Nitric oxide (BioDeep_00000004442)
Secondary id: BioDeep_00000872341
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: NO (29.997989)
中文名称: 一氧化氮, 氧化亚氮
谱图信息:
最多检出来源 Homo sapiens(blood) 5.56%
分子结构信息
SMILES: [N]=O
InChI: InChI=1S/NO/c1-2
描述信息
The biologically active molecule nitric oxide (NO) is a simple, membrane-permeable gas with unique chemistry. It is formed by the conversion of L-arginine to L-citrulline, with the release of NO. The enzymatic oxidation of L-arginine to L-citrulline takes place in the presence of oxygen and NADPH using flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, thiol, and tetrahydrobiopterin as cofactors. The enzyme responsible for the generation of NO is nitric oxide synthase (E.C. 1.7.99.7; NOS). Three NOS isoforms have been described and shown to be encoded on three distinct genes: neuronal NOS (nNOS, NOS type I), inducible NOS (NOS type II), and endothelial NOS (eNOS, NOS type III). Two of them are constitutively expressed and dependent on the presence of calcium ions and calmodulin to function (nNOS and eNOS), while iNOS is considered non-constitutive and calcium-independent. However, experience has shown that constitutive expression of nNOS and eNOS is not as rigid as previously thought (i.e. either present or absent), but can be dynamically controlled during development and in response to injury. Functionally, NO may act as a hormone, neurotransmitter, paracrine messenger, mediator, cytoprotective molecule, and cytotoxic molecule. NO has multiple cellular molecular targets. It influences the activity of transcription factors, modulates upstream signaling cascades, mRNA stability and translation, and processes the primary gene products. In the brain, many processes are linked to NO. NO activates its receptor, soluble guanylate cyclase by binding to it. The stimulation of this enzyme leads to increased synthesis of the second messenger, cGMP, which in turn activates cGMP-dependent kinases in target cells. NO exerts a strong influence on glutamatergic neurotransmission by directly interacting with the N-methyl-D-aspartate (NMDA) receptor. Neuronal NOS is connected to NMDA receptors (see below) and sharply increases NO production following activation of this receptor. Thus, the level of endogenously produced NO around NMDA synapses reflects the activity of glutamate-mediated neurotransmission. However, there is recent evidence showing that non-NMDA glutamate receptors (i.e. AMPA and type I metabotropic receptors) also contribute to NO generation. Besides its influence on glutamate, NO is known to have effects on the storage, uptake and/or release of most other neurotransmitters in the CNS (acetylcholine, dopamine, noradrenaline, GABA, taurine, and glycine) as well as of certain neuropeptides. Finally, since NO is a highly diffusible molecule, it may reach extrasynaptic receptors at target cell membranes that are some distance away from the place of NO synthesis. NO is thus capable of mediating both synaptic and nonsynaptic communication processes. NO is a potent vasodilator (a major endogenous regulator of vascular tone), and an important endothelium-dependent relaxing factor. NO is synthesized by NO synthases (NOS) and NOS are inhibited by asymmetrical dimethylarginine (ADMA). ADMA is metabolized by dimethylarginine dimethylaminohydrolase (DDAH) and excreted in the kidneys. Lower ADMA levels in pregnant women compared to non-pregnant controls suggest that ADMA has a role in vascular dilatation and blood pressure changes. Several studies show an increase in ADMA levels in pregnancies complicated with preeclampsia. Elevated ADMA levels in preeclampsia are seen before clinical symptoms have developed; these findings suggest that ADMA has a role in the pathogenesis of preeclampsia. In some pulmonary hypertensive states such as ARDS, the production of endogenous NO may be impaired. Nitric oxide inhalation selectively dilates the pulmonary circulation. Significant systemic vasodilation does not occur because NO is inactivated by rapidly binding to hemoglobin. In an injured lung with pulmonary hypertension, inhaled NO produces local vasodilation of well-ventilated lung units and may "steal" blood flow away from unventil...
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents > D045462 - Endothelium-Dependent Relaxing Factors
D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
D018377 - Neurotransmitter Agents > D064426 - Gasotransmitters
D000975 - Antioxidants > D016166 - Free Radical Scavengers
D020011 - Protective Agents > D000975 - Antioxidants
R - Respiratory system
同义名列表
38 个代谢物同义名
Endothelium-derived relaxing factor; Nitric oxide, endothelium derived; Nitric oxide, endothelium-derived; Endothelium-derived nitric oxide; Vasodilator, endogenous nitrate; Nitrate vasodilator, endogenous; Endogenous nitrate vasodilator; Oxido de nitrogeno(II); Monoxide, mononitrogen; Mononitrogen monoxide; Monoxido de nitrogeno; Stickstoff(II)-oxid; Nitrogen monooxide; Monoxide, nitrogen; Nitrogen protoxide; Stickstoffmonoxid; Nitrogen monoxide; Nitroxide radical; Nitrosyl hydride; Nitrosyl radical; Monoxyde dazote; Nitrogen oxide; Oxyde nitrique; Oxyde azotique; Oxide, nitric; Oxido nitrico; nitric oxide; Nitroxyl; Nitrosyl; (NO)(.); nitroso; INOmax; NO(.); (.)NO; EDRF; [NO]; NO; Nitric oxide
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:16480
- KEGG: C00533
- KEGGdrug: D00074
- PubChem: 145068
- PubChem: 945
- HMDB: HMDB0003378
- DrugBank: DB00435
- ChEMBL: CHEMBL1200689
- Wikipedia: Nitric oxide
- MeSH: Nitric Oxide
- MetaCyc: NITRIC-OXIDE
- chemspider: 127983
- CAS: 10102-43-9
- PMhub: MS000016895
- PubChem: 3815
- 3DMET: B00122
- NIKKAJI: J161.349I
- KNApSAcK: 16480
分类词条
相关代谢途径
Reactome(32)
- Metabolism
- Disease
- Signaling Pathways
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Infection with Mycobacterium tuberculosis
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Tolerance by Mtb to nitric oxide produced by macrophages
- Hemostasis
- Platelet homeostasis
- Nitric oxide stimulates guanylate cyclase
- VEGFR2 mediated vascular permeability
- Signaling by Nuclear Receptors
- ESR-mediated signaling
- Muscle contraction
- Smooth Muscle Contraction
- Extra-nuclear estrogen signaling
BioCyc(27)
- superpathway of L-citrulline metabolism
- superpathway of citrulline metabolism
- nitrite-dependent anaerobic methane oxidation
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- protein S-nitrosylation and denitrosylation
- nitrifier denitrification
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- citrulline-nitric oxide cycle
- nitric oxide biosynthesis
- nitrate reduction VII (denitrification)
- nitrite reduction (hemoglobin)
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- nitrogen fixation I (ferredoxin)
- nitric oxide biosynthesis I (plants)
- nitric oxide biosynthesis III (bacteria)
- ammonia oxidation II (anaerobic)
- nitrate reduction I (denitrification)
- L-citrulline-nitric oxide cycle
- nitric oxide biosynthesis (plants)
PlantCyc(0)
代谢反应
574 个相关的代谢反应过程信息。
Reactome(280)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
PAK1,2,3 dimer + p-VAV family:PIP3:RAC1:GTP ⟶ 2 x p-VAV family:PIP3:RAC1:GTP:PAK 1-3
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- ESR-mediated signaling:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Nuclear Receptors:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ESR-mediated signaling:
SPG ⟶ S1P
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
SPG ⟶ S1P
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Extra-nuclear estrogen signaling:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
Ca2+ + Inactive Myosin Actin Contractile Complex ⟶ Calcium Bound Myosin Actin Complex
- Muscle contraction:
MME:Zn2+ + sacubitrilat ⟶ MME:Zn2+:sacubitrilat
- Smooth Muscle Contraction:
Ca2+ + Inactive Myosin Actin Contractile Complex ⟶ Calcium Bound Myosin Actin Complex
