castro Lima, Leandro Augusto Barbosa, Vanessa Faria Cortes, Hérica de Lima Santos. The γ-Benzylidene Digoxin Derivative BD-15 Increases the α3-Na, K-ATPase Activity in Rat Hippocampus and Prefrontal Cortex and no Change on Heart. The Journal of membrane biology. 2021 04; 254(2):189-199. doi: 10.1007/s00232-021-00173-2. [PMID: 33598793]
  • Jiří Bejček, Vojtěch Spiwok, Eva Kmoníčková, Silvie Rimpelová. Na+/K+-ATPase Revisited: On Its Mechanism of Action, Role in Cancer, and Activity Modulation. Molecules (Basel, Switzerland). 2021 Mar; 26(7):. doi: 10.3390/molecules26071905. [PMID: 33800655]
  • Bradley Peltzer, Bruce B Lerman, Parag Goyal, Jim W Cheung. Role for digoxin in patients hospitalized with COVID-19 and atrial arrhythmias. Journal of cardiovascular electrophysiology. 2021 03; 32(3):880-881. doi: 10.1111/jce.14901. [PMID: 33522631]
  • Eftychios Siniorakis, Spyridon Arvanitakis, Antonios Katsianis, Maximilianos Elkouris. Atrial fibrillation and flutter in patients hospitalized for COVID-19: The challenging role of digoxin. Journal of cardiovascular electrophysiology. 2021 03; 32(3):878-879. doi: 10.1111/jce.14894. [PMID: 33522637]
  • Abdulaziz S Allihimy, Ahmad A Almeman, Nassar A Alnassar, Jihad Almadhi. Pharmacokinetics Parameters of Diagoxin among Saudi Patients in Qassim Region, Saudi Arabia. Drug metabolism letters. 2021; 14(2):137-140. doi: 10.2174/1872312814666210506121637. [PMID: 33970851]
  • Lii-Jia Yang, Shan-Min Hsu, Ping-Hsun Wu, Ming-Yen Lin, Teng-Hui Huang, Yi-Ting Lin, Hung-Tien Kuo, Yi-Wen Chiu, Shang-Jyh Hwang, Jer-Chia Tsai, Hung-Chun Chen. Association of digoxin with mortality in patients with advanced chronic kidney disease: A population-based cohort study. PloS one. 2021; 16(1):e0245620. doi: 10.1371/journal.pone.0245620. [PMID: 33449946]
  • Arkady R Kolpakov, Roman A Knyazev. Endogenous Cardiotonics: Search and Problems. Cardiovascular & hematological disorders drug targets. 2021; 21(2):95-103. doi: 10.2174/1871529x21666210419121807. [PMID: 33874876]
  • Ángel Chimenea, Lutgardo García-Díaz, Ana Méndez, Guillermo Antiñolo. Maternal effects induced by oral digoxin during treatment of fetal tachyarrhythmia: Case series and literature review. European journal of obstetrics, gynecology, and reproductive biology. 2021 Jan; 256(?):354-357. doi: 10.1016/j.ejogrb.2020.11.055. [PMID: 33276280]
  • Ana F M Botelho, Ana L S Miranda, Thalita G Freitas, Paula F Milani, Tatiane Barreto, Jáder S Cruz, Marília M Melo. Comparative Cardiotoxicity of Low Doses of Digoxin, Ouabain, and Oleandrin. Cardiovascular toxicology. 2020 12; 20(6):539-547. doi: 10.1007/s12012-020-09579-1. [PMID: 32488807]
  • Balázs Muk, Máté Vámos, Péter Bógyi, Barna Szabó, Miklós Dékány, Dénes Vágány, Zsuzsanna Majoros, Tünde Borsányi, Gábor Zoltán Duray, Róbert Gábor Kiss, Noémi Nyolczas. The impact of serum concentration-guided digoxin therapy on mortality of heart failure patients: A long-term follow-up, propensity-matched cohort study. Clinical cardiology. 2020 Dec; 43(12):1641-1648. doi: 10.1002/clc.23500. [PMID: 33140454]
  • Ghazala Ambrin, Habiba Kausar, Altaf Ahmad. Designing and construction of genetically encoded FRET-based nanosensor for qualitative analysis of digoxin. Journal of biotechnology. 2020 Nov; 323(?):322-330. doi: 10.1016/j.jbiotec.2020.09.008. [PMID: 32937180]
