Biotin (BioDeep_00000000743)
Secondary id: BioDeep_00000398534
human metabolite blood metabolite PANOMIX_OTCML-2023 natural product BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H16N2O3S (244.0881586)
中文名称: D-生物素, 生物素, 维生素 H, 维生素VB7, D-生物素 (维生素H)
谱图信息:
最多检出来源 Viridiplantae(plant) 0.15%
Last reviewed on 2024-06-29.
Cite this Page
Biotin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/biotin (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000743). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CCC(=O)O)C[C@H]1[C@@H]2[C@H](CS1)NC(=O)N2
InChI: InChI=1S/C10H16N2O3S/c13-8(14)4-2-1-3-7-9-6(5-16-7)11-10(15)12-9/h6-7,9H,1-5H2,(H,13,14)(H2,11,12,15)
描述信息
Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6]
Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate.
A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.
Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available.
Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue.
Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ...
Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464).
Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves
An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins.
[Raw Data] CB004_Biotin_pos_50eV_CB000006.txt
[Raw Data] CB004_Biotin_pos_30eV_CB000006.txt
[Raw Data] CB004_Biotin_pos_40eV_CB000006.txt
[Raw Data] CB004_Biotin_pos_20eV_CB000006.txt
[Raw Data] CB004_Biotin_pos_10eV_CB000006.txt
[Raw Data] CB004_Biotin_neg_10eV_000006.txt
[Raw Data] CB004_Biotin_neg_20eV_000006.txt
Biosynthesis
Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18]
Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24]
Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
同义名列表
210 个代谢物同义名
Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, >=99\\%; 1H-Thieno(3,4-d)imidazole-4-pentanoic acid, hexahydro-2-oxo-, (3aS-(3aalpha,4beta,6aalpha))-; 1H-Thieno[3,4-d]imidazole-4-pentanoic acid, hexahydro-2-oxo-, [3as-(3aalpha,4beta,6aalpha)]-; Hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid, (3aS-(3aalpha,4beta,6aalpha))-; 1H-Thieno(3,4-d)imidazole-4-pentanoic acid, hexahydro-2-oxo-, (3aS-(3aalpha,4b,6aalpha))-; (3aS-(3aalpha,4b,6aalpha))-Hexahydro-2-oxo-1H-thieno(3,4-d)imidaz- ole-4-pentanoic acid; 5-[(3aR,6S,6aS)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-6-yl]pentanoic acid; 5-[(3aS,4S,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid; hexahydro-2-oxo-[3as-(3alpha,4beta,6alpha)]-1H-Thieno[3,4-d]imidazole-4-pentanoic acid; hexahydro-2-oxo-[3as-(3alpha,4beta,6alpha)]-1H-Thieno[3,4-d]imidazole-4-pentanoate; 1H-Thieno[3,4-d]imidazole-4-pentanoic acid, hexahydro-2-oxo-, (3aS,4S,6aR)- (9CI); 5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazolidin-4-yl]pentanoic acid; 5-((3AS,4S,6aR)-rel-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoic acid; hexahydro-2-oxo-[3aS-(3aa,4b,6aa)]-1H-Thieno[3,4-d]imidazole-4-pentanoic acid; Biotin for system suitability, European Pharmacopoeia (EP) Reference Standard; 5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanoic acid; 1H-Thieno(3,4-d)imidazole-4-pentanoic acid, hexahydro-2-oxo-, (3aS,4S,6aR)-; 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoic acid; 1H-thieno[3,4-d]imidazole-4-pentanoic acid, hexahydro-2-oxo-, (3aS,4S,6aR)-; 5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanoic acid; 5-((3aR,6S,6aS)-2-Oxo-hexahydro-thieno[3,4-d]imidazol-6-yl)-pentanoic acid; hexahydro-2-oxo-[3aS-(3aa,4b,6aa)]-1H-Thieno[3,4-d]imidazole-4-pentanoate; 5-[(3aS,4S,6aR)-2-oxo-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid; Biotin, Pharmaceutical Secondary Standard; Certified Reference Material; (3aS,4S,6aR)-Hexahydro-2-oxo-1H-thieno[3,4-d]imidazole-4-valeric acid; (3aS,4S,6aR)-Hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-valeric acid; (3aS,4S,6aR)-Hexahydro-2-oxo-1H-thieno[3,4-d]imidazole-4-valerate; Daunorubicin hydrochloride, Antibiotic for Culture Media Use Only; 5-(2-Oxohexahydro-1H-thieno[3,4-D]imidazol-4-yl)pentanoic acid; (+)-cis-Hexahydro-2-oxo-1H-thieno[3,4]imidazole-4-valeric acid; cis-(+)-Tetrahydro-2-oxothieno[3,4]imidazoline-4-valeric acid; Biotin, United States Pharmacopeia (USP) Reference Standard; 2-Keto-3,4-imidazolido-2-tetrahydrothiophene-N-valeric acid; cis-Tetrahydro-2-oxothieno(3,4-d)imidazoline-4-valeric acid; cis-Hexahydro-2-oxo-1H-thieno(3,4)imidazole-4-valeric acid; hexahydro-2-oxo-1H-thieno[3,4-d]imidazole-4-pentanoic acid; (+)-cis-Hexahydro-2-oxo-1H-thieno[3,4]imidazole-4-valerate; Hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid; 5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoate; cis-(+)-Tetrahydro-2-oxothieno[3,4]imidazoline-4-valerate; cis-Tetrahydro-2-oxothieno(3,4-D)imidazoline-4-valerate; Biotin, European Pharmacopoeia (EP) Reference Standard; cis-Hexahydro-2-oxo-1H-thieno(3,4)imidazole-4-valerate; Hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoate; Biotin, certified reference material, TraceCERT(R); Biotin, plant cell culture tested, >=99\\% (TLC); Biotin, >=99\\% (TLC), lyophilized powder; 20 - Potency of multivitamin supplements; Biotin, meets USP testing specifications; BIONA-VITCONTROLS AND PREVENTS HAIR LOSS; Biotin, Vetec(TM) reagent grade, >=99\\%; D-Biotin 10 microg/mL in Acetonitrile; Bonogen Activatorhair loss treatment; 6AE43AA3-BC3D-4C49-9DB9-5913A2401EB6; Biotin, tested according to Ph.Eur.; Biotin, SAJ special grade, >=98.0\\%; Medea brand OF biotin sodium salt; D-Biotin, analytical standard; CIS-HEXAHYDRO-2-OXO-1H-THIENO; Biotin for system suitability; YBJHBAHKTGYVGT-ZKWXMUAHSA-N; Dermapharm brand OF biotin; Ratiopharm brand OF