Angiotensin II (BioDeep_00000004853)

 

Secondary id: BioDeep_00001868088

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


(3S)-3-amino-3-{[(1S)-1-{[(1S)-1-{[(1S)-1-{[(1S,2S)-1-{[(2S)-1-[(2S)-2-{[(1S)-1-carboxy-2-phenylethyl]carbamoyl}pyrrolidin-1-yl]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]carbamoyl}-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-methylpropyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid

化学式: C50H71N13O12 (1045.5345)
中文名称: 血管紧张素II
谱图信息: 最多检出来源 not specific(not specific) 0%

分子结构信息

SMILES: CCC(C)C(C(=O)NC(CC1=CN=CN1)C(=O)N2CCCC2C(=O)NC(CC3=CC=CC=C3)C(=O)O)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(C(C)C)NC(=O)C(CCCN=C(N)N)NC(=O)C(CC(=O)O)N
InChI: InChI=1S/C50H71N13O12/c1-5-28(4)41(47(72)59-36(23-31-25-54-26-56-31)48(73)63-20-10-14-38(63)45(70)60-37(49(74)75)22-29-11-7-6-8-12-29)62-44(69)35(21-30-15-17-32(64)18-16-30)58-46(71)40(27(2)3)61-43(68)34(13-9-19-55-50(52)53)57-42(67)33(51)24-39(65)66/h6-8,11-12,15-18,25-28,33-38,40-41,64H,5,9-10,13-14,19-24,51H2,1-4H3,(H,54,56)(H,57,67)(H,58,71)(H,59,72)(H,60,70)(H,61,68)(H,62,69)(H,65,66)(H,74,75)(H4,52,53,55)

描述信息

Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feedback mechanisms in turn modulate the activity of the brain Angiotensin II systems. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated. (PMID: 17147923, 16672146, 16601568, 16481883, 16075377).
Angiotensin II is a hormone that may act on the central nervous system to regulate renal sympathetic nerve activity, renal function, and, therefore, blood pressure. Angiotensin II is produced locally within the kidney and mediates tissue injury through a series of nonhemodynamic effects. angiotensin II is not only involved in the regulation of blood pressure, water and sodium homeostasis, and control of other neurohumoral systems, but also leads to excessive production of reactive oxygen species and to hypertrophy, proliferation, migration, and apoptosis of vascular cells. Angiotensin II is one of the main factors involved in hypertension-induced tissue damage. This peptide regulates the inflammatory process. Angiotensin II activates circulating cells, and participates in their adhesion to the activated endothelium and subsequent transmigration through the synthesis of adhesion molecules, chemokines and cytokines. Among the intracellular signals involved in angiotensin II-induced inflammation, the production of reactive oxygen species and the activation of nuclear factor-kappaB are the best known.
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides
COVID info from WikiPathways, clinicaltrial, clinicaltrials, clinical trial, clinical trials
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
C307 - Biological Agent
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].
Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].
Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].
Angiotensin II (Angiotensin II) is a vasoconstrictor and a major bioactive peptide of the renin/angiotensin system. Angiotensin II human plays a central role in regulating human blood pressure, which is mainly mediated by interactions between Angiotensin II and the G-protein-coupled receptors (GPCRs) Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R). Angiotensin II human stimulates sympathetic nervous stimulation, increases aldosterone biosynthesis and renal actions. Angiotensin II human induces growth of vascular smooth muscle cells, increases collagen type I and III synthesis in fibroblasts, leading to thickening of the vascular wall and myocardium, and fibrosis. Angiotensin II human also induces apoptosis. Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway[1][2][3][4].

同义名列表

37 个代谢物同义名

(3S)-3-amino-3-{[(1S)-1-{[(1S)-1-{[(1S)-1-{[(1S,2S)-1-{[(2S)-1-[(2S)-2-{[(1S)-1-carboxy-2-phenylethyl]carbamoyl}pyrrolidin-1-yl]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]carbamoyl}-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-methylpropyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid; (3S)-3-amino-3-{[(1S)-1-{[(1S)-1-{[(1S)-1-{[(1S,2S)-1-{[(2S)-1-[(2S)-2-{[(1S)-1-carboxy-2-phenylethyl]carbamoyl}pyrrolidin-1-yl]-3-(3H-imidazol-4-yl)-1-oxopropan-2-yl]carbamoyl}-2-methylbutyl]carbamoyl}-2-(4-hydroxyphenyl)ethyl]carbamoyl}-2-methylpropyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}propanoic acid; 3-amino-4-[[1-[[1-[[1-[[1-[[1-[2-[(1-carboxy-2-phenylethyl)carbamoyl]pyrrolidin-1-yl]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-4-oxobutanoic acid; N-(1-(N-(N-(N-(N-(N(2)-L-alpha-Aspartyl-L-arginyl)-L-valyl)-L-tyrosyl)-L-isoleucyl)-L-histidyl)-L-prolyl)-L-phenylalanine; N-(1-(N-(N-(N-(N-(N(2)-L-a-Aspartyl-L-arginyl)-L-valyl)-L-tyrosyl)-L-isoleucyl)-L-histidyl)-L-prolyl)-L-phenylalanine; N-(1-(N-(N-(N-(N-(N(2)-L-Α-aspartyl-L-arginyl)-L-valyl)-L-tyrosyl)-L-isoleucyl)-L-histidyl)-L-prolyl)-L-phenylalanine; 1-L-Aspasaginyl-5-L-valyl angiotensin octapeptide; Asp-arg-val-tyr-ile-his-pro-phe; II, 5-L-isoleucine angiotensin; Angiotensin II, 5-L-isoleucine; 5-L-Isoleucine angiotensin II; 5 L Isoleucine angiotensin II; Angiotensin-(1-8) octapeptide; Isoleucine(5)-angiotensin II; 5-L-Isoleucineangiotensin II; Angiotensin II acetate salt; Isoleucyl(5)-angiotensin II; 5-Isoleucine-angiotensin II; Isoleucine(5)-angiotensin; Valyl(5)-angiotensin II; Angiotensin II (human); Angiotensin II (mouse); Ile(5)-angiotensin II; Human angiotensin II; ANG-(1-8)octapeptide; 1-8-Angiotensin I; Angiotensina II; Angiotensin II; Angiotensin 2; Hypertensin; Angiotensin; Angiotonin; Delivert; Ang II; DRVYIHPF; Angiotensin II human; Angiotensin II