  • Zhe-Rui Zhang, Ya-Nan Zhang, Xiao-Dan Li, Hong-Qing Zhang, Shu-Qi Xiao, Fei Deng, Zhi-Ming Yuan, Han-Qing Ye, Bo Zhang. A cell-based large-scale screening of natural compounds for inhibitors of SARS-CoV-2. Signal transduction and targeted therapy. 2020 10; 5(1):218. doi: 10.1038/s41392-020-00343-z. [PMID: 33011739]
  • Tomáš Šálek, Martin Vodička, Martin Gřiva. Cystatin C may be better than creatinine for digoxin dosing in older adults with atrial fibrillation. Journal of clinical laboratory analysis. 2020 Oct; 34(10):e23427. doi: 10.1002/jcla.23427. [PMID: 32716587]
  • Junhyung Cho, Young Jae Lee, Je Hyoung Kim, Sang Il Kim, Sung Soon Kim, Byeong-Sun Choi, Jang-Hoon Choi. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Scientific reports. 2020 10; 10(1):16200. doi: 10.1038/s41598-020-72879-7. [PMID: 33004837]
  • Cenk Gokalp, Aysun Fatma Dogan, Guray Aygun, Ilhan Kurultak, Sedat Ustundag. Continuous venovenous hemodialysis may be effective in digoxin removal in digoxin toxicity: A case report. Hemodialysis international. International Symposium on Home Hemodialysis. 2020 10; 24(4):E58-E60. doi: 10.1111/hdi.12867. [PMID: 32770621]
  • Kuan-Fu Chen, Lingtak-Neander Chan, Yvonne S Lin. PBPK modeling of CYP3A and P-gp substrates to predict drug-drug interactions in patients undergoing Roux-en-Y gastric bypass surgery. Journal of pharmacokinetics and pharmacodynamics. 2020 10; 47(5):493-512. doi: 10.1007/s10928-020-09701-4. [PMID: 32710209]
  • Yusuke Haruna, Tatsuya Kawasaki, Yoko Kikkawa, Rentaro Mizuno, Satoaki Matoba. Xanthopsia Due to Digoxin Toxicity as a Cause of Traffic Accidents: A Case Report. The American journal of case reports. 2020 Aug; 21(?):e924025. doi: 10.12659/ajcr.924025. [PMID: 32769961]
  • Yue Zhou, Bin Du, Min Kan, Shang Chen, Bo-Hao Tang, Ai-Qing Nie, Pan-Pan Ye, Hai-Yan Shi, Guo-Xiang Hao, Xiu-Li Guo, Qiu-Ju Han, Yi Zheng, Wei Zhao. Drug Elimination Alteration in Acute Lymphoblastic Leukemia Mediated by Renal Transporters and Glomerular Filtration. Pharmaceutical research. 2020 Aug; 37(8):158. doi: 10.1007/s11095-020-02896-8. [PMID: 32743772]
  • Yoshiaki Kirigaya, Masanari Shiramoto, Tomoko Ishizuka, Hinako Uchimaru, Shin Irie, Manabu Kato, Takako Shimizu, Takafumi Nakatsu, Yasuhiro Nishikawa, Hitoshi Ishizuka. Pharmacokinetic interactions of esaxerenone with amlodipine and digoxin in healthy Japanese subjects. BMC pharmacology & toxicology. 2020 07; 21(1):55. doi: 10.1186/s40360-020-00423-4. [PMID: 32727577]
  • Chih-Hsuan Hsin, Marc S Stoffel, Malaz Gazzaz, Elke Schaeffeler, Matthias Schwab, Uwe Fuhr, Max Taubert. Combinations of common SNPs of the transporter gene ABCB1 influence apparent bioavailability, but not renal elimination of oral digoxin. Scientific reports. 2020 07; 10(1):12457. doi: 10.1038/s41598-020-69326-y. [PMID: 32719417]
  • Mariam H Abdel Jalil, Noura Abdullah, Mervat M Alsous, Mohammad Saleh, Khawla Abu-Hammour. A systematic review of population pharmacokinetic analyses of digoxin in the paediatric population. British journal of clinical pharmacology. 2020 07; 86(7):1267-1280. doi: 10.1111/bcp.14272. [PMID: 32153059]