biotin; Strathmann brand OF biotin; CIS-TETRAHYDRO-2-OXOTHIENO; E+b pharma brand OF biotin; HAIRJOY EYEBROW SIGNATURE; Medopharm brand OF biotin; HAIRJOY EYELASH SIGNATURE; Biotin ratiopharm brand; ExoSCRT Scalp Care HRLV; Ziethen brand OF biotin; Biotin strathmann brand; Biotin dermapharm brand; BIOTIN (USP MONOGRAPH); Hermes brand OF biotin; Simons brand OF biotin; Biocur brand OF biotin; Biotin medopharm brand; BIOTIN [USP MONOGRAPH]; Biotin (JP17/USP/INN); delta-biotin factor s; BIOTIN [EP MONOGRAPH]; Roche brand OF biotin; Biotina [INN-Spanish]; BIOTIN (EP MONOGRAPH); Biotina (INN-Spanish); Biotinum [INN-Latin]; Biotinum (INN-Latin); Biotine [INN-French]; BIOTIN [EP IMPURITY]; Biotin, >=99.0\\% (T); Biotin ziethen brand; BIOTIN (EP IMPURITY); BIOTIN [ORANGE BOOK]; Biotin [USP:INN:JAN]; Biotine (INN-French); Biotin (USP:INN:JAN); Biotin simons brand; SPAI-SONSPROLAC-VIT; Biotin hermes brand; Biotin biocur brand; SPAI-SONSPROCAPELL; Factor S (vitamin); Biotin roche brand; Biotin ratiopharm; Prestwick1_000418; D-Biotin Factor S; Prestwick2_000418; Prestwick0_000418; Prestwick3_000418; Biotin-ratiopharm; Biotinratiopharm; D-BIOTIN [VANDF]; delta-(+)-Biotin; BIOTIN (USP-RS); Gelfert, Biotin; BIOTIN [USP-RS]; UNII-6SO6U10H04; TWINKLE ESSENCE; Bioepiderm (TN); BIOTIN [WHO-DD]; BIOTIN [VANDF]; Hermes, Biotin; BIOTIN [MART.]; Roche, Biotine; Tox21_113050_1; Probes2_000006; Biotin Gelfert; BIOTIN (MART.); Biotine Roche; Biotin Hermes; BIOTIN [HSDB]; BPBio1_000414; BIOTIN [INCI]; Amerix Biotin; BIOTIN [JAN]; Biotin (8CI); BIOTIN [FCC]; Tox21_302161; Tox21_113050; BIOTIN [INN]; D-(+)-Biotin; delta-Biotin; Biotin Drops; -(+)-Biotin; Biodermatin; CAS-58-85-5; Rovimix H 2; BIOTIN [MI]; beta-Biotin; D(+)-Biotin; medobiotin; Lutavit H2; Hairq-plus; Vitamin Bw; H, Vitamin; coenzyme R; Vitamin B7; 6SO6U10H04; Bioepiderm; Medebiotin; D(+)Biotin; (+)-Biotin; Rombellin; AI3-51198; vitamin H; Vitamin-h; Injacom H; 3H-Biotin; Biotinum; L-Biotin; Factor S; d-biotin; Biotitum; Biotina; Biotine; A11HA05; Ritatin; Meribin; Bios II; Gabunat; Deacura; Tk-nax; Biotin; Bios H; Biokur; BDBM12; SUBIR; 1swp; 4bj8; 2f01; 1n43; 4bcs; 1swk; 2avi; 1avd; 3t2w; 1swn; 4ggz; 1ndj; 4jnj; 1stp; 2gh7; 1df8; 1swg; 1n9m; 1swr; Vitamin B7; Biotin
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:15956
- ChEBI: CHEBI:95156
- KEGG: C00120
- KEGGdrug: D00029
- PubChem: 171548
- PubChem: 253
- HMDB: HMDB0000030
- Metlin: METLIN243
- DrugBank: DB00121
- ChEMBL: CHEMBL857
- ChEMBL: CHEMBL1527083
- Wikipedia: Biotin
- MeSH: Biotin
- ChemIDplus: 0000058855
- MetaCyc: BIOTIN
- KNApSAcK: C00000756
- foodb: FDB014510
- chemspider: 149962
- CAS: 58-85-5
- MoNA: KO000352
- MoNA: KO008884
- MoNA: ML002701
- MoNA: KO000353
- MoNA: KO008882
- MoNA: KO008885
- MoNA: KO000355
- MoNA: KO000354
- MoNA: FIO00019
- MoNA: FIO00018
- MoNA: ML002751
- MoNA: FIO00022
- MoNA: KO008883
- MoNA: FIO00020
- MoNA: FIO00016
- MoNA: KO000351
- MoNA: FIO00021
- MoNA: FIO00017
- medchemexpress: HY-B0511
- PMhub: MS000000293
- MetaboLights: MTBLC15956
- PDB-CCD: BTN
- 3DMET: B01165
- NIKKAJI: J94.599D
- RefMet: Biotin
- LOTUS: LTS0119062
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-523
- PubChem: 3420
- KNApSAcK: 15956
分类词条
相关代谢途径
Reactome(9)
BioCyc(0)
PlantCyc(0)
代谢反应
329 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
BCTN ⟶ Btn + L-Lys
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6xMCCC1:6xMCCC2 + ATP + Btn ⟶ 6x(Btn-MCCC1:MCCC2) + AMP + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Biotin transport and metabolism:
6xMCCC1:6xMCCC2 + ATP + Btn ⟶ 6x(Btn-MCCC1:MCCC2) + AMP + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Biotin transport and metabolism:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Biotin transport and metabolism:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Biotin transport and metabolism:
ACACA:2Mn2+ + ATP + Btn ⟶ AMP + Btn-ACACA:2Mn2+ + PPi
BioCyc(0)
WikiPathways(2)
- Biotin metabolism, including IEMs:
propanoyl-CoA ⟶ methylmanoyl-CoA
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(240)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(15)
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotinidase Deficiency:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotinidase Deficiency:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotinidase Deficiency:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Multiple Carboxylase Deficiency, Neonatal or Early Onset Form:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + Pyrophosphate
- Biotin Metabolism:
Dethiobiotin + Hydrogen Ion + S-Adenosylmethionine + a sulfurated [sulfur carrier] ⟶ 5'-Deoxyadenosine + Biotin + L-Methionine
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
- Biotin Metabolism:
Adenosine triphosphate + Biotin ⟶ Biotinyl-5'-AMP + diphosphate
- Biotin-Carboxyl Carrier Protein Assembly:
Adenosine triphosphate + Biotin + Biotin-Carboxyl Carrying Protein ⟶ Adenosine monophosphate + Biotinylated [BCCP monomer] + Hydrogen Ion + Pyrophosphate
PharmGKB(0)
71 个相关的物种来源信息
- 222 - Achromobacter: 10.1016/0006-291X(81)90262-X
- 222 - Achromobacter: LTS0119062
- 506 - Alcaligenaceae: LTS0119062
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 6660 - Artemia: LTS0119062
- 85549 - Artemia salina: 10.1021/JF60200A008
- 85549 - Artemia salina: LTS0119062
- 38009 - Artemiidae: LTS0119062
- 6656 - Arthropoda: LTS0119062
- 4890 - Ascomycota: LTS0119062
- 1131492 - Aspergillaceae: LTS0119062
- 5052 - Aspergillus: LTS0119062
- 162425 - Aspergillus nidulans: 10.1016/J.FGB.2010.08.004
- 162425 - Aspergillus nidulans: LTS0119062