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

40 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(13)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(27)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ADM, EDN1, ITPR3, MME, NFKB1, POMC, PRL, RHOA, SRC, TGFB1
Endosome membrane 1 ATP6AP2
Endoplasmic reticulum membrane 3 ATP6AP2, ITPR3, RHOA
Nucleus 7 NFKB1, PLCZ1, PRL, RAPGEF5, RHOA, SRC, TGFB1
cytosol 5 DUOX2, NFKB1, PLCZ1, RHOA, SRC
dendrite 1 MME
nuclear body 1 RAPGEF5
trans-Golgi network 1 MME
nucleoplasm 6 ITPR3, NFKB1, PLCZ1, PRL, RAPGEF5, SRC
RNA polymerase II transcription regulator complex 1 PRL
Cell membrane 4 GPRC5A, MME, RHOA, SRC
Lipid-anchor 2 RHOA, SRC
Cytoplasmic side 1 RHOA
Cleavage furrow 1 RHOA
lamellipodium 1 RHOA
ruffle membrane 2 RHOA, SRC
Cell projection, axon 1 ATP6AP2
Multi-pass membrane protein 3 DUOX2, GPRC5A, ITPR3
Synapse 3 CRH, MME, TAC1
cell cortex 1 RHOA
cell junction 3 DUOX2, RHOA, SRC
cell surface 3 DUOX2, MME, TGFB1
glutamatergic synapse 2 RHOA, SRC
Golgi membrane 1 ATP6AP2
lysosomal membrane 2 ATP6AP2, EGF
mitochondrial inner membrane 1 SRC
neuronal cell body 5 ITPR3, MME, SRC, TAC1, TGFB1
postsynapse 1 RHOA
synaptic vesicle 1 MME
Cytoplasmic vesicle, secretory vesicle 1 NTS
Lysosome 2 ATP6AP2, SRC
Presynapse 1 MME
endosome 1 RHOA
plasma membrane 10 ATP6AP2, DUOX2, EGF, GPRC5A, ITPR3, MME, RAPGEF5, RHOA, SRC, TGFB1
synaptic vesicle membrane 1 ATP6AP2
Membrane 5 ATP6AP2, DUOX2, EGF, ITPR3, MME
apical plasma membrane 1 DUOX2
axon 4 ATP6AP2, MME, TAC1, TGFB1
brush border 2 ITPR3, MME
caveola 1 SRC
extracellular exosome 7 ATP6AP2, DUOX2, EGF, GPRC5A, MME, RHOA, SRC
Lysosome membrane 1 ATP6AP2
endoplasmic reticulum 2 DUOX2, ITPR3
extracellular space 9 ADM, CRH, CRP, EDN1, EGF, POMC, PRL, TAC1, TGFB1
perinuclear region of cytoplasm 2 PLCZ1, SRC
mitochondrion 2 NFKB1, SRC
intracellular membrane-bounded organelle 2 GPRC5A, NTS
pronucleus 1 PLCZ1
Single-pass type I membrane protein 1 ATP6AP2
Secreted 8 ADM, CRH, CRP, EDN1, NTS, POMC, PRL, TGFB1
extracellular region 11 ADM, CRH, CRP, EDN1, EGF, NFKB1, NTS, POMC, PRL, TAC1, TGFB1
cytoplasmic side of plasma membrane 1 RHOA
basal part of cell 1 EDN1
anchoring junction 1 DUOX2
transcription regulator complex 1 NFKB1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP6AP2
external side of plasma membrane 1 ATP6AP2
varicosity 1 CRH
Secreted, extracellular space, extracellular matrix 1 TGFB1
dendritic spine 1 RHOA
neuronal dense core vesicle lumen 1 CRH
perikaryon 1 CRH
cytoplasmic vesicle 1 MME
nucleolus 3 GPRC5A, ITPR3, PLCZ1
Cytoplasmic vesicle, clathrin-coated vesicle membrane 1 ATP6AP2
clathrin-coated vesicle membrane 1 ATP6AP2
midbody 1 RHOA
Early endosome 1 MME
apical part of cell 2 DUOX2, ITPR3
Single-pass type II membrane protein 1 MME
vesicle 2 GPRC5A, RHOA
postsynaptic membrane 1 ATP6AP2
Apical cell membrane 1 DUOX2
Cell projection, lamellipodium 1 RHOA
Cytoplasm, perinuclear region 2 PLCZ1, SRC
Mitochondrion inner membrane 1 SRC
Membrane raft 2 MME, SRC
Cell junction, focal adhesion 1 SRC
Cytoplasm, cytoskeleton 1 SRC
focal adhesion 3 MME, RHOA, SRC
extracellular matrix 1 TGFB1
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 1 TGFB1
secretory granule 2 POMC, TGFB1
nuclear outer membrane 1 ITPR3
Late endosome 1 SRC
receptor complex 2 GPRC5A, ITPR3
chromatin 2 NFKB1, PRL
cell leading edge 1 DUOX2
Cytoplasmic vesicle, autophagosome membrane 1 ATP6AP2
autophagosome membrane 1 ATP6AP2
cell periphery 1 RHOA
cytoskeleton 1 RHOA
podosome 1 SRC
Cytoplasm, cell cortex 1 RHOA
actin filament 1 SRC
blood microparticle 1 TGFB1
endosome lumen 1 PRL
Cytoplasmic vesicle membrane 1 GPRC5A
Cell projection, dendrite 1 RHOA
tertiary granule membrane 1 ATP6AP2
dendritic growth cone 1 SRC
synaptic membrane 1 SRC
secretory granule lumen 2 NFKB1, POMC
secretory granule membrane 3 ITPR3, MME, RHOA
Golgi lumen 1 TGFB1
platelet alpha granule lumen 2 EGF, TGFB1
axon terminus 1 NTS
specific granule lumen 1 NFKB1
transport vesicle 2 EDN1, NTS
clathrin-coated endocytic vesicle membrane 1 EGF
platelet dense tubular network membrane 1 ITPR3
ficolin-1-rich granule membrane 2 ATP6AP2, RHOA
apical junction complex 1 RHOA
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
postsynaptic specialization, intracellular component 1 SRC
Cell projection, dendritic spine membrane 1 ATP6AP2
dendritic spine membrane 1 ATP6AP2
proton-transporting V-type ATPase complex 1 ATP6AP2
vacuolar proton-transporting V-type ATPase complex 1 ATP6AP2
vacuolar proton-transporting V-type ATPase, V0 domain 1 ATP6AP2
[Latency-associated peptide]: Secreted, extracellular space, extracellular matrix 1 TGFB1
[Transforming growth factor beta-1]: Secreted 1 TGFB1
transport vesicle membrane 1 ITPR3
rough endoplasmic reticulum lumen 1 EDN1
sperm head 1 PLCZ1
Weibel-Palade body 1 EDN1
NADPH oxidase complex 1 DUOX2
neuron projection terminus 1 MME
dendritic filopodium 1 SRC
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1