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP + Smooth Muscle Myosin Light Chain ⟶ ADP + Phosphorylated Smooth Muscle Myosin Light Chain
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP ⟶ ADP
- Muscle contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP + Calcium Bound Myosin Actin Complex ⟶ ATP:Calcium Bound Myosin Actin Complex
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP + Smooth Muscle Myosin Light Chain ⟶ ADP + Phosphorylated Smooth Muscle Myosin Light Chain
- Muscle contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Smooth Muscle Contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP + Smooth Muscle Myosin Light Chain ⟶ ADP + Phosphorylated Smooth Muscle Myosin Light Chain
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
ATP + Smooth Muscle Myosin Light Chain ⟶ ADP + Phosphorylated Smooth Muscle Myosin Light Chain
- Muscle contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Muscle contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
Ca2+ + Inactive Myosin Actin Contractile Complex ⟶ Calcium Bound Myosin Actin Complex
- Muscle contraction:
AHCYL1:NAD+ + ITPR:I(1,4,5)P3 tetramer ⟶ AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramer
- Smooth Muscle Contraction:
DYSF + Q640S6 + cav3.1 ⟶ CAV3:TRIM72:DYSF
- Smooth Muscle Contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Smooth Muscle Contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Smooth Muscle Contraction:
GTN + H+ ⟶ GDN + H2O + NO
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Latent infection of Homo sapiens with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Latent infection - Other responses of Mtb to phagocytosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Tolerance by Mtb to nitric oxide produced by macrophages:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Innate Immune System:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- ROS and RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
H2O + PC ⟶ Cho + PA
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- ROS and RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Immune System:
H2O + PC ⟶ Cho + PA
- Innate Immune System:
H2O + PC ⟶ Cho + PA
- ROS and RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Innate Immune System:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- ROS, RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet homeostasis:
H0ZG60 + LDL ⟶ LDL:LRP8
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Infection with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Bacterial Infection Pathways:
H+ + NADH + dlaT(ox.) ⟶ NAD + dlaT
BioCyc(28)
- nitrite-dependent anaerobic methane oxidation:
H+ + NAD(P)H + O2 + methane ⟶ H2O + MeOH + NAD(P)+
- superpathway of citrulline metabolism:
ATP + CO2 + H2O + ammonia ⟶ ADP + H+ + carbamoyl-phosphate + phosphate
- citrulline-nitric oxide cycle:
L-arginino-succinate ⟶ arg + fumarate
- citrulline-nitric oxide cycle:
L-arginino-succinate ⟶ arg + fumarate
- superpathway of citrulline metabolism:
H2O + gln ⟶ H+ + ammonia + glt
- citrulline-nitric oxide cycle:
L-arginino-succinate ⟶ arg + fumarate
- citrulline-nitric oxide cycle:
L-arginino-succinate ⟶ arg + fumarate
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + ammonium ⟶ H+ + a ferrohemoglobin + hydroxylamine
- nitrifier denitrification:
A(H2) + O2 + ammonia ⟶ A + H2O + hydroxylamine
- citrulline-nitric oxide cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- nitrate reduction VII (denitrification):
an electron-transfer quinol + nitrate ⟶ H2O + an electron-transfer quinone + nitrite
- protein S-nitrosylation and denitrosylation:
H2O + NAD+ + ammonium ⟶ H+ + NADH + hydroxylamine
- nitric oxide biosynthesis II (mammals):
H+ + NADPH + O2 + arg ⟶ H2O + L-citrulline + NADP+ + nitric oxide
- superpathway of L-citrulline metabolism:
ATP + ammonium + hydrogencarbonate ⟶ ADP + H+ + carbamoyl phosphate + phosphate
- nitric oxide biosynthesis I (plants):
Nω-hydroxy-L-arginine + NADPH + O2 ⟶ H+ + H2O + L-citrulline + NADP+ + nitric oxide
- nitric oxide biosynthesis III (bacteria):
Nω-hydroxy-L-arginine + O2 + a reduced flavodoxin ⟶ H+ + H2O + L-citrulline + an oxidized flavodoxin + nitric oxide
- ammonia oxidation II (anaerobic):
an oxidized c-type cytochrome + hydrazine ⟶ H+ + N2 + a reduced c-type cytochrome
- nitrate reduction I (denitrification):
an electron-transfer quinol + nitrate ⟶ H2O + an electron-transfer quinone + nitrite
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- L-citrulline-nitric oxide cycle:
H+ + NADPH + O2 + arg ⟶ H2O + L-citrulline + NADP+ + nitric oxide
- nitric oxide biosynthesis (plants):
H+ + NADPH + O2 + arg ⟶ H2O + L-citrulline + NADP+ + nitric oxide
- nitric oxide biosynthesis:
NADPH + O2 + arg ⟶ L-citrulline + NADP+ + nitric oxide
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- nitrate reduction I (denitrification):
H+ + a reduced cytochrome c551 + nitrite ⟶ H2O + an oxidized cytochrome c551 + nitric oxide
- nitric oxide biosynthesis III (bacteria):
Nω-hydroxy-L-arginine + O2 + a reduced flavodoxin ⟶ H+ + H2O + L-citrulline + an oxidized flavodoxin + nitric oxide
- L-citrulline-nitric oxide cycle:
L-arginino-succinate ⟶ arg + fumarate
- nitric oxide biosynthesis III (bacteria):
Nω-hydroxy-L-arginine + O2 + a reduced flavodoxin ⟶ H+ + H2O + L-citrulline + an oxidized flavodoxin + nitric oxide
WikiPathways(7)
- Amyotrophic lateral sclerosis (ALS):
L-Arginine ⟶ NO
- Effects of nitric oxide:
L-Arginine ⟶ Nitric oxide
- Amyotrophic lateral sclerosis (ALS):
L-Arginine ⟶ NO
- Nitric oxide metabolism in cystic fibrosis:
N ,N - dimethyl- L- arginine ⟶ Dimethylamine
- RAS and bradykinin pathways in COVID-19:
L-arginine ⟶ nitric oxide
- Disturbed pathways in Duchenne Muscular Dystrophy:
L-Arginie ⟶ NO
- Regucalcin in proximal tubule epithelial kidney cells:
AMP ⟶ cAMP
Plant Reactome(210)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
INOH(1)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
PlantCyc(4)
- nitrite reduction (hemoglobin):
OH- + a ferrihemoglobin + nitric oxide ⟶ H+ + a ferrohemoglobin + nitrite
- nitrite reduction (hemoglobin):
a ferrihemoglobin + hydroxylamine ⟶ H+ + a ferrohemoglobin + nitric oxide
- nitric oxide biosynthesis II (mammals):
L-arginino-succinate ⟶ arg + fumarate
- nitric oxide biosynthesis II (mammals):
L-arginino-succinate ⟶ arg + fumarate
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(43)
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine and Proline Metabolism:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Arginine: Glycine Amidinotransferase Deficiency (AGAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Guanidinoacetate Methyltransferase Deficiency (GAMT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type I:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperprolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Ornithine Aminotransferase Deficiency (OAT Deficiency):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolinemia Type II:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Prolidase Deficiency (PD):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Creatine Deficiency, Guanidinoacetate Methyltransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia with Gyrate Atrophy (HOGA):
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Hyperornithinemia-Hyperammonemia-Homocitrullinuria [HHH-syndrome]:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- L-Arginine:Glycine Amidinotransferase Deficiency:
Guanidoacetic acid + S-Adenosylmethionine ⟶ Creatine + S-Adenosylhomocysteine
- Nitric Oxide Signaling Pathway:
Nitrite ⟶ Nitric oxide
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Felix Lutter, Wolfram Brenner, Franziska Krajinski-Barth, Vajiheh Safavi-Rizi. Nitric oxide and cytokinin cross-talk and their role in plant hypoxia response.