- 186817 - Bacillaceae: LTS0119062
- 91061 - Bacilli: LTS0119062
- 2 - Bacteria: LTS0119062
- 28216 - Betaproteobacteria: LTS0119062
- 6658 - Branchiopoda: LTS0119062
- 7711 - Chordata: LTS0119062
- 1890464 - Chroococcaceae: LTS0119062
- 3028117 - Cyanophyceae: LTS0119062
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 543 - Enterobacteriaceae: LTS0119062
- 561 - Escherichia: LTS0119062
- 562 - Escherichia coli: LTS0119062
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0119062
- 147545 - Eurotiomycetes: LTS0119062
- 4751 - Fungi: LTS0119062
- 1236 - Gammaproteobacteria: LTS0119062
- 9604 - Hominidae: LTS0119062
- 9605 - Homo: LTS0119062
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-012-0464-Y
- 9606 - Homo sapiens: LTS0119062
- 29828 - Lipomyces: LTS0119062
- 29829 - Lipomyces starkeyi: 10.2323/JGAM.20.277
- 29829 - Lipomyces starkeyi: LTS0119062
- 29827 - Lipomycetaceae: LTS0119062
- 400634 - Lysinibacillus: LTS0119062
- 1421 - Lysinibacillus sphaericus: 10.1271/BBB1961.49.2783
- 1421 - Lysinibacillus sphaericus: LTS0119062
- 40674 - Mammalia: LTS0119062
- 33208 - Metazoa: LTS0119062
- 2212703 - Mucoromycetes: LTS0119062
- 1913637 - Mucoromycota: LTS0119062
- 10066 - Muridae: LTS0119062
- 10088 - Mus: LTS0119062
- 10090 - Mus musculus: LTS0119062
- 10090 - Mus musculus: NA
- 4054 - Panax ginseng C. A. Mey.: -
- 4836 - Phycomyces: LTS0119062
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 4837 - Phycomyces blakesleeanus: LTS0119062
- 1344966 - Phycomycetaceae: LTS0119062
- 186818 - Planococcaceae: LTS0119062
- 33090 - Plants: -
- 4891 - Saccharomycetes: LTS0119062
- 4895 - Schizosaccharomyces: LTS0119062
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 4896 - Schizosaccharomyces pombe: LTS0119062
- 4894 - Schizosaccharomycetaceae: LTS0119062
- 147554 - Schizosaccharomycetes: LTS0119062
- 1890426 - Synechococcaceae: LTS0119062
- 1129 - Synechococcus: LTS0119062
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0119062
- 28568 - Trichocomaceae: LTS0119062
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Di Qu, Peng Ge, Laure Botella, Sae Woong Park, Ha-Na Lee, Natalie Thornton, James M Bean, Inna V Krieger, James C Sacchettini, Sabine Ehrt, Courtney C Aldrich, Dirk Schnappinger. Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin.
Nature communications.
2024 May; 15(1):4161. doi:
10.1038/s41467-024-48448-1
. [PMID: 38755122] - Yu-Lei Jia, Ying Zhang, Lu-Wei Xu, Zi-Xu Zhang, Ying-Shuang Xu, Wang Ma, Yang Gu, Xiao-Man Sun. Enhanced fatty acid storage combined with the multi-factor optimization of fermentation for high-level production of docosahexaenoic acid in Schizochytrium sp.
Bioresource technology.
2024 Apr; 398(?):130532. doi:
10.1016/j.biortech.2024.130532
. [PMID: 38447618] - Hongzheng Wang, Ruimin Yu, Qiangqiang Zhu, Zhendong Tian, Feng Li. A highly sensitive biotin-based probe for small RNA northern blot and its application in dissecting miRNA function in pepper.
The Plant journal : for cell and molecular biology.
2024 Apr; 118(1):263-276. doi:
10.1111/tpj.16585
. [PMID: 38078656] - Qi Geng, Bin Liu, Danping Fan, Zhiwen Cao, Li Li, Peipei Lu, Lin Lin, Lan Yan, Yibai Xiong, Xiaojuan He, Jun Lu, Peng Chen, Cheng Lu. Strictosamide ameliorates LPS-induced acute lung injury by targeting ERK2 and mediating NF-κB signaling pathway.
Journal of ethnopharmacology.
2024 Mar; 322(?):117593. doi:
10.1016/j.jep.2023.117593
. [PMID: 38113987] - Nan Yang, Jia Ren, Shuaijian Dai, Kai Wang, Manhin Leung, Yinglin Lu, Yuxing An, Al Burlingame, Shouling Xu, Zhiyong Wang, Weichuan Yu, Ning Li. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism.
Molecular & cellular proteomics : MCP.
2024 Mar; 23(3):100738. doi:
10.1016/j.mcpro.2024.100738
. [PMID: 38364992] - Marina Mariconti, Laurie Dechamboux, Marion Heckmann, Julien Gros, Mathieu Morel, Virginie Escriou, Damien Baigl, Céline Hoffmann, Sergii Rudiuk. Intracellular Delivery of Functional Proteins with DNA-Protein Nanogels-Lipids Complex.
Journal of the American Chemical Society.
2024 Feb; 146(8):5118-5127. doi:
10.1021/jacs.3c08000
. [PMID: 38363821] - Ivan Vaskan, Veronika Dimitreva, Maxim Petoukhov, Eleonora Shtykova, Nicolai Bovin, Alexander Tuzikov, Marina Tretyak, Vladimir Oleinikov, Anton Zalygin. Effect of ligand and shell densities on the surface structure of core-shell nanoparticles self-assembled from function-spacer-lipid constructs.
Biomaterials science.
2024 Jan; 12(3):798-806. doi:
10.1039/d3bm01704d
. [PMID: 38180048] - Yuanyuan Li, Yongliang Zhang, Savithramma P Dinesh-Kumar. TurboID-Based Proximity Labeling: A Method to Decipher Protein-Protein Interactions in Plants.
Methods in molecular biology (Clifton, N.J.).
2024; 2724(?):257-272. doi:
10.1007/978-1-0716-3485-1_19
. [PMID: 37987912] - Ronja Burggraf, Markus Albert. In-vivo Cross-linking of Biotinylated Peptide Ligands to Cell Surface Receptors.
Methods in molecular biology (Clifton, N.J.).
2024; 2731(?):217-230. doi:
10.1007/978-1-0716-3511-7_16
. [PMID: 38019437] - Trinity Cookis, Paul Sauer, Simon Poepsel, Bong-Gyoon Han, Dominik A Herbst, Robert Glaeser, Eva Nogales. Streptavidin-Affinity Grid Fabrication for Cryo-Electron Microscopy Sample Preparation.
Journal of visualized experiments : JoVE.
2023 Dec; ?(202):. doi:
10.3791/66197
. [PMID: 38224121] - Li Shi, Tatiana Marti Ferrando, Sergio Landeo Villanueva, Matthieu H A J Joosten, Vivianne G A A Vleeshouwers, Christian W B Bachem. Protocol to identify protein-protein interaction networks in Solanum tuberosum using transient TurboID-based proximity labeling.
STAR protocols.