  • Lara Delicata, Arlène Gatt, Jean-Luc Paris, John Bonello. Symptomatic digoxin toxicity in a patient on haemodialysis. BMJ case reports. 2020 Jun; 13(6):. doi: 10.1136/bcr-2020-234899. [PMID: 32546555]
  • Liang Jin, Yijun Pan, Natalie Lan Linh Tran, Leon N Polychronopoulos, Aparna Warrier, Kim L R Brouwer, Joseph A Nicolazzo. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Molecular pharmaceutics. 2020 05; 17(5):1527-1537. doi: 10.1021/acs.molpharmaceut.9b01227. [PMID: 32212738]
  • Nobuhiro Ooba, Ayaka Sente, Megumi Abe, Fumiyuki Watanabe, Daisuke Tsutsumi, Kiminobu Nakamura, Toshimitsu Nakayama, Koichi Kimura, Noriyasu Fukuoka. Frequency of Clinical Monitoring of Serum Concentrations of Digoxin, Potassium, and Creatinine, and Recording of Electrocardiograms in Digoxin-Treated Patients: A Japanese Claims Database Analysis. Biological & pharmaceutical bulletin. 2020 May; 43(5):913-916. doi: 10.1248/bpb.b19-01116. [PMID: 32132314]
  • Peng Guo, Qiucheng Liang, Juntao Zheng, Jinmin Chen, Yanping Guan, Liang Ding, Fulin Jiang, Xuewen Chen, Min Huang, Ailan Chen, Guoping Zhong. Simultaneous determination of canrenone, digoxin and tolvaptan by UHPLC-MS/MS: application in heart failure patients. Bioanalysis. 2020 May; 12(9):569-582. doi: 10.4155/bio-2020-0037. [PMID: 32469241]
  • Jin-Ling Fu, Qiong Yu, Meng-Di Li, Chun-Mei Hu, Guang Shi. Deleterious cardiovascular effect of exosome in digitalis-treated decompensated congestive heart failure. Journal of biochemical and molecular toxicology. 2020 May; 34(5):e22462. doi: 10.1002/jbt.22462. [PMID: 32045083]
  • Im-Sook Song, Hyeon-Uk Jeong, Min-Koo Choi, Mihwa Kwon, Yongho Shin, Jeong Han Kim, Hye-Suk Lee. Interactions between cyazofamid and human drug transporters. Journal of biochemical and molecular toxicology. 2020 Apr; 34(4):e22459. doi: 10.1002/jbt.22459. [PMID: 32003934]
  • Jiun-Yang Chiang, Pau-Chung Chen, Yao-Hsu Yang, Chin-Hao Chang, Fang-Ying Chu, Jien-Jiun Chen, Cho-Kai Wu, Juey-Jen Hwang, Fu-Tien Chiang, Lian-Yu Lin, Jiunn-Lee Lin. Digoxin-amiodarone Combination is Associated With Excess All-cause Mortality in Patients With Atrial Fibrillation. Scientific reports. 2020 03; 10(1):4101. doi: 10.1038/s41598-020-61065-4. [PMID: 32139765]
  • Frantisek Nehaj, Juraj Sokol, Jela Ivankova, Michal Mokan, Marian Mokan. Effect of Bisoprolol on the Level of Dabigatran. American journal of therapeutics. 2020 Mar; 27(2):e159-e164. doi: 10.1097/mjt.0000000000000786. [PMID: 30074534]
  • E R El-Sayed, A S Ahmed, H K Abdelhakim. A novel source of the cardiac glycoside digoxin from the endophytic fungus Epicoccum nigrum: isolation, characterization, production enhancement by gamma irradiation mutagenesis and anticancer activity evaluation. Journal of applied microbiology. 2020 Mar; 128(3):747-762. doi: 10.1111/jam.14510. [PMID: 31710165]
  • Miao Ye, Wen Xu, Da-Qing He, Xian Wu, Wen-Fang Lai, Xiao-Qin Zhang, Yu Lin, Wei Xu, Xu-Wen Li. Dammarane-Type Triterpenoids from the Roots of Rhus chinensis and Their Preventive Effects on Zebrafish Heart Failure and Thrombosis. Journal of natural products. 2020 02; 83(2):362-373. doi: 10.1021/acs.jnatprod.9b00857. [PMID: 32031812]