Plant signaling & behavior.
2024 Dec; 19(1):2329841. doi:
10.1080/15592324.2024.2329841
. [PMID: 38521996] - Khushboo Khator, Suman Parihar, Jan Jasik, Gyan Singh Shekhawat. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
Plant signaling & behavior.
2024 Dec; 19(1):2298053. doi:
10.1080/15592324.2023.2298053
. [PMID: 38190763] - Zong-Yi Zhang, Ying Li, Jin-Hai Yu, Jin-Xin Zhao, Jian-Min Yue. Lauinoids A-X: Labdane-type diterpenoids with anti-inflammatory activity from Croton laui.
Phytochemistry.
2024 Jul; 223(?):114138. doi:
10.1016/j.phytochem.2024.114138
. [PMID: 38762154] - Zhong-Ping Jiang, Rui Su, Meng-Ting Chen, Jun-Yi Li, Han-Yu Chen, Lu Yang, Fei-Fei Liu, Jin Liu, Cong-Jun Xu, Wan-Shan Li, Yong Rao, Ling Huang. Ent-eudesmane sesquiterpenoids with anti-neuroinflammatory activity from the marine-derived fungus Eutypella sp. F0219.
Phytochemistry.
2024 Jul; 223(?):114121. doi:
10.1016/j.phytochem.2024.114121
. [PMID: 38697242] - Katherine A Kelly, Cristine L Heaps, Guoyao Wu, Vinod Labhasetwar, Cynthia J Meininger. Nanoparticle-mediated delivery of tetrahydrobiopterin restores endothelial function in diabetic rats.
Nitric oxide : biology and chemistry.
2024 Jul; 148(?):13-22. doi:
10.1016/j.niox.2024.04.009
. [PMID: 38642795] - Ting Wu, Wen-Jing Wang, Zhou-Yuan Li, Yi-Tian Liu, Tian-Ping Yu, Shuang-Ge Li, Hong-Zhi Du, Chun Gui, Da-Hui Liu, Xiao-Long Yang. Anti-inflammatory discovery of sesquiterpenoids and a jasmonic acid derivative from Artemisia stolonifera.
Phytochemistry.
2024 Jul; 223(?):114120. doi:
10.1016/j.phytochem.2024.114120
. [PMID: 38705265] - Dengjing Huang, Xinfang Chen, Fahong Yun, Hua Fang, Chunlei Wang, Weibiao Liao. Nitric oxide alleviates programmed cell death induced by cadmium in Solanum lycopersicum seedlings through protein S-nitrosylation.
The Science of the total environment.
2024 Jun; 931(?):172812. doi:
10.1016/j.scitotenv.2024.172812
. [PMID: 38703854] - Ricardo Gomes Dos Santos Nunes, Luciclaudio Cassimiro de Amorim, Iverson Conrado Bezerra, Artur José da Silva, Carlos Alonso Leite Dos Santos, Priscila Gubert, Irwin Rose Alencar de Menezesa, Antonia Eliene Duarte, Luiz Marivando Barros, Belmira Lara da Silveira Andrade-da-Costa, Márcia Vanusa Dos Santos, Maria Tereza Dos Santos Correia, Michelle Melgarejo da Rosa. Syagrus coronata fixed oil prevents rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.
Journal of toxicology and environmental health. Part A.
2024 Jun; 87(12):497-515. doi:
10.1080/15287394.2024.2338431
. [PMID: 38619158] - Supachoke Mangmool, Ratchanee Duangrat, Tulaporn Rujirayunyong, Natthinee Anantachoke. Anti-inflammatory effects of the Thai herbal remedy Yataprasen and biflavonoids isolated from Putranjiva roxburghii in RAW264.7 macrophages.
Journal of ethnopharmacology.
2024 Jun; 327(?):117997. doi:
10.1016/j.jep.2024.117997
. [PMID: 38442805] - Kunlong Yang, Yue Luo, Tongzheng Sun, Han Qiu, Qingru Geng, Yongxin Li, Man Liu, Nancy P Keller, Fengqin Song, Jun Tian. Nitric oxide-mediated regulation of Aspergillus flavus asexual development by targeting TCA cycle and mitochondrial function.
Journal of hazardous materials.
2024 Jun; 471(?):134385. doi:
10.1016/j.jhazmat.2024.134385
. [PMID: 38678711] - Yu-Zhu Tan, Hong-Ling Yan, Yun-Yun Liu, Yong-Ming Yan, Li Wang, Ji-Xu Qiao, Jing Wu, Yin Tian, Cheng Peng. Structurally diverse phthalides from fibrous roots of Ligusticum chuanxiong Hort. and their biological activities.
Fitoterapia.
2024 Jun; 175(?):105882. doi:
10.1016/j.fitote.2024.105882
. [PMID: 38452906] - Ping Shao, Sheng Dong, Lin-Tong Mu, Ling Han, Chong-Ning Lv, Jiu-Zhi Yuan, Jin-Cai Lu. Two new anti-inflammatory compounds from the roots and rhizomes of Clematis terniflora var. manshurica (Rupr.) Ohwi.
Natural product research.
2024 Jun; 38(11):1874-1881. doi:
10.1080/14786419.2023.2227912
. [PMID: 37395431] - Xin-Yi Wei, Hong-Bing Sun, Rui-Ying Xi, Fan Wu, Yi-Lin Liu, Zhuo-Lin Jin, Da-Le Guo, Bing Xia, Fei Wang, Yan Zhou. New eremophilane-type sesquiterpenes from Synotis solidaginea.
Fitoterapia.