2023 Dec; 4(4):102577. doi:
10.1016/j.xpro.2023.102577
. [PMID: 37733594] - Wei Chen, Jinhao Su, Yubin Liu, Tianmei Gao, Xiaohui Ji, Hanzhou Li, Huajun Li, Yuansong Wang, Hui Zhang, Shuquan Lv. Crocin Ameliorates Diabetic Nephropathy through Regulating Metabolism, CYP4A11/PPARγ, and TGF-β/Smad Pathways in Mice.
Current drug metabolism.
2023 Nov; ?(?):. doi:
10.2174/0113892002257928231031113337
. [PMID: 37936469] - Wanzhen Liu, Xue Xia, Ary A Hoffmann, Yamei Ding, Ji-Chao Fang, Hui Yu. Evolution of Wolbachia reproductive and nutritional mutualism: insights from the genomes of two novel strains that double infect the pollinator of dioecious Ficus hirta.
BMC genomics.
2023 Nov; 24(1):657. doi:
10.1186/s12864-023-09726-2
. [PMID: 37914998] - Zhibo Wang, Zihang He, Jingxin Wang, Chao Wang, Caiqiu Gao, Yucheng Wang. A DNA-binding protein capture technology that purifies proteins by directly isolating the target DNA.
Plant science : an international journal of experimental plant biology.
2023 Oct; 335(?):111796. doi:
10.1016/j.plantsci.2023.111796
. [PMID: 37467789] - Zhihuai Chen, Xinqi Wei, Yunru Zheng, Zongwei Zhang, Wang Gu, Wenjun Liao, Hua Zhang, Xiaoying Wang, Jian Liu, Hua Li, Wei Xu. Targeted co-delivery of curcumin and erlotinib by MoS2 nanosheets for the combination of synergetic chemotherapy and photothermal therapy of lung cancer.
Journal of nanobiotechnology.
2023 Sep; 21(1):333. doi:
10.1186/s12951-023-02099-4
. [PMID: 37717020] - Sean E Lehman, Kurt D Benkstein, Thomas E Cleveland, Kyle W Anderson, Michael J Carrier, Wyatt N Vreeland. Particle Metrology Approach to Understanding How Storage Conditions Affect Long-Term Liposome Stability.
Langmuir : the ACS journal of surfaces and colloids.
2023 09; 39(35):12313-12323. doi:
10.1021/acs.langmuir.3c01270
. [PMID: 37603854] - Jie He, Hengyu Li, John Mai, Yuqing Ke, Chunhui Zhai, Jiao Jiao Li, Lai Jiang, Guangxia Shen, Xianting Ding. Profiling extracellular vesicle surface proteins with 10 µL peripheral plasma within 4 h.
Journal of extracellular vesicles.
2023 Sep; 12(9):e12364. doi:
10.1002/jev2.12364
. [PMID: 37654045] - Clément Boussardon, Chris Carrie, Olivier Keech. Comparison of plastid proteomes points towards a higher plastidial redox turnover in vascular tissues than in mesophyll cells.
Journal of experimental botany.
2023 08; 74(14):4110-4124. doi:
10.1093/jxb/erad133
. [PMID: 37026385] - Sa Geng, Takashi Hamaji, Patrick J Ferris, Minglu Gao, Yoshiki Nishimura, James Umen. A conserved RWP-RK transcription factor VSR1 controls gametic differentiation in volvocine algae.
Proceedings of the National Academy of Sciences of the United States of America.
2023 07; 120(29):e2305099120. doi:
10.1073/pnas.2305099120
. [PMID: 37436957] - Maria Paula Rueda-Mejia, Andreas Bühlmann, Raúl A Ortiz-Merino, Stefanie Lutz, Christian H Ahrens, Markus Künzler, Florian M Freimoser. Pantothenate Auxotrophy in a Naturally Occurring Biocontrol Yeast.
Applied and environmental microbiology.
2023 Jul; ?(?):e0088423. doi:
10.1128/aem.00884-23
. [PMID: 37404169] - Zhixin Lei, Haowei Meng, Xichen Rao, Huanan Zhao, Chengqi Yi. Detect-seq, a chemical labeling and biotin pull-down approach for the unbiased and genome-wide off-target evaluation of programmable cytosine base editors.
Nature protocols.
2023 07; 18(7):2221-2255. doi:
10.1038/s41596-023-00837-4
. [PMID: 37277562] - Seun O Oladipupo, Younes Laidoudi, John F Beckmann, Xing Ping Hu, Arthur G Appel. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management.
Journal of economic entomology.
2023 May; ?(?):. doi:
10.1093/jee/toad098
. [PMID: 37247378] - Wei Shi, Sara C Stolze, Hirofumi Nakagami, Johana C Misas Villamil, Isabel M L Saur, Gunther Doehlemann. Combination of in-vivo proximity labeling and co-immunoprecipitation identifies the host target network of a tumor-inducing effector in the fungal maize pathogen Ustilago maydis.
Journal of experimental botany.
2023 May; ?(?):. doi:
10.1093/jxb/erad188
. [PMID: 37225161] - Shou-Ling Xu, Ruben Shrestha, Sumudu S Karunadasa, Pei-Qiao Xie. Proximity Labeling in Plants.
Annual review of plant biology.
2023 05; 74(?):285-312. doi:
10.1146/annurev-arplant-070522-052132
. [PMID: 36854476] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - M Greeshma, A I Bhat, A Jeevalatha. Rapid onsite detection of piper yellow mottle virus infecting black pepper by recombinase polymerase amplification-lateral flow assay (RPA-LFA).
Journal of virological methods.
2023 05; 315(?):114695. doi:
10.1016/j.jviromet.2023.114695
. [PMID: 36822562] - Hui Jin, Jinyan Cui, Wei Zhan. Enzymatic Janus Liposome Micromotors.
Langmuir : the ACS journal of surfaces and colloids.
2023 03; 39(11):4198-4206. doi:
10.1021/acs.langmuir.3c00335
. [PMID: 36893357] - Evgeniya V Smirnova, Tatiana V Rakitina, Rustam H Ziganshin, George A Saratov, Georgij P Arapidi, Alexey A Belogurov, Anna A Kudriaeva. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics.
Cells.
2023 Mar; 12(6):. doi:
10.3390/cells12060944
. [PMID: 36980286] - Tae-Wuk Kim, Chan Ho Park, Chuan-Chih Hsu, Yeong-Woo Kim, Yeong-Woo Ko, Zhenzhen Zhang, Jia-Ying Zhu, Yu-Chun Hsiao, Tess Branon, Krista Kaasik, Evan Saldivar, Kevin Li, Asher Pasha, Nicholas J Provart, Alma L Burlingame, Shou-Ling Xu, Alice Y Ting, Zhi-Yong Wang. Mapping the signaling network of BIN2 kinase using TurboID-mediated biotin labeling and phosphoproteomics.
The Plant cell.
2023 03; 35(3):975-993. doi:
10.1093/plcell/koad013
. [PMID: 36660928] - Robert Castro, Elizabeth Aisenbrey, Liwei Hui. The role of formulation approaches in presenting targeting ligands on lipid nanoparticles.
Nanomedicine (London, England).