  • Meenakshi Srinivasan, Raiz Hirani, Melissa Tsiu, Khadija Kabani, Ayyappa Chaturvedula, Brittany Palasik. Utility of Physiologically Based Pharmacokinetic Modeling in Point-of-Care Decisions: An Example Using Digoxin Dosing in Continuous Venovenous Hemodiafiltration. Therapeutic drug monitoring. 2020 02; 42(1):1-5. doi: 10.1097/ftd.0000000000000704. [PMID: 31593032]
  • Andrew E Shouksmith, Justyna M Gawel, Nabanita Nawar, Diana Sina, Yasir S Raouf, Shazreh Bukhari, Liying He, Alexandra E Johns, Pimyupa Manaswiyoungkul, Olasunkanmi O Olaoye, Aaron D Cabral, Abootaleb Sedighi, Elvin D de Araujo, Patrick T Gunning. Class I/IIb-Selective HDAC Inhibitor Exhibits Oral Bioavailability and Therapeutic Efficacy in Acute Myeloid Leukemia. ACS medicinal chemistry letters. 2020 Jan; 11(1):56-64. doi: 10.1021/acsmedchemlett.9b00471. [PMID: 31938464]
  • Ji-Zhong Shen, Huai-Jun Zhu, Hang Liu, Xue-Mei Luo, Lu Jin, Dan-Yin Li, Hai-Xia Zhang, Wei-Hong Ge. Individualized medication of digoxin based on the serum drug concentration and blood biochemical indexes. Personalized medicine. 2020 01; 17(1):23-31. doi: 10.2217/pme-2019-0006. [PMID: 31797720]
  • Ivy H Song, Katarina Ilic, Joseph Murphy, Kenneth Lasseter, Patrick Martin. Effects of Maribavir on P-Glycoprotein and CYP2D6 in Healthy Volunteers. Journal of clinical pharmacology. 2020 01; 60(1):96-106. doi: 10.1002/jcph.1504. [PMID: 31385617]
  • Pedro Azalim, Fernando M do Monte, Mariana Manzano Rendeiro, Xiaofan Liu, George A O'Doherty, Carlos Frederico Fontes, Suzana Guimarães Leitão, Luis Eduardo M Quintas, François Noël. Conformational states of the pig kidney Na+/K+-ATPase differently affect bufadienolides and cardenolides: A directed structure-activity and structure-kinetics study. Biochemical pharmacology. 2020 01; 171(?):113679. doi: 10.1016/j.bcp.2019.113679. [PMID: 31669257]
  • Shu-Hui Yao, Hsiang-Te Tsai, Wen-Lin Lin, Yu-Chieh Chen, Chiahung Chou, Hsiang-Wen Lin. Predicting the serum digoxin concentrations of infants in the neonatal intensive care unit through an artificial neural network. BMC pediatrics. 2019 12; 19(1):517. doi: 10.1186/s12887-019-1895-7. [PMID: 31881933]
  • Giuseppe Boriani, Carina Blomström-Lundqvist, Stefan H Hohnloser, Lennart Bergfeldt, Giovanni L Botto, Alessandro Capucci, Ignacio Fernández Lozano, Andreas Goette, Carsten W Israel, José L Merino, A John Camm. Safety and efficacy of dronedarone from clinical trials to real-world evidence: implications for its use in atrial fibrillation. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2019 12; 21(12):1764-1775. doi: 10.1093/europace/euz193. [PMID: 31324921]
  • Christina Trueck, Chih-Hsuan Hsin, Oliver Scherf-Clavel, Elke Schaeffeler, Rebekka Lenssen, Malaz Gazzaz, Marleen Gersie, Max Taubert, Maria Quasdorff, Matthias Schwab, Martina Kinzig, Fritz Sörgel, Marc S Stoffel, Uwe Fuhr. A Clinical Drug-Drug Interaction Study Assessing a Novel Drug Transporter Phenotyping Cocktail With Adefovir, Sitagliptin, Metformin, Pitavastatin, and Digoxin. Clinical pharmacology and therapeutics. 2019 12; 106(6):1398-1407. doi: 10.1002/cpt.1564. [PMID: 31247117]