2024 Jun; 175(?):105970. doi:
10.1016/j.fitote.2024.105970
. [PMID: 38653340] - Ngo Anh Bang, Nguyen Duc Duy, Bui Huu Tai, Nguyen Thi Kim Thuy, Pham Hai Yen, Duong Thi Dung, Nguyen Huy Hoang, Nguyen Xuan Nhiem, Ninh Khac Ban, Phan Van Kiem. Cryptobuchanosides A-G: seven previously undescribed triterpene glycosides from Cryptolepis buchananii R.Br. ex Roem. and Schult. with nitric oxide production inhibition activity.
Journal of natural medicines.
2024 Jun; 78(3):741-752. doi:
10.1007/s11418-024-01805-2
. [PMID: 38573418] - Rafael Caetano da Silva, Halley Caixeta Oliveira, Abir U Igamberdiev, Claudio Stasolla, Marilia Gaspar. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses.
Journal of plant physiology.
2024 Jun; 297(?):154241. doi:
10.1016/j.jplph.2024.154241
. [PMID: 38640547] - Phan Van Kiem, Nguyen Xuan Nhiem, Nguyen Huy Hoang, Ngo Anh Bang, Pham Hai Yen, Do Thi Trang, Duong Thi Dung, Nguyen Thi Cuc, Phan Thi Thanh Huong, Bui Huu Tai. Undescribed (2-7')-neolignans and polyoxygenated cyclohexene glycosides from the aerial parts of Piper mutabile C. DC. and their inhibitory effects on nitric oxide production.
Fitoterapia.
2024 Jun; 175(?):105903. doi:
10.1016/j.fitote.2024.105903
. [PMID: 38479620] - Yang Hong, Zhen-Fei Song, Jia-Xu Qin, Yan-Wei Li, Xin Fang, Shuang Liang. The basic chemical substances of total alkaloids of Menispermi Rhizoma and their anti-inflammatory activities.
Natural product research.
2024 Jun; 38(12):2044-2052. doi:
10.1080/14786419.2023.2239992
. [PMID: 37493517] - Dong Liu, Tingting Hou, Chunye Geng, Lu Song, Xuefeng Hou, Yanjun Chen, Fang Wang, Wei Wang, Bangxing Han, Leilei Gao. Liposomes Enhance the Immunological Activity of Polygonatum Cyrtonema Hua Polysaccharides.
Journal of pharmaceutical sciences.
2024 Jun; 113(6):1572-1579. doi:
10.1016/j.xphs.2024.01.005
. [PMID: 38237668] - Xue-Min Yin, Yi-Yi Song, Wen-Yi Jiang, Hao-Tian Zhang, Jing-Wei Chen, Koji Murao, Meng-Xiao Han, Wan-Ping Sun, Guo-Xing Zhang. Mitochondrial KATP channel-mediated autophagy contributes to angiotensin II-induced vascular dysfunction in mice.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2024 Jun; 34(6):1571-1580. doi:
10.1016/j.numecd.2024.01.019
. [PMID: 38418351] - Guangjie Li, Jinlin Wu, Herbert J Kronzucker, Baohai Li, Weiming Shi. Physiological and molecular mechanisms of plant-root responses to iron toxicity.
Journal of plant physiology.
2024 Jun; 297(?):154257. doi:
10.1016/j.jplph.2024.154257
. [PMID: 38688043] - Qing-Jiang Xu, Jia-Chen Liu, Cheng-Jin Huang, Xin Wang, Xiao-Ya Shang. Seco-nortriterpenoids from Cirsium setosum and their anti-inflammatory activity.
Fitoterapia.
2024 Jun; 175(?):105879. doi:
10.1016/j.fitote.2024.105879
. [PMID: 38417679] - Ting Zhao, Xuhua Nong, Xuan Zhang, Xueming Zhou, Zhangxin Yu, Xiaobao Li, Guangying Chen. Four new diterpenoids from the aerial parts of Leucas zeylanica (L.) R. Br.
Fitoterapia.
2024 Jun; 175(?):105948. doi:
10.1016/j.fitote.2024.105948
. [PMID: 38588904] - Xue-Yi Li, Jun Jiang, Beiyi Shu, Rui-Li Huang, Hai-Xia Yang, Ya-Li Chen, Wei Tang, Wen-Cai Ye, Ying Wang, Xiao-Jun Huang, Jian-Guo Song. Anti-inflammatory naphthoquinone-monoterpene adducts and neolignans from Eugenia caryophyllata.
Fitoterapia.
2024 Jun; 175(?):105982. doi:
10.1016/j.fitote.2024.105982
. [PMID: 38685512] - Minghui Liu, Bili Cao, Jin-Wei Wei, Biao Gong. Redesigning a S-nitrosylated pyruvate-dependent GABA transaminase 1 to generate high-malate and saline-alkali-tolerant tomato.
The New phytologist.
2024 Jun; 242(5):2148-2162. doi:
10.1111/nph.19693
. [PMID: 38501546] - Qianqian Yin, Gang Chen, Danyang Mu, Yuxin Yang, Jinle Hao, Bin Lin, Di Zhou, Yue Hou, Ning Li. Natural anti-neuroinflammatory inhibitors in vitro and in vivo from Aglaia odorata.
Bioorganic chemistry.
2024 Jun; 147(?):107335. doi:
10.1016/j.bioorg.2024.107335
. [PMID: 38583250] - De-Cai Dai, Xue-Feng Xu, Hao Yan, Yu Zhang. Three new indole alkaloid derivatives from Fissistigma oldhamii Levl. and their anti-inflammatory effects.
Fitoterapia.
2024 Jun; 175(?):105910. doi:
10.1016/j.fitote.2024.105910
. [PMID: 38479619] - Lian-Yu Tang, Ya-Zhao Zhang, Yun Gao, Tashi Tsering, Jingming Jia, Anhua Wang. Diterpenoid glucosides with anti-inflammatory activity from Sigesbeckia glabrescens.
Fitoterapia.
2024 Jun; 175(?):105954. doi:
10.1016/j.fitote.2024.105954
. [PMID: 38583638] - Yinling Wei, Sheng Li, Hongyan Wen, Jing Dong, Zhenzhen Liang, Xiaoyu Li, Yu Zhang. 1H NMR guided isolation of 3-arylisoquinoline alkaloids from Hypecoum erectum L. and their anti-inflammation activity.
Phytochemistry.
2024 Jun; 222(?):114093. doi:
10.1016/j.phytochem.2024.114093
. [PMID: 38615927] - Jia-Xu Qin, Yang Hong, Lu-Yi Zhao, Chao-Qun Wang, Xin Fang, Shuang Liang. The basic chemical substances of total alkaloids of Uncaria rhynchophylla and their anti-neuroinflammatory activities.
Journal of Asian natural products research.
2024 Jun; 26(6):765-771. doi:
10.1080/10286020.2024.2315211
. [PMID: 38373226] - Junzhe Wang, Xiaolong Guo, Yijin Chen, Tianxiang Liu, Jianchu Zhu, Shengbao Xu, Elizabeth Vierling. Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions.
The Plant cell.