2023 03; 18(7):589-597. doi:
10.2217/nnm-2023-0052
. [PMID: 37199174] - Xinyue Liu, Yajie Wang, Jiahui Zou, Hui Wang, Xuechun Li, Ying Huang, Enshi Hu, Zhiyu Guan, Danyi Quan, Jianping Liu, Wenli Zhang. Quasi-opsonin conjugated lipase-sensitive micelles activate macrophages against facultative intracellular bacterial infection.
Journal of materials chemistry. B.
2023 01; 11(4):865-878. doi:
10.1039/d2tb01802k
. [PMID: 36594907] - Celine Yen Ling Choo, Pei-Ching Wu, Jonar I Yago, Kuang-Ren Chung. The Pex3-mediated peroxisome biogenesis plays a critical role in metabolic biosynthesis, stress response, and pathogenicity in Alternaria alternata.
Microbiological research.
2023 Jan; 266(?):127236. doi:
10.1016/j.micres.2022.127236
. [PMID: 36334316] - Katharina Melkonian, Sara Christina Stolze, Anne Harzen, Hirofumi Nakagami. Proximity-Dependent In Vivo Biotin Labeling for Interactome Mapping in Marchantia polymorpha.
Methods in molecular biology (Clifton, N.J.).
2023; 2581(?):295-308. doi:
10.1007/978-1-0716-2784-6_21
. [PMID: 36413326] - Wenjie Cai, Mingqi Lu, Xiaoyan Cheng, Weijun Dai. Improved probe detection sensitivity by flexible tandem biotin labeling.
Journal of microbiological methods.
2023 01; 204(?):106654. doi:
10.1016/j.mimet.2022.106654
. [PMID: 36509134] - Ruben M Benstein, Markus Schmid, Yuan You. Isolation of Nuclei Tagged in Specific Cell Types (INTACT) in Arabidopsis.
Methods in molecular biology (Clifton, N.J.).
2023; 2686(?):313-328. doi:
10.1007/978-1-0716-3299-4_16
. [PMID: 37540367] - Sergio Oddi, Francesca Ciaramellano, Lucia Scipioni, Enrico Dainese, Mauro Maccarrone. Visualization of Endocannabinoids in the Cell.
Methods in molecular biology (Clifton, N.J.).
2023; 2576(?):453-459. doi:
10.1007/978-1-0716-2728-0_37
. [PMID: 36152209] - Ryan G Lim, Osama Al-Dalahmah, Jie Wu, Maxwell P Gold, Jack C Reidling, Guomei Tang, Miriam Adam, David K Dansu, Hye-Jin Park, Patrizia Casaccia, Ricardo Miramontes, Andrea M Reyes-Ortiz, Alice Lau, Richard A Hickman, Fatima Khan, Fahad Paryani, Alice Tang, Kenneth Ofori, Emily Miyoshi, Neethu Michael, Nicolette McClure, Xena E Flowers, Jean Paul Vonsattel, Shawn Davidson, Vilas Menon, Vivek Swarup, Ernest Fraenkel, James E Goldman, Leslie M Thompson. Huntington disease oligodendrocyte maturation deficits revealed by single-nucleus RNAseq are rescued by thiamine-biotin supplementation.
Nature communications.
2022 12; 13(1):7791. doi:
10.1038/s41467-022-35388-x
. [PMID: 36543778] - Birgitta Ryback, Miriam Bortfeld-Miller, Julia A Vorholt. Metabolic adaptation to vitamin auxotrophy by leaf-associated bacteria.
The ISME journal.
2022 12; 16(12):2712-2724. doi:
10.1038/s41396-022-01303-x
. [PMID: 35987782] - Xi Zhang, Qingling Zhang, Long Cheng, Dan Liu, Hongzheng Wang, Yingjia Zhou, Liqun Ma, Jubin Wang, Feng Li. A New Biotin Labeling and High-Molecular-Weight RNA Northern Method and Its Application in Viral RNA Detection.
Viruses.
2022 11; 14(12):. doi:
10.3390/v14122664
. [PMID: 36560668] - Daniel A Kusza, Roger Hunter, Georgia Schäfer, Muneerah Smith, Arieh A Katz, Catherine H Kaschula. Activity-Based Proteomic Identification of the S-Thiolation Targets of Ajoene in MDA-MB-231 Breast Cancer Cells.
Journal of agricultural and food chemistry.
2022 Nov; 70(46):14679-14692. doi:
10.1021/acs.jafc.2c04972
. [PMID: 36351177] - Jun Wu, Yingtao Xu, Zikai Geng, Jianqing Zhou, Qingping Xiong, Zhimeng Xu, Hailun Li, Yun Han. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway.
Scientific reports.
2022 11; 12(1):19160. doi:
10.1038/s41598-022-20719-1
. [PMID: 36357407] - Kota Shiozawa, Misato Maeda, Hsin-Jung Ho, Tomoko Katsurai, Md Zakir Hossain Howlader, Kimiko Horiuchi, Yumi Sugita, Yusuke Ohsaki, Afifah Zahra Agista, Tomoko Goto, Michio Komai, Hitoshi Shirakawa. Biotin Enhances Testosterone Production in Mice and Their Testis-Derived Cells.
Nutrients.
2022 Nov; 14(22):. doi:
10.3390/nu14224761
. [PMID: 36432448] - Siqi Wang, Zhongzhen Yang, Chunyan Yang, Jinxia Chen, Lin Zhou, Yong Wu, Runxin Lu. Investigation of functionalised nanoplatforms using branched-ligands with different chain lengths for glioblastoma targeting.
Journal of drug targeting.
2022 Nov; 30(9):992-1005. doi:
10.1080/1061186x.2022.2077948
. [PMID: 35549968] - Gara N Dexter, Laura E Navas, Jason C Grigg, Harbir Bajwa, David J Levy-Booth, Jie Liu, Nathan A Louie, Seyed A Nasseri, Soo-Kyeong Jang, Scott Renneckar, Lindsay D Eltis, William W Mohn. Bacterial catabolism of acetovanillone, a lignin-derived compound.
Proceedings of the National Academy of Sciences of the United States of America.
2022 10; 119(43):e2213450119. doi:
10.1073/pnas.2213450119
. [PMID: 36256818] - Zhishan Zhang, Fan Cai, Jintu Chen, Shimu Luo, Yao Lin, Tingjin Zheng. Ion-selective electrode-based potentiometric immunoassays for the quantitative monitoring of alpha-fetoprotein by coupling rolling cycle amplification with silver nanoclusters.
The Analyst.
2022 Oct; 147(21):4752-4760. doi:
10.1039/d2an01282k
. [PMID: 36148545] - Berend Gagestein, Johannes H von Hegedus, Joanneke C Kwekkeboom, Marieke Heijink, Niek Blomberg, Tom van der Wel, Bogdan I Florea, Hans van den Elst, Kim Wals, Herman S Overkleeft, Martin Giera, René E M Toes, Andreea Ioan-Facsinay, Mario van der Stelt. Comparative Photoaffinity Profiling of Omega-3 Signaling Lipid Probes Reveals Prostaglandin Reductase 1 as a Metabolic Hub in Human Macrophages.