文献列表

  • Lin Liao, Pengyu Tao, Qiming Xu, Jie Chen, Weiwei Liu, Jing Hu, Jianrao Lu. Bushen Huoxue formula protects against renal fibrosis and pyroptosis in chronic kidney disease by inhibiting ROS/NLRP3-mediated inflammasome activation. Renal failure. 2024 Dec; 46(1):2354444. doi: 10.1080/0886022x.2024.2354444. [PMID: 38785272]
  • Xue-Min Yin, Yi-Yi Song, Wen-Yi Jiang, Hao-Tian Zhang, Jing-Wei Chen, Koji Murao, Meng-Xiao Han, Wan-Ping Sun, Guo-Xing Zhang. Mitochondrial KATP channel-mediated autophagy contributes to angiotensin II-induced vascular dysfunction in mice. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2024 Jun; 34(6):1571-1580. doi: 10.1016/j.numecd.2024.01.019. [PMID: 38418351]
  • Pingping Tuo, Risheng Zhao, Ning Li, Shuang Yan, Gege Yang, Chunmei Wang, Jinghui Sun, Haiming Sun, Mengyang Wang. Lycorine inhibits Ang II-induced heart remodeling and inflammation by suppressing the PI3K-AKT/NF-κB pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155464. doi: 10.1016/j.phymed.2024.155464. [PMID: 38484625]
  • Ren Ozawa, Hisataka Iwata, Takehito Kuwayama, Koumei Shirasuna. Maternal hypertensive condition alters adipose tissue function and blood pressure sensitivity in offspring. Biochemical and biophysical research communications. 2024 May; 707(?):149617. doi: 10.1016/j.bbrc.2024.149617. [PMID: 38520942]
  • Jinxiang Xie, Shupeng Chen, Pengtao Huan, Shuguang Wang, Yongliang Zhuang. A novel angiotensin I-converting enzyme inhibitory peptide from walnut (Juglans sigillata) protein hydrolysates and its evaluation in Ang II-induced HUVECs and hypertensive rats. International journal of biological macromolecules. 2024 May; 266(Pt 2):131152. doi: 10.1016/j.ijbiomac.2024.131152. [PMID: 38556230]
  • Ying Cheng, Mengchao Yan, Shuyu He, Yi Xie, Lihui Wei, Bihan Xuan, Zucheng Shang, Meizhu Wu, Huifang Zheng, Youqin Chen, Meng Yuan, Jun Peng, Aling Shen. Baicalin alleviates angiotensin II-induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway. Journal of cellular and molecular medicine. 2024 May; 28(9):e18321. doi: 10.1111/jcmm.18321. [PMID: 38712979]
  • Qiuxiang Chen, Juan Wang, Lihua Sun, Bayinsilema Ba, Difei Shen. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking. Journal of cellular and molecular medicine. 2024 May; 28(10):e18331. doi: 10.1111/jcmm.18331. [PMID: 38780500]
  • Xiaohu Yang, Wenchao Yang, Shuang He, He Ye, Shanshan Lei. Danhong formula alleviates endothelial dysfunction and reduces blood pressure in hypertension by regulating MicroRNA 24 - Phosphatidylinositol 3-Kinase-Serine/Threonine Kinase- Endothelial Nitric Oxide Synthase axis. Journal of ethnopharmacology. 2024 Apr; 323(?):117615. doi: 10.1016/j.jep.2023.117615. [PMID: 38163560]
  • Zimri Aziel Alvarado-Ojeda, Celeste Trejo-Moreno, Eduardo Ferat-Osorio, Marisol Méndez-Martínez, Gladis Fragoso, Gabriela Rosas-Salgado. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Archives of medical research. 2024 Apr; 55(3):102986. doi: 10.1016/j.arcmed.2024.102986. [PMID: 38492325]
  • Yue He, Xinsheng Gu, Zhou Yang, Hao Wang, Ping Liu. Study on the mechanism underlying Trichosanthis peel injection-induced improvements in myocardial fibrosis markers in patients with chronic heart failure. Clinical and experimental pharmacology & physiology. 2024 04; 51(4):e13848. doi: 10.1111/1440-1681.13848. [PMID: 38423007]
  • Tianyuan Song, Yin-Yi Ding, Tiantian Zhang, Qiaolin Cai, Yonghong Hu, Qing Gu, Zhenyu Gu. Soybean-derived antihypertensive hydrolysates attenuate Ang II-induced renal damage by modulating MAPK and NF-κB signaling pathways. Food & function. 2024 Mar; 15(5):2485-2496. doi: 10.1039/d3fo05247h. [PMID: 38334682]
  • Martina Mihalj, Mario Štefanić, Zrinka Mihaljević, Nikolina Kolobarić, Ivana Jukić, Ana Stupin, Anita Matić, Ruža Frkanec, Branka Tavčar, Anita Horvatić, Ines Drenjančević. Early Low-Grade Inflammation Induced by High-Salt Diet in Sprague Dawley Rats Involves Th17/Treg Axis Dysregulation, Vascular Wall Remodeling, and a Shift in the Fatty Acid Profile. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2024 Feb; 58(1):83-103. doi: 10.33594/000000684. [PMID: 38459804]
  • Longyue Zhou, Shankang Chen, Yuanyi Wei, Yihui Sun, Yifan Yang, Bingqi Lin, Yuhao Li, Chunxia Wang. Glycyrrhizic acid restores the downregulated hepatic ACE2 signaling in the attenuation of mouse steatohepatitis. European journal of pharmacology. 2024 Feb; ?(?):176365. doi: 10.1016/j.ejphar.2024.176365. [PMID: 38316247]
  • Mingchuan Yang, Ximing Wu, Yufeng He, Xiuli Li, Lumin Yang, Tingting Song, Fuming Wang, Chung S Yang, Jinsong Zhang. EGCG oxidation-derived polymers induce apoptosis in digestive tract cancer cells via regulating the renin-angiotensin system. Food & function. 2024 Jan; ?(?):. doi: 10.1039/d3fo03795a. [PMID: 38293823]
  • Hui-Hsuan Lin, Chia-Lin Tsai, Chiao-Yun Tseng, Pei-Rong Yu, Pei-Yu Chiu, Cheng-Chin Hsu, Jing-Hsien Chen. Anti-Hypertensive Effect of Solanum muricatum Aiton Leaf Extract In Vivo and In Vitro. Plant foods for human nutrition (Dordrecht, Netherlands). 2024 Jan; ?(?):. doi: 10.1007/s11130-024-01146-1. [PMID: 38270742]
  • Hao Yu, Daojing Gan, Zhen Luo, Qilin Yang, Dongqi An, Hao Zhang, Yingchun Hu, Zhuang Ma, Qingchun Zeng, Dingli Xu, Hao Ren. α-Ketoglutarate improves cardiac insufficiency through NAD+-SIRT1 signaling-mediated mitophagy and ferroptosis in pressure overload-induced mice. Molecular medicine (Cambridge, Mass.). 2024 Jan; 30(1):15. doi: 10.1186/s10020-024-00783-1. [PMID: 38254035]
  • Qian Xu, Kunping Zhuo, Xiaotian Zhang, Yanru Zhen, Limin Liu, Lu Zhang, Yufan Gu, Hui Jia, Qing Chen, Meixi Liu, Jiawei Dong, Ming-Sheng Zhou. The role of angiotensin II activation of yes-associated protein/PDZ-binding motif signaling in hypertensive cardiac and vascular remodeling. European journal of pharmacology. 2024 Jan; 962(?):176252. doi: 10.1016/j.ejphar.2023.176252. [PMID: 38061470]