2024 May; 36(6):2201-2218. doi:
10.1093/plcell/koae043
. [PMID: 38376990] - Yaodong Ning, Qinwufeng Gu, Te Zheng, Yao Xu, Song Li, Yuping Zhu, Bo Hu, Haobing Yu, Xiaoyu Liu, Yun Zhang, Binghua Jiao, Xiaoling Lu. Genome Mining Leads to Diverse Sesquiterpenes with Anti-inflammatory Activity from an Arctic-Derived Fungus.
Journal of natural products.
2024 May; 87(5):1426-1440. doi:
10.1021/acs.jnatprod.4c00237
. [PMID: 38690764] - Luisa Frusciante, Michela Geminiani, Alfonso Trezza, Tommaso Olmastroni, Pierfrancesco Mastroeni, Laura Salvini, Stefania Lamponi, Andrea Bernini, Daniela Grasso, Elena Dreassi, Ottavia Spiga, Annalisa Santucci. Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha linum Extract.
Marine drugs.
2024 May; 22(5):. doi:
10.3390/md22050226
. [PMID: 38786617] - Jun-Jian Li, Li Li, Shan-Shan Su, Mei-Lan Liao, Qiu-Zi Gong, Mei Liu, Shan Jiang, Zai-Qi Zhang, Hua Zhou, Jian-Xin Liu. Anti-inflammatory properties and characterization of water extracts obtained from Callicarpa kwangtungensis Chun using in vitro and in vivo rat models.
Scientific reports.
2024 05; 14(1):11047. doi:
10.1038/s41598-024-61892-9
. [PMID: 38744989] - Masoomeh Nabaei, Rayhaneh Amooaghaie, Mansour Ghorbanpour, Alimohammad Ahadi. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don.
Plant cell reports.
2024 May; 43(6):139. doi:
10.1007/s00299-024-03229-4
. [PMID: 38735908] - Gema Pereira-Caro, Salud Cáceres-Jiménez, Alicia Moreno-Ortega, Sara Dobani, Kirsty Pourshahidi, Chris I R Gill, Pedro Mena, Daniele Del Rio, José Manuel Moreno-Rojas, Giuseppe Taurino, Ovidio Bussolati, Tahani M Almutairi, Alan Crozier, Massimiliano G Bianchi. Colon-available mango (poly)phenols exhibit mitigating effects on the intestinal barrier function in human intestinal cell monolayers under inflammatory conditions.
Food & function.
2024 May; 15(9):5118-5131. doi:
10.1039/d4fo00451e
. [PMID: 38682277] - Nidhi Kandhol, Padmaja Rai, Vipul Mishra, Sangeeta Pandey, Santosh Kumar, Rupesh Deshmukh, Shivesh Sharma, Vijay Pratap Singh, Durgesh Kumar Tripathi. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots.
Planta.
2024 May; 259(6):144. doi:
10.1007/s00425-024-04364-8
. [PMID: 38709333] - Kapuganti Jagadis Gupta, Nidhi Yadav, Aprajita Kumari, Gary J Loake. New insights into nitric oxide biosynthesis underpin lateral root development.
Molecular plant.
2024 May; 17(5):691-693. doi:
10.1016/j.molp.2024.04.001
. [PMID: 38566415] - Baiyan Lu, Shengnan Wang, Hanqian Feng, Jing Wang, Kaixing Zhang, Yilin Li, Ping Wu, Minmin Zhang, Yanshu Xia, Chao Peng, Chao Li. FERONIA-mediated TIR1/AFB2 oxidation stimulates auxin signaling in Arabidopsis.
Molecular plant.
2024 May; 17(5):772-787. doi:
10.1016/j.molp.2024.04.002
. [PMID: 38581129] - Zhuanying Bao, Yunni Chen, Zhibin Zhang, Huilin Yang, Riming Yan, Du Zhu. Heat stress-induced NO enhanced perylenequinone biosynthesis of Shiraia sp. via calcium signaling pathway.
Applied microbiology and biotechnology.
2024 May; 108(1):317. doi:
10.1007/s00253-024-13142-1
. [PMID: 38700737] - Saboon, Asia Iqbal, Yamin Bibi, Tayyiba Afzal, Ahmad Sher, Abdul Qayyum, Muhammad Akmal, Hesham S Almoallim, Mohammad Javed Ansari, Yawen Zeng. GC-MS based antioxidants characterization in Saussurea heteromalla (D. Don) Hand-Mazz by inhibition of nitric oxide generation in macrophages.
Scientific reports.
2024 05; 14(1):10145. doi:
10.1038/s41598-024-60577-7
. [PMID: 38698070] - Rui Ge, Jiaqi Song, Zhen Cao, Shurong Ban, Li Tang, Qing-Shan Li. Discovery of 6-Acylamino/Sulfonamido Benzoxazolone with IL-6 Inhibitory Activity as Promising Therapeutic Agents for Ulcerative Colitis.
Chemistry & biodiversity.
2024 May; 21(5):e202400031. doi:
10.1002/cbdv.202400031
. [PMID: 38448389] - Laila Mowafy, Manal Abdul-Hamid, Nadia Moustafa, Saleh Al-Quraishy, Abdel-Azeem S Abdel-Baki, Mohamed Y Zaky, Abdul-Mawgoud A Asran, Heba Abdel-Tawab. Repurposing the drug, amprolium as a novel molluscicide against the land snail (Eobania vermiculata).
Pesticide biochemistry and physiology.
2024 May; 201(?):105889. doi:
10.1016/j.pestbp.2024.105889
. [PMID: 38685220] - Andrés Nejamkin, Fiorella Del Castello, Lorenzo Lamattina, Noelia Foresi, Natalia Correa Aragunde. Redox regulation in primary nitrate response: Nitric oxide in the spotlight.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108625. doi:
10.1016/j.plaphy.2024.108625
. [PMID: 38643539] - Zi-Wei Jiao, Han-Fei Liu, Kai-Qin Lin, Guang-Tong Xie, Hua-Yong Lou, Wei-Dong Pan, Mao-Sheng Zhang. Synthesis and in vitro Anti-Inflammatory Activity of Novel Dendrobine Amide/Sulfonamide Derivatives.
Chemistry & biodiversity.
2024 May; 21(5):e202400030. doi:
10.1002/cbdv.202400030
. [PMID: 38511964] - Jin-Na Zhao, Shu-Fei Yu, Zhi-Hang Wu, Lu Chen, Rong Fu, Ze Li, Yan-Liang Qu, Jian Huang, Li-Bo Wang, Xian-Mei Piao, Jin-Hui Wang. Chemical Constituents from the Heartwood of Solanum Verbascifolium L. And Their Anti-Inflammatory Activities Combined Network Pharmacology.
Chemistry & biodiversity.
2024 May; 21(5):e202302111. doi:
10.1002/cbdv.202302111
. [PMID: 38453650] - Hongping Chen, Li Yang, Weihong Zhong, Kexin Wang, Guoyue Zhong, Junwei He. Chemical constituents isolated from Hosta ensata and their anti-inflammatory activities.
Natural product research.