Journal of the American Chemical Society.
2022 10; 144(41):18938-18947. doi:
10.1021/jacs.2c06827
. [PMID: 36197299] - Swati Megha, Zhengping Wang, Nat N V Kav, Habibur Rahman. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus.
BMC genomics.
2022 Oct; 23(1):707. doi:
10.1186/s12864-022-08920-y
. [PMID: 36253756] - Xiaona Yang, Jin Jiang, Qing Wang, Jiawei Duan, Na Chen, Di Wu, Yankai Xia. Gender difference in hepatic AMPK pathway activated lipid metabolism induced by aged polystyrene microplastics exposure.
Ecotoxicology and environmental safety.
2022 Oct; 245(?):114105. doi:
10.1016/j.ecoenv.2022.114105
. [PMID: 36155338] - Zhe Jiang, Fengxin Hao, Feng Zhu, Fuwen Yuan, Liwei Ma, Guodong Li, Jun Chen, Tanjun Tong. RSL1D1 modulates cell senescence and proliferation via regulation of PPARγ mRNA stability.
Life sciences.
2022 Oct; 307(?):120848. doi:
10.1016/j.lfs.2022.120848
. [PMID: 35940221] - Dingdong Yuan, Yu Zhang, King Hoo Lim, Stephen King Pong Leung, Xizi Yang, Yujie Liang, Wilson Chun Yu Lau, Kwan T Chow, Jiang Xia. Site-Selective Lysine Acetylation of Human Immunoglobulin G for Immunoliposomes and Bispecific Antibody Complexes.
Journal of the American Chemical Society.
2022 10; 144(40):18494-18503. doi:
10.1021/jacs.2c07594
. [PMID: 36167521] - X M Liu, N B Cao, Y Deng, Y B Hou, X C Liu, H N Ma, W X Yu. [Role of brain and muscle ARNT-like protein 1 in the rat periodontitis-induced liver injury model].
Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology.
2022 Oct; 57(10):1048-1056. doi:
10.3760/cma.j.cn112144-20220323-00125
. [PMID: 36266079] - Giuseppe Mancia, Rita Facchetti, Fosca Quarti-Trevano, Guido Grassi. Antihypertensive drug treatment in white-coat hypertension: data from the Plaque HYpertension Lipid-Lowering Italian Study.
Journal of hypertension.
2022 10; 40(10):1909-1917. doi:
10.1097/hjh.0000000000003176
. [PMID: 35881420] - Lixia Gao, Xiaoyun Wang, Jian Xiong, Yan Ma. Circular RNA from phosphodiesterase 4D can attenuate chondrocyte apoptosis and matrix degradation under OA milieu induced by IL-1β via circPDE4D/miR-4306/SOX9 Cascade.
Immunopharmacology and immunotoxicology.
2022 Oct; 44(5):682-692. doi:
10.1080/08923973.2022.2077215
. [PMID: 35549803] - Mary G Miltenburg, Christopher Bonner, Shelley Hepworth, Mei Huang, Christof Rampitsch, Rajagopal Subramaniam. Proximity-dependent biotinylation identifies a suite of candidate effector proteins from Fusarium graminearum.
The Plant journal : for cell and molecular biology.
2022 10; 112(2):369-382. doi:
10.1111/tpj.15949
. [PMID: 35986640] - Wei Zhou, Min-Min Chen, Hui-Ling Liu, Zi-Lin Si, Wen-Hui Wu, Hong Jiang, Lin-Xiao Wang, Nosratola D Vaziri, Xiao-Fei An, Ke Su, Cheng Chen, Ning-Hua Tan, Zhi-Hao Zhang. Dihydroartemisinin suppresses renal fibrosis in mice by inhibiting DNA-methyltransferase 1 and increasing Klotho.
Acta pharmacologica Sinica.
2022 Oct; 43(10):2609-2623. doi:
10.1038/s41401-022-00898-3
. [PMID: 35347248] - Jian Xue, Ying Li, Jie Liu, Zixuan Zhang, Rongjun Yu, Yaling Huang, Chaorui Li, Anyi Chen, Jingfu Qiu. Highly sensitive electrochemical aptasensor for SARS-CoV-2 antigen detection based on aptamer-binding induced multiple hairpin assembly signal amplification.
Talanta.
2022 Oct; 248(?):123605. doi:
10.1016/j.talanta.2022.123605
. [PMID: 35671548] - Depeng Wang, Yabing Meng, Fangang Meng. Genome-centric metagenomics insights into functional divergence and horizontal gene transfer of denitrifying bacteria in anammox consortia.
Water research.
2022 Oct; 224(?):119062. doi:
10.1016/j.watres.2022.119062
. [PMID: 36116192] - Yuan Ding, He Chen, Lingfeng Zong, Panpan Cui, Xujin Wu, Minghua Wang, Xiude Hua. Biotin-labelled peptidomimetic for competitive time-resolved fluoroimmunoassay of benzothiostrobin.
Analytical and bioanalytical chemistry.
2022 Oct; 414(24):7143-7151. doi:
10.1007/s00216-022-04288-w
. [PMID: 36006431] - Maasa Yokomori, Hayato Suzuki, Akiyoshi Nakamura, Shigeo S Sugano, Miho Tagawa. DNA-functionalized colloidal crystals for macromolecular encapsulation.
Soft matter.
2022 Sep; 18(36):6954-6964. doi:
10.1039/d2sm00949h
. [PMID: 36063070] - Xueqin Gao, Jizhong Ma, Jianzhong Tie, Yutong Li, Linli Hu, Jihua Yu. BR-Mediated Protein S-Nitrosylation Alleviated Low-Temperature Stress in Mini Chinese Cabbage (Brassica rapa ssp. pekinensis).
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810964
. [PMID: 36142872] - Grant A Hedblom, Kamal Dev, Steven D Bowden, David J Baumler. Comparative genome analysis of commensal segmented filamentous bacteria (SFB) from turkey and murine hosts reveals distinct metabolic features.
BMC genomics.
2022 Sep; 23(1):659. doi:
10.1186/s12864-022-08886-x
. [PMID: 36115942] - Ahmad Zada, Imran Khan, Min Zhang, Yuting Cheng, Xueyun Hu. AirID-Based Proximity Labeling for Protein-Protein Interaction in Plants.
Journal of visualized experiments : JoVE.
2022 09; ?(187):. doi:
10.3791/64428
. [PMID: 36190279] - Kun Wang, Yilin Liu, Caiyun Liu, Hanchuang Zhu, Xiwei Li, Miaohui Yu, Lunying Liu, Guoqing Sang, Wenlong Sheng, Baocun Zhu. A new-type HOCl-activatable fluorescent probe and its applications in water environment and biosystems.
The Science of the total environment.