  • Ru-Li Li, Cai-Li Zhuo, Xin Yan, He Li, Lan Lin, Ling-Yu Li, Qiying Jiang, Die Zhang, Xue-Mei Wang, Lin-Ling Liu, Wen-Jing Huang, Ying-Ling Wang, Xin-Yue Li, Yan Mao, Yixin Chen, Xiao Liu, Quan-Chen Xu, Yu-Yan Cai, Xi-Jing Yang, Hong-Ying Chen, Si-Si Wu, Wei Jiang. Irisin attenuates vascular remodeling in hypertensive mice induced by Ang II by suppressing Ca2+-dependent endoplasmic reticulum stress in VSMCs. International journal of biological sciences. 2024; 20(2):680-700. doi: 10.7150/ijbs.84153. [PMID: 38169582]
  • Xiatian Chen, Longgang Hu, Ruoying Wang, Min Luo, Chuang Wei, Peifeng Li, Hua Yu. Uncovering the mechanism of Naoxintong capsule against hypertension based on network analysis and in vitro experiments. Chemical biology & drug design. 2024 01; 103(1):e14440. doi: 10.1111/cbdd.14440. [PMID: 38230784]
  • Runzhi Liu, Liying Zhong, Cong Wang, Yehai Sun, Wunjuan Ru, Wei Dai, Shengnan Yang, Aimin Zhong, XiuMei Xie, XiaoBin Chen, Shundong Li. MiR-3646 accelerates inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis in hypertension model. Clinical and experimental hypertension (New York, N.Y. : 1993). 2023 Dec; 45(1):2166948. doi: 10.1080/10641963.2023.2166948. [PMID: 36751048]
  • Zhi Guo, Xuan Yang, Meizhu Wu, Aling Shen, Jiapeng Li, Xiuli Zhang, Ying Cheng, Qiurong Xie, Jun Peng. Gastrodin attenuates angiotensin II-induced vascular contraction and MLCK/p-MLC2 pathway activation. Pharmaceutical biology. 2023 Dec; 61(1):858-867. doi: 10.1080/13880209.2023.2207591. [PMID: 37211627]
  • Qihai Xie, Xiangdong Xu, Danqun Xiong, Man Yao, Yafeng Zhou. CircRNA Larp4b/miR-298-5p/Mef2c Regulates Cardiac Hypertrophy Induced by Angiotensin II. International journal of sports medicine. 2023 Nov; ?(?):. doi: 10.1055/a-2172-8171. [PMID: 37956874]
  • Cheng Wei, Jishou Zhang, Shanshan Peng, Jianfang Liu, Yao Xu, Mengmeng Zhao, Shuwan Xu, Wei Pan, Zheng Yin, Zihui Zheng, Juan-Juan Qin, Jun Wan, Menglong Wang. Resolvin D1 attenuates Ang II-induced hypertension in mice by inhibiting the proliferation, migration and phenotypic transformation of vascular smooth muscle cells by blocking the RhoA/mitogen-activated protein kinase pathway. Journal of hypertension. 2023 Nov; ?(?):. doi: 10.1097/hjh.0000000000003610. [PMID: 37937508]
  • Celeste Trejo-Moreno, Zimri Aziel Alvarado-Ojeda, Marisol Méndez-Martínez, Mario Ernesto Cruz-Muñoz, Gabriela Castro-Martínez, Gerardo Arrellín-Rosas, Alejandro Zamilpa, Jesús Enrique Jimenez-Ferrer, Juan Carlos Baez Reyes, Gladis Fragoso, Gabriela Rosas Salgado. Aqueous Fraction from Cucumis sativus Aerial Parts Attenuates Angiotensin II-Induced Endothelial Dysfunction In Vivo by Activating Akt. Nutrients. 2023 Nov; 15(21):. doi: 10.3390/nu15214680. [PMID: 37960332]
  • Jishou Zhang, Zheng Yin, Yao Xu, Cheng Wei, Shanshan Peng, Mengmeng Zhao, Jianfang Liu, Shuwan Xu, Wei Pan, Zihui Zheng, Siqi Liu, Jing Ye, Juan-Juan Qin, Jun Wan, Menglong Wang. Resolvin E1/ChemR23 Protects Against Hypertension and Vascular Remodeling in Angiotensin II-Induced Hypertensive Mice. Hypertension (Dallas, Tex. : 1979). 2023 Oct; ?(?):. doi: 10.1161/hypertensionaha.123.21348. [PMID: 37800344]
  • Manigandan Nagarajan, Gobichettipalayam Balasubramaniam Maadurshni, Jeganathan Manivannan. Exposure to low dose of Bisphenol A (BPA) intensifies kidney oxidative stress, inflammatory factors expression and modulates Angiotensin II signaling under hypertensive milieu. Journal of biochemical and molecular toxicology. 2023 Sep; ?(?):e23533. doi: 10.1002/jbt.23533. [PMID: 37718616]
  • Joshua Abd Alla, Eric Nerger, Andreas Langer, Ursula Quitterer. Identification of Membrane Palmitoylated Protein 1 (MPP1) as a Heart-Failure-Promoting Protein Triggered by Cardiovascular Risk Factors and Aging. Biochemical pharmacology. 2023 Sep; ?(?):115789. doi: 10.1016/j.bcp.2023.115789. [PMID: 37683843]
  • En Ma, Celiang Wu, Jinxiao Chen, Da Wo, Dan-Ni Ren, Hongwei Yan, Luying Peng, Weidong Zhu. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Sep; 165(?):115275. doi: 10.1016/j.biopha.2023.115275. [PMID: 37541173]
  • Bharat Poudel, Rajitha Rajeshwar T, Juan M Vanegas. Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor. Nature communications. 2023 08; 14(1):4690. doi: 10.1038/s41467-023-40433-4. [PMID: 37542033]
  • Jin Wang, Dongxue Li, Yan Zhang, Dehai Xing, Zhandong Lei, Xiangying Jiao. Angiotensin II type 1a receptor knockout ameliorates high-fat diet-induced cardiac dysfunction by regulating glucose and lipid metabolism. Acta biochimica et biophysica Sinica. 2023 Jul; ?(?):. doi: 10.3724/abbs.2023054. [PMID: 37501512]
  • Yu-Seon Jung, David Suh, Eunyoung Kim, Hee-Deok Park, Dong-Churl Suh, Sun-Young Jung. Medications influencing the risk of fall-related injuries in older adults: case-control and case-crossover design studies. BMC geriatrics. 2023 07; 23(1):452. doi: 10.1186/s12877-023-04138-z. [PMID: 37481554]
  • Z Liu, X Qiu, H Yang, X Wu, W Ye. [Inhibitor of growth protein-2 silencing alleviates angiotensin Ⅱ-induced cardiac remodeling in mice by reducing p53 acetylation]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2023 Jul; 43(7):1127-1135. doi: 10.12122/j.issn.1673-4254.2023.07.09. [PMID: 37488795]
  • Cheng Xu, Xiaowei Liu, Lei Yu, Xiaoxin Fang, Lei Yao, HuiChong Lau, Punit Vyas, Luke Pryke, Baohui Xu, Lijiang Tang, Jianjun Jiang, Xiaofeng Chen. CD147 monoclonal antibody attenuates abdominal aortic aneurysm formation in angiotensin II-Infused apoE-/- mice. International immunopharmacology. 2023 Jun; 122(?):110526. doi: 10.1016/j.intimp.2023.110526. [PMID: 37393837]