2024 May; 38(10):1670-1679. doi:
10.1080/14786419.2023.2215903
. [PMID: 37221675] - Azime Gokce, Askim Hediye Sekmen Cetinel, Ismail Turkan. Involvement of GLR-mediated nitric oxide effects on ROS metabolism in Arabidopsis plants under salt stress.
Journal of plant research.
2024 May; 137(3):485-503. doi:
10.1007/s10265-024-01528-1
. [PMID: 38448641] - Farzaneh Roshandel, Sara Saadatmand, Alireza Iranbakhsh, Zahra Oraghi Ardebili. Effect of oil contaminants on antioxidant responses and antioxidant properties of Pleurotus florida (P. Kumm).
Mycologia.
2024 May; 116(3):370-380. doi:
10.1080/00275514.2024.2324250
. [PMID: 38551373] - Nicholas M Venetos, Colin T Stomberski, Zhaoxia Qian, Richard T Premont, Jonathan S Stamler. Activation of hepatic acetyl-CoA carboxylase by S-nitrosylation in response to diet.
Journal of lipid research.
2024 May; 65(5):100542. doi:
10.1016/j.jlr.2024.100542
. [PMID: 38641009] - Garima Singh, Sheo Mohan Prasad. Synergistic regulation of hydrogen sulfide and nitric oxide on biochemical components, exopolysaccharides, and nitrogen metabolism in nickel stressed rice field cyanobacteria.
Journal of plant research.
2024 May; 137(3):521-543. doi:
10.1007/s10265-024-01530-7
. [PMID: 38460108] - Narjesse E L Mabrouk, Maha Mastouri, Gérard Lizard, Mahjoub Aouni, Hedi Harizi. In vitro immunotoxicity effects of carbendazim were inhibited by n-acetylcysteine in microglial BV-2 cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2024 May; 97(?):105812. doi:
10.1016/j.tiv.2024.105812
. [PMID: 38522494] - Junqiang Yang, Yuechan Liao, Chao Cao, Qian Yu, Dawei Zhang, Chunyan Yan. Structural identification and anti-neuroinflammatory effects of a pectin-arabinoglucuronogalactan complex, AOPB-1-1, isolated from Asparagus officinalis.
International journal of biological macromolecules.
2024 May; 268(Pt 1):131593. doi:
10.1016/j.ijbiomac.2024.131593
. [PMID: 38631571] - Guziliayi Kuerban, Ablajan Turak, Nurmirza Boymirzayevich Begmatov, Jiangyu Zhao, Haji Akber Aisa. Chemical Composition of Artemisia Scoparia and Their Bioactivities.
Chemistry & biodiversity.
2024 May; 21(5):e202400414. doi:
10.1002/cbdv.202400414
. [PMID: 38500337] - Le Thi Huyen, Luu Thu Thao, Nhu Thi Hang Nga, Quach Thi Khanh Ly, Nguyen Thi Son, Bui Huu Tai, Ngo Sy Thinh, Phan Van Kiem. Undescribed Lignanamide and Flavone C-Glucoside Isolated from the Aerial Parts of Piper Samentosum with NO Production Inhibitory Activity in LPS Activated RAW 264.7 Cells.
Chemistry & biodiversity.
2024 May; 21(5):e202400518. doi:
10.1002/cbdv.202400518
. [PMID: 38501574] - A-Yeong Jang, JeongUn Choi, Weerawan Rod-In, Ki Young Choi, Dae-Hee Lee, Woo Jung Park. In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis.
Journal of microbiology and biotechnology.
2024 Apr; 34(4):940-948. doi:
10.4014/jmb.2312.12002
. [PMID: 38314445] - Inmaculada Sánchez-Vicente, Pablo Albertos, Carlos Sanz, Brecht Wybouw, Bert De Rybel, Juan C Begara-Morales, Mounira Chaki, Capilla Mata-Pérez, Juan B Barroso, Oscar Lorenzo. Reversible S-nitrosylation of bZIP67 by peroxiredoxin IIE activity and nitro-fatty acids regulates the plant lipid profile.
Cell reports.
2024 Apr; 43(4):114091. doi:
10.1016/j.celrep.2024.114091
. [PMID: 38607914] - L Huang, S Cheng, Z Liu, C Zou, H Yan. [Transdermal patches containing Cassia seed extract applied at the navel for slow transit constipation in rats: therapeutic effect and analysis of the spectrum-effect relationship].
Nan fang yi ke da xue xue bao = Journal of Southern Medical University.
2024 Apr; 44(4):720-726. doi:
10.12122/j.issn.1673-4254.2024.04.14
. [PMID: 38708506] - Mi Wang, Mo Zhang, Jianyi Bi, Jincan Li, Xiaoxiao Hu, Lina Zhang, Yao Zhang, Wenli Wang, Yuan Lin, Hong-Bo Cheng, Jing Wang. Mitochondrial Targeted Thermosensitive Nanocarrier for Near-Infrared-Triggered Precise Synergetic Photothermal Nitric Oxide Chemotherapy.
ACS applied materials & interfaces.
2024 Apr; 16(15):18252-18267. doi:
10.1021/acsami.3c09997
. [PMID: 38581365] - Wenming Shi, C Mary Schooling, Gabriel M Leung, Jie V Zhao. Early-life exposure to ambient air pollution with cardiovascular risk factors in adolescents: Findings from the 'Children of 1997' Hong Kong birth cohort.
The Science of the total environment.
2024 Apr; 921(?):171119. doi:
10.1016/j.scitotenv.2024.171119
. [PMID: 38382602] - Chenpu Chen, Jun Cheng, Yawen Xiao, Tong Kong, Hao Tang, Qingji Xie, Chao Chen. Carbon nanotube-interconnected ruthenium phthalocyanine nanoparticles used for real-time monitoring of nitric oxide released from vascular endothelial barrier model.
Biosensors & bioelectronics.
2024 Apr; 250(?):116048. doi:
10.1016/j.bios.2024.116048
. [PMID: 38266618] - Xiaoying Wang, Wuyang Liu, Sheng Chen, Yueshan Gao, Junmian Tian, Jinming Gao. Four New Polyprenylated Acylphloroglucinols from Hypericum perforatum L.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081756
. [PMID: 38675576] - Viktoria Pai, Andrea Bileck, Nikolaus Hommer, Patrick Janku, Theresa Lindner, Victoria Kauer, Benedikt Rumpf, Helmuth Haslacher, Gerhard Hagn, Samuel M Meier-Menches, Leopold Schmetterer, Doreen Schmidl, Christopher Gerner, Gerhard Garhöfer. Impaired retinal oxygen metabolism and perfusion are accompanied by plasma protein and lipid alterations in recovered COVID-19 patients.
Scientific reports.
2024 04; 14(1):8395. doi:
10.1038/s41598-024-56834-4
. [PMID: 38600099] - Xiaohu Yang, Wenchao Yang, Shuang He, He Ye, Shanshan Lei. Danhong formula alleviates endothelial dysfunction and reduces blood pressure in hypertension by regulating MicroRNA 24 - Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase axis.
Journal of ethnopharmacology.