2022 Sep; 839(?):156164. doi:
10.1016/j.scitotenv.2022.156164
. [PMID: 35609703] - Wei Wuli, Shinn-Zong Lin, Shee-Ping Chen, Bakhos A Tannous, Wen-Sheng Huang, Peng Yeong Woon, Yang-Chang Wu, Hsueh-Hui Yang, Yi-Cheng Chen, Renata Lopes Fleming, Jack T Rogers, Catherine M Cahill, Tsung-Jung Ho, Tzyy-Wen Chiou, Horng-Jyh Harn. Targeting PSEN1 by lnc-CYP3A43-2/miR-29b-2-5p to Reduce β Amyloid Plaque Formation and Improve Cognition Function.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810554
. [PMID: 36142465] - Jialiang Lu, Qianqian Wang, Zhaojun Wang, Jinguo Liu, Yu Guo, Chenghao Pan, Xin Li, Jinxin Che, Zheng Shi, Shuo Zhang. Log P analyzation-based discovery of GSH activated biotin-tagged fluorescence probe for selective colorectal cancer imaging.
European journal of medicinal chemistry.
2022 Sep; 239(?):114555. doi:
10.1016/j.ejmech.2022.114555
. [PMID: 35763866] - Saheb Abbas Torki, Effat Bahadori, Soheila Shekari, Soroor Fathi, Maryam Gholamalizadeh, Naeemeh Hasanpour Ardekanizadeh, Bahareh Aminnezhad, Mina Ahmadzadeh, Mahtab Sotoudeh, Fatemeh Shafie, Samira Rastgoo, Farhad Vahid, Saeid Doaei. Association between the index of nutritional quality and lipid profile in adult women.
Endocrinology, diabetes & metabolism.
2022 09; 5(5):e358. doi:
10.1002/edm2.358
. [PMID: 35856460] - Yong Pu, Elvis Ticiani, Anita A Waye, Kunzhe Dong, Huanmin Zhang, Almudena Veiga-Lopez. Sex-specific extracellular matrix remodeling during early adipogenic differentiation by gestational bisphenol A exposure.
Chemosphere.
2022 Sep; 302(?):134806. doi:
10.1016/j.chemosphere.2022.134806
. [PMID: 35504463] - Chuanjiang Jian, Ying Wang, Huijun Liu, Zongning Yin. A biotin-modified and H2O2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2022 Aug; 177(?):24-38. doi:
10.1016/j.ejpb.2022.05.019
. [PMID: 35667614] - Christina Johannsen, Anam Ul Haq, Léon Reubsaet, Trine Grønhaug Halvorsen. On the spot immunocapture in targeted biomarker analysis using paper-bound streptavidin as anchor for biotinylated antibodies.
Analytical and bioanalytical chemistry.
2022 Aug; 414(19):5979-5989. doi:
10.1007/s00216-022-04161-w
. [PMID: 35687151] - Tun Naw Sut, Hyeonjin Park, Dong Jun Koo, Bo Kyeong Yoon, Joshua A Jackman. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization.
Sensors (Basel, Switzerland).
2022 Jul; 22(14):. doi:
10.3390/s22145185
. [PMID: 35890865] - Yan Xiluan, Zhao Kun, Yang Yunting, Xiao Yipi, Zha Chengyi, Mai Xi, Liu Jie. Chemiluminescent detection of platelet derived growth factor-BB based on sandwich label-free aptasensor and biotin-streptavidin strategy.
Journal of immunological methods.
2022 07; 506(?):113289. doi:
10.1016/j.jim.2022.113289
. [PMID: 35644254] - Jinrong Liu, Chong Ma, Siwei Shi, Heng Liu, Wei Wen, Xiuhua Zhang, Zhen Wu, Shengfu Wang. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing.
Biosensors & bioelectronics.
2022 Jul; 207(?):114182. doi:
10.1016/j.bios.2022.114182
. [PMID: 35305388] - Takahito Sanada, Junji Yamaguchi, Yoko Furuta, Soichiro Kakuta, Isei Tanida, Yasuo Uchiyama. In-resin CLEM of Epon-embedded cells using proximity labeling.
Scientific reports.
2022 07; 12(1):11130. doi:
10.1038/s41598-022-15438-6
. [PMID: 35778550] - Yunxiao Feng, Gang Liu, Chunhuan Zhang, Jinrui Li, Yuanyuan Li, Lin Liu. Fluorescent Immunoassay with a Copper Polymer as the Signal Label for Catalytic Oxidation of O-Phenylenediamine.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123675
. [PMID: 35744801] - Grant J Myres, Jay P Kitt, Joel M Harris. Inter-Leaflet Phospholipid Exchange Impacts the Ligand Density Available for Protein Binding at Supported Lipid Bilayers.
Langmuir : the ACS journal of surfaces and colloids.
2022 06; 38(22):6967-6976. doi:
10.1021/acs.langmuir.2c00526
. [PMID: 35617691] - Junjun Li, Fuxing Ge, Shana Wuken, Shungang Jiao, Panlong Chen, Meiwen Huang, Xiaoli Gao, Juan Liu, Pengfei Tu, Xingyun Chai, Luqi Huang. Zerumbone, a humulane sesquiterpene from Syringa pinnatifolia, attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jun; 100(?):154078. doi:
10.1016/j.phymed.2022.154078
. [PMID: 35405613] - Ru Li, Yao Peng, Yanchi Pu, Yi Zhao, Ruifang Nie, Li Guo, Yong Wu. Fructose and biotin co-modified liposomes for dual-targeting breast cancer.
Journal of liposome research.
2022 Jun; 32(2):119-128. doi:
10.1080/08982104.2021.1894171
. [PMID: 34895001] - Douglas M Ornoff, Eric Balaban, Ajay Major, Andrew Berry, Eric Young. The Missing Factor(s): Disseminated Amyloidosis Causing Coagulopathy Refractory to Plasma Transfusion.
The American journal of medicine.
2022 06; 135(6):721-723. doi:
10.1016/j.amjmed.2022.01.029
. [PMID: 35134365] - Hafsa Majid, Sibtain Ahmed, Siraj Muneer, Ruqaiyyah Hamid, Lena Jafri, Aysha Habib Khan. Biotin-responsive Multiple Carboxylase Deficiency (MCD).
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP.
2022 Jun; 32(6):823-825. doi:
10.29271/jcpsp.2022.06.823
. [PMID: 35686422] - Una Goncin, Wendy Bernhard, Laura Curiel, C Ronald Geyer, Steven Machtaler. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation.
Bioconjugate chemistry.
2022 05; 33(5):848-857. doi:
10.1021/acs.bioconjchem.2c00104
. [PMID: 35427123] - Kyong Tkhe Fam, Rémi Pelletier, Farah Bouhedda, Michael Ryckelynck, Mayeul Collot, Andrey S Klymchenko. Rational Design of Self-Quenched Rhodamine Dimers as Fluorogenic Aptamer Probes for Live-Cell RNA Imaging.
Analytical chemistry.
2022 05; 94(18):6657-6664. doi:
10.1021/acs.analchem.1c04556
. [PMID: 35486532] - Heather A Nelson, Sonia L La'ulu, Jun Lu, Kelly Doyle. Mitigation of Biotin Interference in Manual and Automated Immunoassays by Preconjugating Biotinylated Antibodies to the Streptavidin Surface as an Alternative to Biotin Depletion.
The journal of applied laboratory medicine.