  • Ting Xie, Chuxiang Lei, Wei Song, Xunyao Wu, Jianqiang Wu, Fangyuan Li, Yanze Lv, Yuexin Chen, Bao Liu, Yuehong Zheng. Plasma Lipidomics Analysis Reveals the Potential Role of Lysophosphatidylcholines in Abdominal Aortic Aneurysm Progression and Formation. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210253. [PMID: 37373399]
  • Huahui Yu, Xiaolu Jiao, Yunyun Yang, Qianwen Lv, Zhiyong Du, Linyi Li, Chaowei Hu, Yunhui Du, Jing Zhang, Fan Li, Qiuju Sun, Yu Wang, Dong Chen, Xiaoping Zhang, Yanwen Qin. ANGPTL8 Deletion Attenuates Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. Clinical science (London, England : 1979). 2023 Jun; ?(?):. doi: 10.1042/cs20230031. [PMID: 37294581]
  • Farman Ali, Di Wang, Ying Cheng, Meizhu Wu, Muhammad Zubair Saleem, Lihui Wei, Yi Xie, Mengchao Yan, Jiangfeng Chu, Yanyan Yang, Aling Shen, Jun Peng. Quercetin attenuates angiotensin II-induced proliferation of vascular smooth muscle cells and p53 pathway activation in vitro and in vivo. BioFactors (Oxford, England). 2023 Jun; ?(?):. doi: 10.1002/biof.1959. [PMID: 37296538]
  • Xiaolu Jiao, Huahui Yu, Zhiyong Du, Linyi Li, Chaowei Hu, Yunhui Du, Jing Zhang, Xiaoping Zhang, Qianwen Lv, Fan Li, Qiuju Sun, Yu Wang, Yanwen Qin. Vascular Smooth Muscle Cells Specific Deletion of Angiopoietin-Like Protein 8 Prevents AngII-Promoted Hypertension and Cardiovascular Hypertrophy. Cardiovascular research. 2023 Jun; ?(?):. doi: 10.1093/cvr/cvad089. [PMID: 37285486]
  • Jia Guo, Jinyun Shi, Min Qin, Yan Wang, Zhidong Li, Takahiro Shoji, Toru Ikezoe, Yingbin Ge, Baohui Xu. Pharmacological Inhibition of Gasdermin D Suppresses Angiotensin II-Induced Experimental Abdominal Aortic Aneurysms. Biomolecules. 2023 05; 13(6):. doi: 10.3390/biom13060899. [PMID: 37371479]
  • Masoumeh Habibian, Sara Biniaz, Seyyed Jafar Moosavi. Protective Role of Short-term Aerobic Exercise Against Zinc Oxide Nanoparticles-Induced Cardiac Oxidative Stress Via Possible Changes of Apelin, Angiotensin II/Angiotensin II Type I Signalling Pathway. Cardiovascular toxicology. 2023 May; ?(?):. doi: 10.1007/s12012-023-09792-8. [PMID: 37184829]
  • Yicong Yin, Chaochao Ma, Songlin Yu, Qing Ai, Chuntao Han, Jian Zhong, Wei Luo, Xiaoli Ma, Jialei Yu, Yuanyuan Zhang, Jingwen Cui, Ling Qiu. Reference intervals for LC-MS /MS measurements of plasma renin activity, aldosterone, angiotensin II, and 24-hour urinary aldosterone in Northern Chinese Han population. Clinica chimica acta; international journal of clinical chemistry. 2023 Mar; 543(?):117325. doi: 10.1016/j.cca.2023.117325. [PMID: 37003517]
  • Yi Cai, Shisheng Jiang, Chaoming Huang, Ao Shen, Xuan Zhang, Wanling Yang, Yichuan Xiao, Shuhan Gao, Rong Du, Guodong Zheng, Tingdong Yan, Chunpeng Craig Wan. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Mar; 114(?):154747. doi: 10.1016/j.phymed.2023.154747. [PMID: 36931095]
  • Wei Wang, Da Liu, Liyun Yang, Lixia Chen, Mengdan Miao, Yongsheng Liu, Yajuan Yin, Mei Wei, Gang Liu, Yonghui An, Mingqi Zheng. Compound Kushen injection attenuates angiotensin II‑mediated heart failure by inhibiting the PI3K/Akt pathway. International journal of molecular medicine. 2023 03; 51(3):. doi: 10.3892/ijmm.2023.5226. [PMID: 36734284]
  • Jia-Li Zhang, Chen Du, Christina Chui-Wa Poon, Ming-Chao He, Man-Sau Wong, Na-Ni Wang, Yan Zhang. Structural characterization and protective effect against renal fibrosis of polysaccharide from Ligustrum lucidum Ait. Journal of ethnopharmacology. 2023 Feb; 302(Pt A):115898. doi: 10.1016/j.jep.2022.115898. [PMID: 36372193]
  • Jing Sun, Yunxi Liu, Chen Chen, Anthony Kwesi Quarm, Siyu Xi, Tingkai Sun, Dingqi Zhang, Jinjun Qian, Hongqun Ding, Jing Gao. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. European journal of pharmacology. 2023 Feb; 940(?):175475. doi: 10.1016/j.ejphar.2022.175475. [PMID: 36563952]
  • Huihua Zuo, Liang Li, Xiaoqing Wang, Shiyu Chen, Zhiyong Liao, Shanyin Wei, Huanjun Ruan, Teng Li, Junyu Chen. A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway. Hypertension research : official journal of the Japanese Society of Hypertension. 2023 02; 46(2):421-436. doi: 10.1038/s41440-022-01111-y. [PMID: 36474029]
  • Qiang Tu, Lingling Xu, Hufei Zhang, Yumin Qiu, Zhefu Liu, Bing Dong, Jun Tao. Andrographolide improves the dysfunction of endothelial progenitor cells from angiotensin II-induced hypertensive mice through SIRT1 signaling. Biochemical and biophysical research communications. 2023 Jan; 642(?):11-20. doi: 10.1016/j.bbrc.2022.12.035. [PMID: 36543019]
  • Xiao Han, Yun-Long Zhang, Yan-Xu Zhao, Shu-Bin Guo, Wen-Peng Yin, Hui-Hua Li. Adipose Triglyceride Lipase Deficiency Aggravates Angiotensin II-Induced Atrial Fibrillation by Reducing Peroxisome Proliferator-Activated Receptor α Activation in Mice. Laboratory investigation; a journal of technical methods and pathology. 2023 Jan; 103(1):100004. doi: 10.1016/j.labinv.2022.100004. [PMID: 36748188]
  • Fatemeh Khomari, Bahar Kiani, Shahin Alizadeh-Fanalou, Mohammad Babaei, Ali Kalantari-Hesari, Iraj Alipourfard, Fatemeh Mirzaei, Sahar Yarahmadi, Elham Bahreini. Effectiveness of Hydroalcoholic Seed Extract of Securigera securidaca on Pancreatic Local Renin-Angiotensin System and Its Alternative Pathway in Streptozotocin-Induced Diabetic Animal Model. Oxidative medicine and cellular longevity. 2023; 2023(?):7285036. doi: 10.1155/2023/7285036. [PMID: 36647426]
  • Lucia S Díaz Del Campo, Ana B García-Redondo, Cristina Rodríguez, Carlos Zaragoza, Santiago Duro-Sánchez, Francesco Palmas, Angela de Benito-Bueno, Paula G Socuéllamos, Diego A Peraza, Raquel Rodrigues-Díez, Carmen Valenzuela, Jesmond Dalli, Mercedes Salaices, Ana M Briones. Resolvin D2 Attenuates Cardiovascular Damage in Angiotensin II-Induced Hypertension. Hypertension (Dallas, Tex. : 1979). 2023 01; 80(1):84-96. doi: 10.1161/hypertensionaha.122.19448. [PMID: 36337053]