2024 Apr; 323(?):117615. doi:
10.1016/j.jep.2023.117615
. [PMID: 38163560] - Yingjie Wang, Gang Chen, Di Zhou, Libin Xu, Qingqi Meng, Bin Lin, Jinle Hao, Fuxin Sun, Yue Hou, Ning Li. Chemical profile of the roots of Clausena lansium and their inhibitory effects of the over-activation in BV-2 microglial cells.
Phytochemistry.
2024 Apr; 220(?):114008. doi:
10.1016/j.phytochem.2024.114008
. [PMID: 38346545] - Chun Chu, Shengquan Liu, Liangui Nie, Hongming Hu, Yi Liu, Jun Yang. The interactions and biological pathways among metabolomics products of patients with coronary heart disease.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Apr; 173(?):116305. doi:
10.1016/j.biopha.2024.116305
. [PMID: 38422653] - Truong Thi Thu Hien, Hoang Dac Thang, Hoang Anh Tuan, Nguyen Thanh Chung, Do Thanh Tuan, Nguyen Ba Hung, Nguyen Thi Kim Thuy, Nguyen Thi Thu Hien, Nguyen Huy Hoang, Dan Thi Thuy Hang, Bui Huu Tai, Nguyen Xuan Nhiem, Phan Van Kiem. Kadsindutalignans A-C: three new dibenzocyclooctadiene lignans from Kasura induta A.C.Sm. and their nitric oxide production inhibitory activities.
Natural product research.
2024 Apr; 38(7):1127-1134. doi:
10.1080/14786419.2022.2134361
. [PMID: 36255129] - Kaori Katiuska Yamaguchi Isla, Mirtes Midori Tanae, Maria Teresa Riggio de Lima-Landman, Pedro Melillo de Magalhães, Antônio José Lapa, Caden Souccar. Vasorelaxant effects of ellagitannins isolated from Cuphea carthagenensis.
Planta medica.
2024 Apr; 90(4):276-285. doi:
10.1055/a-2240-7372
. [PMID: 38272038] - Xian-Jun Jiang, Yan Li, Xiang-Mei Li, Shi-Zhen Wen, Sai-Lei Yang, Guo-Zhu Wei, Chang-An Geng. Two new guaiane-type sesquiterpenes from Curcuma wenyujin.
Journal of Asian natural products research.
2024 Apr; 26(4):482-488. doi:
10.1080/10286020.2023.2249833
. [PMID: 37610136] - Shuo Li, Xiwen Cui, Yue Cao, Jinsheng Sun. Extracellular ATP- and adenosine-mediated purinergic signaling modulates inducible nitric oxide synthase (iNOS) gene expression, enzyme activity and nitric oxide production in common carp (Cyprinus carpio) head kidney macrophages.
Fish & shellfish immunology.
2024 Apr; 147(?):109469. doi:
10.1016/j.fsi.2024.109469
. [PMID: 38423488] - Xin Zhou, Xin-Bin Meng, Xue-Ming Zhou, Zheng-Tian Zhu, Jing Yang, Hong-Jie Chen, Xin-Ming Song. Bioactive 5/5/5/6 Four-Ring System Iridoids from Plumeria alba L.
Chemistry & biodiversity.
2024 Apr; 21(4):e202400188. doi:
10.1002/cbdv.202400188
. [PMID: 38372184] - Lizhen Zhou, Guanliang Meng, Ling Zhu, Li Ma, Kangkang Chen. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073835
. [PMID: 38612644] - Bochuang Wei, Yizhen Wang, Qian Ruan, Xiaolin Zhu, Xian Wang, Tianjie Wang, Ying Zhao, Xiaohong Wei. Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress.
BMC genomics.
2024 Mar; 25(1):316. doi:
10.1186/s12864-024-10095-7
. [PMID: 38549050] - Sangeetha Mohan, Lekshmy Krishnan, Nithya Madhusoodanan, Anjali Sobha, Renjitha Jalaja, Alaganandam Kumaran, Naveen Vankadari, Jayamurthy Purushothaman, Sasidhar B Somappa. Linker-Based Pharmacophoric Design and Semisynthesis of Labdane Conjugates Active against Multi-Faceted Inflammatory Targets.
Journal of agricultural and food chemistry.
2024 Mar; 72(12):6389-6401. doi:
10.1021/acs.jafc.3c09536
. [PMID: 38494644] - Maciej Jędrejko, Karol Jędrejko, Víctor M Gómez-Renaud, Katarzyna Kała, Bożena Muszyńska. Exploring the Impact of Alternative Sources of Dietary Nitrate Supplementation on Exercise Performance.
International journal of molecular sciences.
2024 Mar; 25(7):. doi:
10.3390/ijms25073650
. [PMID: 38612462] - Francisco J Corpas. NO and H2S Contribute to Crop Resilience against Atmospheric Stressors.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063509
. [PMID: 38542480] - María A Muñoz-Vargas, Jorge Taboada, Salvador González-Gordo, José M Palma, Francisco J Corpas. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events.
Plant cell reports.
2024 Mar; 43(4):92. doi:
10.1007/s00299-024-03179-x
. [PMID: 38466441] - Vipul Mishra, Durgesh Kumar Tripathi, Francisco J Corpas, Ravi Gupta, Vijay Pratap Singh. Nitroxyl, the 'prodigal son' of the NO family.
Plant cell reports.
2024 Mar; 43(4):91. doi:
10.1007/s00299-024-03190-2
. [PMID: 38466458] - Cezara Zagrean-Tuza, Galaba Pato, Grigore Damian, Radu Silaghi-Dumitrescu, Augustin C Mot. Redox Reactivity of Nonsymbiotic Phytoglobins towards Nitrite.
Molecules (Basel, Switzerland).
2024 Mar; 29(6):. doi:
10.3390/molecules29061200
. [PMID: 38542837] - Fátima Fernandes, Raquel Martins, Mariana Barbosa, Patrícia Valentão. Algae-Based Supplements Claiming Weight Loss Properties: Authenticity Control and Scientific-Based Evidence on Their Effectiveness.
Marine drugs.
2024 Mar; 22(3):. doi:
10.3390/md22030123
. [PMID: 38535464] - Ping Zhang, Lequan Yu, Huina Cao, Jingya Ruan, Fei Li, Lijie Wu, Yi Zhang, Tao Wang. Potential Anti-Inflammatory Constituents from Aesculus wilsonii Seeds.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051136
. [PMID: 38474647] - Sung-Hee Kim, Young-Ah Jang, Yong-Jin Kwon. Anti-Inflammatory Effect of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Leaf Essential Oil.
Molecules (Basel, Switzerland).
2024 Mar; 29(5):. doi:
10.3390/molecules29051117
. [PMID: 38474629] - Duong Thi Hai Yen, Dan Thi Thuy Hang, Pham Hai Yen, Bui Huu Tai, Duong Thi Dung, Phan Thi Thanh Huong, Nguyen Viet Dung, Do Thi Trang, Ngo Anh Bang, Nguyen Thi Mai, Phan Van Kiem. Four Undescribed compounds Isolated from the Aerial Parts of Phyllanthus cochinchinensis with Antimicrobial Activity and NO Production Inhibitory Activity in LPS Activated RAW 264.7 Cells.