2022 05; 7(3):762-775. doi:
10.1093/jalm/jfab169
. [PMID: 35018420] - Vinicius Goularte-Silva, Luciana Campos Paulino. Ketoconazole beyond antifungal activity: Bioinformatics-based hypothesis on lipid metabolism in dandruff and seborrheic dermatitis.
Experimental dermatology.
2022 05; 31(5):821-822. doi:
10.1111/exd.14505
. [PMID: 34816495] - Anindita Ghosh, Alejandra Russell, Amitava Dasgupta. Technical Note: Newly Reformulated Total and Free PSA Immunoassay on Cobas e411 Analyzer Is Virtually Free from Biotin Interference.
Annals of clinical and laboratory science.
2022 May; 52(3):504-506. doi:
. [PMID: 35777806]
- Adeel Khan, Kaili Di, Haroon Khan, Nongyue He, Zhiyang Li. Rapid Capturing and Chemiluminescent Sensing of Programmed Death Ligand-1 Expressing Extracellular Vesicles.
Biosensors.
2022 Apr; 12(5):. doi:
10.3390/bios12050281
. [PMID: 35624582] - Yao Lin, Yaxi Cui, Yue Yuan, Lu Gao, Qirui Li, Xiaolan Huang, Yanyan Liu, Lin Shi. Plasma Fibroblast Growth Factor 23 as a Predictor for Fosinopril Therapeutic Efficacy in Pediatric Primary Hypertension.
Journal of the American Heart Association.
2022 04; 11(7):e023182. doi:
10.1161/jaha.121.023182
. [PMID: 35322670] - Ayed Al-Anezi, Vania Sotirova-Koulli, Osama Shalaby, Ahmed Ibrahim, Nehad Abdulmotagalli, Ramy Youssef, Mohamed Hossam El-Din. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: A case report.
Brain & development.
2022 Apr; 44(4):303-307. doi:
10.1016/j.braindev.2021.12.003
. [PMID: 34953623] - Tess Holling, Sheela Nampoothiri, Bedirhan Tarhan, Pauline E Schneeberger, Kollencheri Puthenveettil Vinayan, Dhanya Yesodharan, Arun Grace Roy, Periyasamy Radhakrishnan, Malik Alawi, Lindsay Rhodes, Katta Mohan Girisha, Peter B Kang, Kerstin Kutsche. Novel biallelic variants expand the SLC5A6-related phenotypic spectrum.
European journal of human genetics : EJHG.
2022 04; 30(4):439-449. doi:
10.1038/s41431-021-01033-2
. [PMID: 35013551] - Junfang Liu, Minhong Su, Xin Chen, Zhongli Li, Zekui Fang, Li Yi. Lipid-mediated biosynthetic labeling strategy for in vivo dynamic tracing of avian influenza virus infection.
Journal of biomaterials applications.
2022 04; 36(9):1689-1699. doi:
10.1177/08853282211063298
. [PMID: 34996310] - Donald M Mock, Sean R Stowell, Robert S Franco, Svetlana V Kyosseva, Demet Nalbant, Robert L Schmidt, Gretchen A Cress, Ronald G Strauss, José A Cancelas, Melissa von Goetz, Anne K North, John A Widness. Antibodies against biotin-labeled red blood cells can shorten posttransfusion survival.
Transfusion.
2022 04; 62(4):770-782. doi:
10.1111/trf.16849
. [PMID: 35274303] - Saloni Agarwal, Christian Warmt, Joerg Henkel, Livia Schrick, Andreas Nitsche, Frank F Bier. Lateral flow-based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use.
Analytical and bioanalytical chemistry.
2022 Apr; 414(10):3177-3186. doi:
10.1007/s00216-022-03880-4
. [PMID: 35044487] - Saisi Xue, Sivakumar Pattathil, Leonardo da Costa Sousa, Bryan Ubanwa, Bruce Dale, A Daniel Jones, Venkatesh Balan. Understanding the structure and composition of recalcitrant oligosaccharides in hydrolysate using high-throughput biotin-based glycome profiling and mass spectrometry.
Scientific reports.
2022 02; 12(1):2521. doi:
10.1038/s41598-022-06530-y
. [PMID: 35169269] - Cindy Soendersoe Knudsen, Kasper Adelborg, Esben Søndergaard, Tina Parkner. Biotin interference in routine IDS-iSYS immunoassays for aldosterone, renin, insulin-like growth factor 1, growth hormone and bone alkaline phosphatase.
Scandinavian journal of clinical and laboratory investigation.
2022 02; 82(1):6-11. doi:
10.1080/00365513.2021.2003854
. [PMID: 34859720] - Chuwei Lin, Incheol Yeo, Craig P Dufresne, Guimei Zhao, Sarah Joe, Sixue Chen. Identification of MPK4 kinase interactome using TurboID proximity labeling proteomics in Arabidopsis thaliana.
Methods in enzymology.
2022; 676(?):369-384. doi:
10.1016/bs.mie.2022.06.005
. [PMID: 36280358] - Ümmühan Öncül, Fatma Tuba Eminoğlu, Engin Köse, Özlem Doğan, Elif Özsu, Zehra Aycan. Serum biotin interference: A troublemaker in hormone immunoassays.
Clinical biochemistry.
2022 Jan; 99(?):97-102. doi:
10.1016/j.clinbiochem.2021.10.011
. [PMID: 34736903] - Amitava Dasgupta, Samir Khalil, Tiffany Paddock, Amer Wahed. Technical Note: Bimodal Negative Interference of Biotin in Roche IL-6 Immunoassay.
Annals of clinical and laboratory science.
2022 Jan; 52(1):161-163. doi:
NULL
. [PMID: 35181630] - Jagna Chmielowska-Bąk, Karolina Izbiańska-Jankowska, Joanna Deckert. Estimation of the Level of Abasic Sites in Plant mRNA Using Aldehyde Reactive Probe.
Methods in molecular biology (Clifton, N.J.).
2022; 2526(?):125-134. doi:
10.1007/978-1-0716-2469-2_9
. [PMID: 35657516] - John Rodrigo, Hannah Bullock, Bryn E Mumma, Dusanka Kasapic, Nam Tran. The prevalence of elevated biotin in patient cohorts presenting for routine endocrinology, sepsis, and infectious disease testing.
Clinical biochemistry.
2022 Jan; 99(?):118-121. doi:
10.1016/j.clinbiochem.2021.10.012
. [PMID: 34736902] - Rie Yanagihara, Yuri Yamamoto, Takako Kawakita, Hiroki Noguchi, Yuya Yano, Noriko Hayashi, Chiaki Ohta, Saki Minato, Shuhei Kamada, Hidenori Aoki, Kou Tamura, Rie Masaki, Ayaka Tachibana, Ryosuke Arakaki, Kanako Yoshida, Takeshi Kato, Minoru Irahara, Takeshi Iwasa. Biotin levels in blood and follicular fluid and their associations with pregnancy outcomes in IVF/ICSI patients.
The journal of medical investigation : JMI.
2022; 69(1.2):65-69. doi:
10.2152/jmi.69.65
. [PMID: 35466148]