  • María Mercedes Mori Sequeiros Garcia, Cristina Paz, Ana Fernanda Castillo, Yanina Benzo, Matías A Belluno, Ariana Balcázar Martínez, Paula Mariana Maloberti, Fabiana Cornejo Maciel, Cecilia Poderoso. New insights into signal transduction pathways in adrenal steroidogenesis: role of mitochondrial fusion, lipid mediators, and MAPK phosphatases. Frontiers in endocrinology. 2023; 14(?):1175677. doi: 10.3389/fendo.2023.1175677. [PMID: 37223023]
  • Yulian Liu, Yuzhi Cui, Zongqi Zhou, Bin Liu, Zheng Liu, Gang Li. Relationship between Angiotensin II, Vascular Endothelial Growth Factor, and Arteriosclerosis Obliterans. Disease markers. 2023; 2023(?):1316821. doi: 10.1155/2023/1316821. [PMID: 36865500]
  • Siyuan Shen, Gaojun Wu, Wu Luo, Weixin Li, Xiaobo Li, Chengyi Dai, Weijian Huang, Guang Liang. Leonurine attenuates angiotensin II-induced cardiac injury and dysfunction via inhibiting MAPK and NF-κB pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Jan; 108(?):154519. doi: 10.1016/j.phymed.2022.154519. [PMID: 36332391]
  • Lin Liu, Qingzhuo Cui, Junna Song, Yang Yang, Yixin Zhang, Jiapeng Qi, Jingshan Zhao. Hydroxysafflower Yellow A Inhibits Vascular Adventitial Fibroblast Migration via NLRP3 Inflammasome Inhibition through Autophagy Activation. International journal of molecular sciences. 2022 Dec; 24(1):. doi: 10.3390/ijms24010172. [PMID: 36613617]
  • Yu Xia, Yun Wei Lu, Ren Juan Hao, Gu Ran Yu. Catalpol relieved angiotensin II-induced blood-brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. Pharmaceutical biology. 2022 Dec; 60(1):2210-2218. doi: 10.1080/13880209.2022.2142801. [PMID: 36369944]
  • Jing Liu, Bo Jin, Jian Lu, Yuan Feng, Nan Li, Cheng Wan, Qing-Yan Zhang, Chun-Ming Jiang. Angiotensin II type 2 receptor prevents extracellular matrix accumulation in human peritoneal mesothelial cell by ameliorating lipid disorder via LOX-1 suppression. Renal failure. 2022 Dec; 44(1):1687-1697. doi: 10.1080/0886022x.2022.2133729. [PMID: 36226438]
  • Mohamed A Elrayess, Hadeel T Zedan, Rand A Alattar, Hatem Abusriwil, Mahmoud Khatib A A Al-Ruweidi, Shamma Almuraikhy, Jabeed Parengal, Bassem Alhariri, Hadi M Yassine, Ali A Hssain, Arun Nair, Musaed Al Samawi, Alaaeldin Abdelmajid, Jassim Al Suwaidi, Mohamed Omar Saad, Muna Al-Maslamani, Ali S Omrani, Huseyin C Yalcin. Soluble ACE2 and angiotensin II levels are modulated in hypertensive COVID-19 patients treated with different antihypertension drugs. Blood pressure. 2022 12; 31(1):80-90. doi: 10.1080/08037051.2022.2055530. [PMID: 35548940]
  • Jing Gao, Abolfazl Akbari, Tao Wang. Green tea could improve elderly hypertension by modulating arterial stiffness, the activity of the renin/angiotensin/aldosterone axis, and the sodium-potassium pumps in old male rats. Journal of food biochemistry. 2022 12; 46(12):e14398. doi: 10.1111/jfbc.14398. [PMID: 36181277]
  • Xue-Ting Li, Jia-Wei Song, Zhen-Zhou Zhang, Mi-Wen Zhang, Li-Rong Liang, Ran Miao, Ying Liu, Yi-Hang Chen, Xiao-Yan Liu, Jiu-Chang Zhong. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free radical biology & medicine. 2022 11; 193(Pt 1):459-473. doi: 10.1016/j.freeradbiomed.2022.10.320. [PMID: 36334846]
  • Zilv Luo, Zhaowei Chen, Zijing Zhu, Yiqun Hao, Jun Feng, Qiang Luo, Zongwei Zhang, Xueyan Yang, Jijia Hu, Wei Liang, Guohua Ding. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis. Cellular signalling. 2022 11; 99(?):110443. doi: 10.1016/j.cellsig.2022.110443. [PMID: 35988808]
  • G Christina Gutierrez, Christopher Dayton, Rebecca L Attridge, Lucas Smedley, Haritha Saikumar, Christopher Everett, Abraham Rodriguez, Shawn Varney. Angiotensin II Use in Treatment of Refractory Shock Due to Benazepril and Amlodipine Toxic Ingestion. Journal of pharmacy practice. 2022 Oct; ?(?):8971900221137389. doi: 10.1177/08971900221137389. [PMID: 36314764]
  • Tianyuan Song, Minzhi Zhou, Wen Li, Lin Zheng, Jianping Wu, Mouming Zhao. Tripeptide Leu-Ser-Trp Regulates the Vascular Endothelial Cells Phenotype Switching by Mediating the Vascular Smooth Muscle Cells-Derived Small Extracellular Vesicles Packaging of miR-145. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27207025. [PMID: 36296612]
  • Lena Neuper, Daniel Kummer, Désirée Forstner, Jacqueline Guettler, Nassim Ghaffari-Tabrizi-Wizsy, Cornelius Fischer, Herbert Juch, Olivia Nonn, Martin Gauster. Candesartan Does Not Activate PPARγ and Its Target Genes in Early Gestation Trophoblasts. International journal of molecular sciences. 2022 Oct; 23(20):. doi: 10.3390/ijms232012326. [PMID: 36293183]
  • Katharina Bottermann, Lisa Kalfhues, Rianne Nederlof, Anne Hemmers, Lucia M Leitner, Vici Oenarto, Jana Nemmer, Mirjam Pfeffer, Vidisha Raje, Rene Deenen, Patrick Petzsch, Heba Zabri, Karl Köhrer, Andreas S Reichert, Maria Grandoch, Jens W Fischer, Diran Herebian, Johannes Stegbauer, Thurl E Harris, Axel Gödecke. Cardiomyocyte p38 MAPKα suppresses a heart-adipose tissue-neutrophil crosstalk in heart failure development. Basic research in cardiology. 2022 10; 117(1):48. doi: 10.1007/s00395-022-00955-2. [PMID: 36205817]
  • Xiaozheng Wu, Wen Li, Gao Huang, Zhenliang Luo, Yunzhi Chen. Increased frequency of angiotensin converting enzyme D allele in Chinese Han patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Medicine. 2022 Oct; 101(40):e30942. doi: 10.1097/md.0000000000030942. [PMID: 36221416]
  • Gaizun Hu, Guangbi Li, Dandan Huang, Yao Zou, Xinxu Yuan, Joseph K Ritter, Ningjun Li, Pin-Lan Li. Renomedullary exosomes produce antihypertensive effects in reversible two-kidney one-clip renovascular hypertensive mice. Biochemical pharmacology. 2022 10; 204(?):115238. doi: 10.1016/j.bcp.2022.115238. [PMID: 36055382]