  • Hyun Mi Kang, Jung Hwa Lim, Kyung Hee Noh, Dongmin Park, Hyun-Soo Cho, Katalin Susztak, Cho-Rok Jung. Effective reconstruction of functional organotypic kidney spheroid for in vitro nephrotoxicity studies. Scientific reports. 2019 11; 9(1):17610. doi: 10.1038/s41598-019-53855-2. [PMID: 31772214]
  • Yuki Kanado, Yuya Tsurudome, Yuji Omata, Sai Yasukochi, Naoki Kusunose, Takahiro Akamine, Naoya Matsunaga, Satoru Koyanagi, Shigehiro Ohdo. Estradiol regulation of P-glycoprotein expression in mouse kidney and human tubular epithelial cells, implication for renal clearance of drugs. Biochemical and biophysical research communications. 2019 11; 519(3):613-619. doi: 10.1016/j.bbrc.2019.09.021. [PMID: 31540689]
  • Francisco Triana-Martínez, Pilar Picallos-Rabina, Sabela Da Silva-Álvarez, Federico Pietrocola, Susana Llanos, Verónica Rodilla, Enrica Soprano, Pablo Pedrosa, Alba Ferreirós, Marta Barradas, Fernanda Hernández-González, Marta Lalinde, Neus Prats, Cristina Bernadó, Patricia González, María Gómez, Maria P Ikonomopoulou, Pablo J Fernández-Marcos, Tomás García-Caballero, Pablo Del Pino, Joaquín Arribas, Anxo Vidal, Miguel González-Barcia, Manuel Serrano, María I Loza, Eduardo Domínguez, Manuel Collado. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nature communications. 2019 10; 10(1):4731. doi: 10.1038/s41467-019-12888-x. [PMID: 31636264]
  • Katherine G Palmer, Jacob A Lebin, Michael T Cronin, Suzan S Mazor, Rebekah A Burns. Crataegus mexicana (Tejocote) Exposure Associated with Cardiotoxicity and a Falsely Elevated Digoxin Level. Journal of medical toxicology : official journal of the American College of Medical Toxicology. 2019 Oct; 15(4):295-298. doi: 10.1007/s13181-019-00727-w. [PMID: 31407210]
  • Gautam Mahajan, Moo-Yeal Lee, Chandrasekhar Kothapalli. Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity. Archives of toxicology. 2019 10; 93(10):2979-2992. doi: 10.1007/s00204-019-02549-9. [PMID: 31428840]
  • Bruno de Souza Gonçalves, Jéssica M de Moura Valadares, Silmara L G Alves, Simone C Silva, Luciana P Rangel, Vanessa F Cortes, José A F P Villar, Leandro A Barbosa, Hérica de Lima Santos. Evaluation of neuroprotective activity of digoxin and semisynthetic derivatives against partial chemical ischemia. Journal of cellular biochemistry. 2019 10; 120(10):17108-17122. doi: 10.1002/jcb.28971. [PMID: 31310381]
  • Naoyuki Otani, Hirokazu Wakuda, Hiromitsu Imai, Masae Kuranari, Yasuyuki Ishii, Yuko Ito, Akihiro Okubo, Osamu Ogawa, Kenji Takeda, Tetsuji Ohyama, Tomoko Hasunuma, Naoto Uemura. No Effect of Digoxin on Rosuvastatin Pharmacokinetics in Healthy Subjects: Utility of Oita Combination for Clinical Drug-Drug Interaction Study. Clinical and translational science. 2019 09; 12(5):513-518. doi: 10.1111/cts.12646. [PMID: 31095880]
  • Tine A Bækdal, Jeanett Borregaard, Cilie W Hansen, Mette Thomsen, Thomas W Anderson. Effect of Oral Semaglutide on the Pharmacokinetics of Lisinopril, Warfarin, Digoxin, and Metformin in Healthy Subjects. Clinical pharmacokinetics. 2019 09; 58(9):1193-1203. doi: 10.1007/s40262-019-00756-2. [PMID: 30945118]
  • Nikhil Cordeiro, Sushilkumar Satish Gupta, Daniel Lindsay, Chanaka Seneviratne, Guy Kulbak, Yizhak Kupfer. Midodrine: Associated Bradycardia. American journal of therapeutics. 2019 Sep; 26(5):e655-e656. doi: 10.1097/mjt.0000000000000856. [PMID: 31498780]