Chemistry & biodiversity.
2024 Mar; 21(3):e202302105. doi:
10.1002/cbdv.202302105
. [PMID: 38269614] - Irina I Faingold, Anastasia V Smolina, Yulia V Soldatova, Darya A Poletaeva, Anastasia A Balakina, Tatyana E Sashenkova, Uguljan Yu Allayarova, Tatyana R Prikhodchenko, Svetlana V Blokhina, Lyudmila A Makartseva, David A Areshidze, Vladislav N Varfolomeev, Denis V Mishchenko, Raisa A Kotelnikova. Cardioprotective Effect of 2-Ethyl-3-Hydroxy-6-Methylpyridinium 2-Nitroxysuccinate Against Adrenaline/Hydrocortisone-Induced Myocardial Ischemia in Mice: Modulation of Free-Radical Processes in Biomembranes and Monoamine Oxidase A Activity.
Cell biochemistry and biophysics.
2024 Mar; 82(1):235-245. doi:
10.1007/s12013-023-01203-7
. [PMID: 38064100] - Shuyi Jin, Yveting Li, Chuan Luo, Xinyi Cheng, Wei Tao, Hongting Li, Wanli Wang, Minjian Qin, Guoyong Xie, Feng Han. Corydalis tomentella Franch. Exerts anti-inflammatory and analgesic effects by regulating the calcium signaling pathway.
Journal of ethnopharmacology.
2024 Mar; 321(?):117499. doi:
10.1016/j.jep.2023.117499
. [PMID: 38042392] - Gaurav Sharma, Nandni Sharma, Puja Ohri. Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress.
Nitric oxide : biology and chemistry.
2024 Mar; 144(?):1-10. doi:
10.1016/j.niox.2024.01.002
. [PMID: 38185242] - Mitsutaka Fukudome, Toshiki Uchiumi. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis.
Plant science : an international journal of experimental plant biology.
2024 Mar; 340(?):111984. doi:
10.1016/j.plantsci.2024.111984
. [PMID: 38220094] - Ninh Khac Thanh Tung, Duong Thi Dung, Phan Van Kiem, Dan Thi Thuy Hang, Nguyen Xuan Nhiem, Nguyen Van The, Yohan Seo, Jong Seong Kang, Bui Huu Tai. Alkaloids and Lignans from the Aerial Parts of Rauvolfia tetraphylla Inhibit NO Production in LPS-activated RAW 264.7 Cells.
Chemistry & biodiversity.
2024 Mar; 21(3):e202302123. doi:
10.1002/cbdv.202302123
. [PMID: 38253808] - Bilal Ahmad, Mohammad Mukarram, Sadaf Choudhary, Peter Petrík, Tariq Ahmad Dar, M Masroor A Khan. Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108504. doi:
10.1016/j.plaphy.2024.108504
. [PMID: 38507841] - Pooja Singh, Saumya Jaiswal, Durgesh Kumar Tripathi, Vijay Pratap Singh. Nitric oxide acts upstream of indole-3-acetic acid in ameliorating arsenate stress in tomato seedlings.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108461. doi:
10.1016/j.plaphy.2024.108461
. [PMID: 38461754] - Si-Ning Li, Xin-Ai Li, Qi Zhang, Yun-Jie Hu, Hao-Ran Lei, Da-Le Guo, Li-Shi Jiang, Yun Deng. Chemical constitutes from Tuber indicum with immunosuppressive activity uncovered by transcriptome analysis.
Fitoterapia.
2024 Mar; 173(?):105773. doi:
10.1016/j.fitote.2023.105773
. [PMID: 38097020] - Zahra Bahadoran, Parvin Mirmiran, Asghar Ghasemi. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide.
Biochemical pharmacology.
2024 Mar; 221(?):116043. doi:
10.1016/j.bcp.2024.116043
. [PMID: 38325496] - Qian Ruan, Xiaoming Bai, Yizhen Wang, Xiaofang Zhang, Baoqiang Wang, Ying Zhao, Xiaolin Zhu, Xiaohong Wei. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide.
BMC genomics.
2024 Mar; 25(1):229. doi:
10.1186/s12864-024-10024-8
. [PMID: 38429670] - Mohamed E El Awady, Sahar S Mohamed, Mostafa M Abo Elsoud, Manal G Mahmoud, Mai M Anwar, Mahgoub M Ahmed, Ashraf Eltaher, Sameh Magdeldin, Ashraf Attallah, Ali E Elhagry, Sayeda A Abdelhamid. Insight into antioxidant and anti-inflammatory effects of marine bacterial natural exopolysaccharide (EPSSM) using carrageenan-induced paw edema in rats.
Scientific reports.
2024 03; 14(1):5113. doi:
10.1038/s41598-024-53502-5
. [PMID: 38429312] - Martha Reyes-Becerril, Minerva Maldonado, Sornkanok Vimolmangkang, Carlos Angulo. In vivo and ex vivo studies support the immunostimulant and immunoprotective effect of Damiana (Turnera diffusa Willd) in Almaco Jack (Seriola rivoliana).
Fish & shellfish immunology.
2024 Mar; 146(?):109369. doi:
10.1016/j.fsi.2024.109369
. [PMID: 38220122] - Guziliayi Kuerban, Ablajan Turak, Jiangyu Zhao, Haji Akber Aisa. Diprenylated phenolic enantiomers from Artemisia scoparia.
Phytochemistry.
2024 Mar; 219(?):113991. doi:
10.1016/j.phytochem.2024.113991
. [PMID: 38242272] - Chanwoo Lee, Seul Lee, Young Pyo Jang, Junseong Park. Anti-Inflammatory Activity of Vacuum Distillate from Panax ginseng Root on LPS-Induced RAW264.7 Cells.
Journal of microbiology and biotechnology.
2024 Feb; 34(2):262-269. doi:
10.4014/jmb.2312.12001
. [PMID: 38213284] - Tomoko Kaneko, Masaki Yoshioka, Futo Kawahara, Natsumi Nishitani, Shoya Mori, Jiyeon Park, Takashi Tarumi, Keisei Kosaki, Seiji Maeda. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men.
Endocrine journal.
2024 Feb; 71(2):119-127. doi:
10.1507/endocrj.ej23-0355
. [PMID: 38220201] - Qi Xu, Lin Qiu, Qin Gu, Xinji Wang, Xiehua Pan, Mengqi Tong, Yanghua Fu, Yingzheng Zhao, Haitao Xi. P407 hydrogel loaded with nitric oxide microbubbles promotes angiogenesis and functional improvement in testicular transplantation.
Biomaterials science.
2024 Feb; 12(4):1004-1015. doi:
10.1039/d3bm01521a
. [PMID: 38196338] - Suhail Anees, Ifrah Manzoor, Kaneez Fatima, Rabia Hamid, Showkat Ahmad Ganie. GC-MS analysis and potential therapeutic efficacy of extracts from Allium humile Kunth in lowering dyslipidemia in wistar rat models.
Journal of ethnopharmacology.
2024 Feb; 320(?):117478. doi:
10.1016/j.jep.2023.117478
. [PMID: 37989424]