  • Hany H Arab, Sarah A Abd El-Aal, Ahmed M Ashour, Azza A K El-Sheikh, Hana J Al Khabbaz, El-Shaimaa A Arafa, Ayman M Mahmoud, Ahmed M Kabel. Targeting inflammation and redox perturbations by lisinopril mitigates Freund's adjuvant-induced arthritis in rats: role of JAK-2/STAT-3/RANKL axis, MMPs, and VEGF. Inflammopharmacology. 2022 Oct; 30(5):1909-1926. doi: 10.1007/s10787-022-00998-w. [PMID: 35764864]
  • Jinrui Ren, Lianglin Wu, Jianqiang Wu, Xiaoyue Tang, Yanze Lv, Wei Wang, Fangda Li, Dan Yang, Changzheng Liu, Yuehong Zheng. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE-/- and CD57BL/6J mice. Journal of proteomics. 2022 09; 268(?):104702. doi: 10.1016/j.jprot.2022.104702. [PMID: 35988846]
  • Leng Ni, Lijuan Liu, Wanqu Zhu, Richard Telljohann, Jing Zhang, Robert E Monticone, Kimberly R McGraw, Changwei Liu, Christopher H Morrell, Pablo Garrido-Gil, Jose Luis Labandeira-Garcia, Edward G Lakatta, Mingyi Wang. Inflammatory Role of Milk Fat Globule-Epidermal Growth Factor VIII in Age-Associated Arterial Remodeling. Journal of the American Heart Association. 2022 09; 11(17):e022574. doi: 10.1161/jaha.121.022574. [PMID: 36000422]
  • Daxin Chen, Linzi Long, Shan Lin, Peizhi Jia, Zhengchuan Zhu, Huajian Gao, Tianyi Wang, Ying Zhu, Aling Shen, Jianfeng Chu, Wei Lin, Jun Peng, Keji Chen. Qingda granule alleviate angiotensin ⅱ-induced hypertensive renal injury by suppressing oxidative stress and inflammation through NOX1 and NF-κB pathways. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113407. doi: 10.1016/j.biopha.2022.113407. [PMID: 36076533]
  • Bao Trong Nguyen, Eun-Joo Shin, Ji Hoon Jeong, Naveen Sharma, Seung Yeol Nah, Sung Kwon Ko, Jae Kyung Byun, Yi Lee, Xin Gen Lei, Dae-Joong Kim, Toshitaka Nabeshima, Hyoung-Chun Kim. Ginsenoside Re attenuates memory impairments in aged Klotho deficient mice via interactive modulations of angiotensin II AT1 receptor, Nrf2 and GPx-1 gene. Free radical biology & medicine. 2022 08; 189(?):2-19. doi: 10.1016/j.freeradbiomed.2022.07.003. [PMID: 35840016]
  • Guilherme Henrique Souza Bomfim, Diego Castro Musial, Katiucha Rocha, Aron Jurkiewicz, Neide Hyppolito Jurkiewicz. Red wine but not alcohol consumption improves cardiovascular function and oxidative stress of the hypertensive-SHR and diabetic-STZ rats. Clinical and experimental hypertension (New York, N.Y. : 1993). 2022 Aug; 44(6):573-584. doi: 10.1080/10641963.2022.2085737. [PMID: 35699125]
  • Elshymaa A Abdel-Hakeem, Sara Mohamed Naguib Abdel Hafez, Bothina A Kamel, Heba A Abdel-Hamid. Angiotensin 1-7 mitigates rhabdomyolysis induced renal injury in rats via modulation of TLR-4/NF-kB/iNOS and Nrf-2/heme‑oxygenase-1 signaling pathways. Life sciences. 2022 Aug; 303(?):120678. doi: 10.1016/j.lfs.2022.120678. [PMID: 35654118]
  • Wei Wang, Yang Lu, Xueling Hu, Huihui Li, Xiaozhao Li, Chenggen Xiao, Ting Meng, Ling Peng, Lu Gan, Qiaoling Zhou, Ping Xiao, Rong Tang. Interleukin-22 exacerbates angiotensin II-induced hypertensive renal injury. International immunopharmacology. 2022 Aug; 109(?):108840. doi: 10.1016/j.intimp.2022.108840. [PMID: 35567856]
  • Mauro G Silva, Gerardo R Corradi, Juan I Pérez Duhalde, Myriam Nuñez, Eliana M Cela, Daniel H Gonzales Maglio, Ana Brizzio, Martin R Salazar, Walter G Espeche, Mariela M Gironacci. Plasmatic renin-angiotensin system in normotensive and hypertensive patients hospitalized with COVID-19. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Aug; 152(?):113201. doi: 10.1016/j.biopha.2022.113201. [PMID: 35661534]
  • Jiao Xin, Tingyu You, Xiangfu Jiang, Dongdong Fu, Jiarong Wang, Wei Jiang, Xiaowen Feng, Jiagen Wen, Yan Huang, Chengmu Hu. Caveolin-1 Alleviates Acetaminophen-Induced Hepatotoxicity in Alcoholic Fatty Liver Disease by Regulating the Ang II/EGFR/ERK Axis. International journal of molecular sciences. 2022 Jul; 23(14):. doi: 10.3390/ijms23147587. [PMID: 35886933]
  • Jun Wang, Run Guo, Xiaoli Ma, Ying Wang, Qianyu Zhang, Nan Zheng, Jun Zhang, Chenchen Li. Liraglutide inhibits AngII-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway. Cell and tissue banking. 2022 Jul; ?(?):. doi: 10.1007/s10561-022-10021-9. [PMID: 35792987]
  • Ann Tenneil O'Connor, Dhanush Haspula, Ahmed Z Alanazi, Michelle A Clark. Roles of Angiotensin III in the brain and periphery. Peptides. 2022 07; 153(?):170802. doi: 10.1016/j.peptides.2022.170802. [PMID: 35489649]
  • Raquel Cobos-Campos, Cristina Bermúdez-Ampudia, Estibaliz Orruño, Antxon Apiñaniz, Sainza García, Jose Cordero, Julene Argaluza, Arantza Sáez de Lafuente, Naiara Parraza. Angiotensin II Receptor Blocking Drugs May Increase Severity of Coronavirus Disease 2019 Infection. American journal of therapeutics. 2022 Jul; 29(4):459-462. doi: 10.1097/mjt.0000000000001489. [PMID: 35802916]
  • Tianxin Yang. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Current opinion in nephrology and hypertension. 2022 07; 31(4):351-357. doi: 10.1097/mnh.0000000000000806. [PMID: 35703290]
  • Hui Lin, Frank Geurts, Luise Hassler, Daniel Batlle, Katrina M Mirabito Colafella, Kate M Denton, Jia L Zhuo, Xiao C Li, Nirupama Ramkumar, Masahiro Koizumi, Taiji Matsusaka, Akira Nishiyama, Martin J Hoogduijn, Ewout J Hoorn, A H Jan Danser. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacological reviews. 2022 07; 74(3):462-505. doi: 10.1124/pharmrev.120.000236. [PMID: 35710133]
  • Xiaochen Huang, Boxin Huang, Yong He, Liang Feng, Jian Shi, Li Wang, Juan Peng, Yong Chen. Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived Cardiomyocytes. Advanced biology. 2022 Jul; 6(7):e2101327. doi: 10.1002/adbi.202101327. [PMID: 35523737]
  • Sai Sindhu Thangaraj, Camilla Enggaard, Jane Stubbe, Yaseelan Palarasah, Pernille B L Hansen, Per Svenningsen, Boye L Jensen. Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Archiv : European journal of physiology. 2022 07; 474(7):709-719. doi: 10.1007/s00424-022-02705-8. [PMID: 35604452]
  • Jin Li, Zhao Sha, Xiaolan Zhu, Wanru Xu, Weilin Yuan, Tingting Yang, Bing Jin, Yuwei Yan, Rui Chen, Siqi Wang, Jianhua Yao, Jiahong Xu, Zitong Wang, Guoping Li, Saumya Das, Liming Yang, Junjie Xiao. Targeting miR-30d reverses pathological cardiac hypertrophy. EBioMedicine. 2022 Jul; 81(?):104108. doi: 10.1016/j.ebiom.2022.104108. [PMID: 35752105]
  • Mohammad Khaksari, Alireza Raji-Amirhasani, Hamideh Bashiri, Mohammad Navid Ebrahimi, Hossein Azizian. Protective effects of combining SERMs with estrogen on metabolic parameters in postmenopausal diabetic cardiovascular dysfunction: The role of cytokines and angiotensin II. Steroids. 2022 07; 183(?):109023. doi: 10.1016/j.steroids.2022.109023. [PMID: 35358567]
  • Chris Sung-Eun Sohn, Joshua Wen-Han Chang, Bindu George, Siyi Chen, Rohit Ramchandra. Role of the angiotensin type 1 receptor in modulating the carotid chemoreflex in an ovine model of renovascular hypertension. Journal of hypertension. 2022 07; 40(7):1421-1430. doi: 10.1097/hjh.0000000000003173. [PMID: 35762481]
  • Fuwei Zhang, Lifu Lei, Juan Huang, Weiwei Wang, Qian Su, Hongjia Yan, Caiyu Chen, Shuo Zheng, Hongmei Ren, Zhuxin Li, Pedro A Jose, Yijie Hu, Liangyi Si, Chunyu Zeng, Jian Yang. G-protein-coupled receptor kinase 4 causes renal angiotensin II type 2 receptor dysfunction by increasing its phosphorylation. Clinical science (London, England : 1979). 2022 06; 136(12):989-1003. doi: 10.1042/cs20220236. [PMID: 35695067]
  • Yu Yan Xie, Yun Wei Lu, Gu Ran Yu. The protective effects of hyperoside on Ang II-mediated apoptosis of bEnd.3 cells and injury of blood-brain barrier model in vitro. BMC complementary medicine and therapies. 2022 Jun; 22(1):157. doi: 10.1186/s12906-022-03635-9. [PMID: 35698113]
  • Yang Gu, Shimeng Zhang, Xun Chen, Yong Li, Yun Liu. LongShengZhi alleviated cardiac remodeling via upregulation microRNA-150-5p with matrix metalloproteinase 14 as the target. Journal of ethnopharmacology. 2022 Jun; 291(?):115156. doi: 10.1016/j.jep.2022.115156. [PMID: 35245628]
  • Lingbing Zhang, Yandan Zhang, Xia Qin, Xuejun Jiang, Jun Zhang, Lejiao Mao, Ziqi Jiang, Yu Jiang, Gang Liu, Jingfu Qiu, Chengzhi Chen, Feng Qiu, Zhen Zou. Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein. Critical care (London, England). 2022 06; 26(1):171. doi: 10.1186/s13054-022-04034-9. [PMID: 35681221]
  • Jordan Loader, Frances C Taylor, Erik Lampa, Johan Sundström. Renin-Angiotensin Aldosterone System Inhibitors and COVID-19: A Systematic Review and Meta-Analysis Revealing Critical Bias Across a Body of Observational Research. Journal of the American Heart Association. 2022 06; 11(11):e025289. doi: 10.1161/jaha.122.025289. [PMID: 35624081]
  • Juan Manuel Chao de la Barca, Alexis Richard, Pauline Robert, Maroua Eid, Olivier Fouquet, Lydie Tessier, Céline Wetterwald, Justine Faure, Celine Fassot, Daniel Henrion, Pascal Reynier, Laurent Loufrani. Metabolomic Profiling of Angiotensin-II-Induced Abdominal Aortic Aneurysm in Ldlr-/- Mice Points to Alteration of Nitric Oxide, Lipid, and Energy Metabolisms. International journal of molecular sciences. 2022 Jun; 23(12):. doi: 10.3390/ijms23126387. [PMID: 35742839]
  • Krzysztof Mińczuk, Marta Baranowska-Kuczko, Anna Krzyżewska, Eberhard Schlicker, Barbara Malinowska. Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. International journal of molecular sciences. 2022 Jun; 23(11):. doi: 10.3390/ijms23116350. [PMID: 35683028]
  • Joseph C Galley, Scott A Hahn, Megan P Miller, Brittany G Durgin, Edwin K Jackson, Sean D Stocker, Adam C Straub. Angiotensin II augments renal vascular smooth muscle soluble GC expression via an AT1 receptor-forkhead box subclass O transcription factor signalling axis. British journal of pharmacology. 2022 06; 179(11):2490-2504. doi: 10.1111/bph.15522. [PMID: 33963547]
  • Pedro Antunes Pousa, Tamires Sara Campos Mendonça, Larissa Marques Fonseca, Eduardo Araújo Oliveira, André Rolim Belisário, Ana Cristina Simões E Silva. Evaluation of insertion/deletion (I/D) polymorphisms of ACE gene and circulating levels of angiotensin II in congenital anomalies of the kidney and urinary tract. Molecular biology reports. 2022 Jun; 49(6):4341-4347. doi: 10.1007/s11033-022-07269-5. [PMID: 35212925]
  • Abu Mohammad Syed, Sourav Kundu, Chetan Ram, Uttam Kulhari, Akhilesh Kumar, Madhav Nilakanth Mugale, Purusottam Mohapatra, Upadhyayula Suryanarayana Murty, Bidya Dhar Sahu. Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice. Free radical biology & medicine. 2022 06; 186(?):17-30. doi: 10.1016/j.freeradbiomed.2022.04.019. [PMID: 35513128]
  • Jijia Hu, Zijing Zhu, Zhaowei Chen, Qian Yang, Wei Liang, Guohua Ding. Alteration in Rab11-mediated endocytic trafficking of LDL receptor contributes to angiotensin II-induced cholesterol accumulation and injury in podocytes. Cell proliferation. 2022 Jun; 55(6):e13229. doi: 10.1111/cpr.13229. [PMID: 35567428]
  • Meiqi Zhang, Kang Cheng, Limei Yu, Weihua Wu, Yakun Wang, Yun Chen. [Mechanism of tanshinone II A inhibiting myocardial remodeling by Galectin-3]. Zhonghua wei zhong bing ji jiu yi xue. 2022 Jun; 34(6):640-645. doi: 10.3760/cma.j.cn121430-20220309-00232. [PMID: 35924522]
  • Chi Geng, Yufan Feng, Yang Yang, Hongqin Yang, Zhiwei Li, Yaqin Tang, Jing Wang, Hongmei Zhao. Allergic asthma aggravates angiotensin Ⅱ-induced cardiac remodeling in mice. Translational research : the journal of laboratory and clinical medicine. 2022 06; 244(?):88-100. doi: 10.1016/j.trsl.2022.01.005. [PMID: 35108660]
  • Xiu-Yun Chen, Cheng Lin, Guo-Ying Liu, Chun Pei, Gui-Qing Xu, Lie Gao, Shi-Zhong Wang, Yan-Xia Pan. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. Journal of applied physiology (Bethesda, Md. : 1985). 2022 06; 132(6):1460-1467. doi: 10.1152/japplphysiol.00459.2021. [PMID: 35546127]