Inositol 1-phosphate (BioDeep_00001868776)

Main id: BioDeep_00000004604

 


代谢物信息卡片


Inositol 1-phosphate

化学式: C6H13O9P (260.0297178)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1(C(C(C(C(C1O)O)OP(=O)(O)O)O)O)O
InChI: InChI=1S/C6H13O9P/c7-1-2(8)4(10)6(5(11)3(1)9)15-16(12,13)14/h1-11H,(H2,12,13,14)/t1?,2-,3+,4-,5-,6?/m1/s1

描述信息

同义名列表

1 个代谢物同义名

Inositol 1-phosphate



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(6)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Maythem Al-Amery, Ashley Fowler, Jason M Unrine, Paul Armstrong, Elizabeth Maghirang, Kai Su, Julia de Melo, Feng-Jie Yuan, Qing-Yao Shu, David Hildebrand. Generation and Characterization of a Soybean Line with a Vernonia galamensis Diacylglycerol Acyltransferase-1 Gene and a myo-Inositol 1-Phosphate Synthase Knockout Mutation. Lipids. 2020 09; 55(5):469-477. doi: 10.1002/lipd.12253. [PMID: 32542681]
  • Anatoly Tiulpakov, Carl W White, Rekhati S Abhayawardana, Heng B See, Audrey S Chan, Ruth M Seeber, Julian I Heng, Ivan Dedov, Nathan J Pavlos, Kevin D G Pfleger. Mutations of Vasopressin Receptor 2 Including Novel L312S Have Differential Effects on Trafficking. Molecular endocrinology (Baltimore, Md.). 2016 Aug; 30(8):889-904. doi: 10.1210/me.2016-1002. [PMID: 27355191]
  • Carla D Jorge, Nuno Borges, Helena Santos. A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group. Environmental microbiology. 2015 Jul; 17(7):2492-504. doi: 10.1111/1462-2920.12734. [PMID: 25472423]
  • A E Cook, S N Mistry, K J Gregory, S G B Furness, P M Sexton, P J Scammells, A D Conigrave, A Christopoulos, K Leach. Biased allosteric modulation at the CaS receptor engendered by structurally diverse calcimimetics. British journal of pharmacology. 2015 Jan; 172(1):185-200. doi: 10.1111/bph.12937. [PMID: 25220431]
  • Hiroyuki Morii, Midori Ogawa, Kazumasa Fukuda, Hatsumi Taniguchi. Ubiquitous distribution of phosphatidylinositol phosphate synthase and archaetidylinositol phosphate synthase in Bacteria and Archaea, which contain inositol phospholipid. Biochemical and biophysical research communications. 2014 Jan; 443(1):86-90. doi: 10.1016/j.bbrc.2013.11.054. [PMID: 24269814]
  • Saurabh C Saxena, Prafull Salvi, Harmeet Kaur, Pooja Verma, Bhanu Prakash Petla, Venkateswara Rao, Nitin Kamble, Manoj Majee. Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. Journal of experimental botany. 2013 Dec; 64(18):5623-39. doi: 10.1093/jxb/ert336. [PMID: 24123252]
  • Alisa Boutin, Michael D Allen, Susanne Neumann, Marvin C Gershengorn. Persistent signaling by thyrotropin-releasing hormone receptors correlates with G-protein and receptor levels. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2012 Aug; 26(8):3473-82. doi: 10.1096/fj.12-207860. [PMID: 22593547]
  • Shingo Sakamoto, Yukichi Fujikawa, Nobukazu Tanaka, Muneharu Esaka. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum). Bioscience, biotechnology, and biochemistry. 2012; 76(6):1155-62. doi: 10.1271/bbb.110995. [PMID: 22790939]
  • Yu Luo, Genji Qin, Jun Zhang, Yuan Liang, Yingqi Song, Meiping Zhao, Tomohiko Tsuge, Takashi Aoyama, Jingjing Liu, Hongya Gu, Li-Jia Qu. D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. The Plant cell. 2011 Apr; 23(4):1352-72. doi: 10.1105/tpc.111.083337. [PMID: 21505066]
  • Ruyue Ji, Chih-Ling Chou, Wei Xu, Xiao-Bo Chen, David F Woodward, John W Regan. EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular pharmacology. 2010 Jun; 77(6):1025-36. doi: 10.1124/mol.110.063933. [PMID: 20335389]
  • Huda Ismail Abdullah, Paulina L Pedraza, John C McGiff, Nicholas R Ferreri. CaR activation increases TNF production by mTAL cells via a Gi-dependent mechanism. American journal of physiology. Renal physiology. 2008 Feb; 294(2):F345-54. doi: 10.1152/ajprenal.00509.2006. [PMID: 18032544]
  • Hiroaki Komatsu, Jan Westerman, Gerry T Snoek, Theodore F Taraschi, Nathan Janes. Effects of D-myo-inositol 1-phosphate on the transfer function of phosphatidylinositol transfer protein alpha. Journal of liposome research. 2004; 14(3-4):141-53. doi: 10.1081/lpr-200029889. [PMID: 15676123]
  • Julie Catusse, Patrick Faye, Bruno Loillier, Béatrice Cremers, Rose-Marie Franck, Jean-Michel Luccarini, Didier Pruneau, Jean-Luc Paquet. Cloning and characterization of guinea pig interleukin-8 receptor. Biochemical pharmacology. 2003 Oct; 66(7):1171-80. doi: 10.1016/s0006-2952(03)00459-3. [PMID: 14505796]
  • C E Hegeman, L L Good, E A Grabau. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant physiology. 2001 Apr; 125(4):1941-8. doi: 10.1104/pp.125.4.1941. [PMID: 11299373]
  • P Lohrer, J Gloddek, A C Nagashima, Z Korali, U Hopfner, M P Pereda, E Arzt, G K Stalla, U Renner. Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38alpha mitogen-activated protein kinase/nuclear factor-kappaB pathway. Endocrinology. 2000 Dec; 141(12):4457-65. doi: 10.1210/endo.141.12.7811. [PMID: 11108255]
  • R F Spurney, M Pi, P Flannery, L D Quarles. Aluminum is a weak agonist for the calcium-sensing receptor. Kidney international. 1999 May; 55(5):1750-8. doi: 10.1046/j.1523-1755.1999.00432.x. [PMID: 10231437]
  • N Kawada, S Seki, M Inoue, T Kuroki. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology (Baltimore, Md.). 1998 May; 27(5):1265-74. doi: 10.1002/hep.510270512. [PMID: 9581680]
  • A M Carruthers, R A Challiss, R Mistry, R Saunders, C Thomsen, S R Nahorski. Enhanced type 1alpha metabotropic glutamate receptor-stimulated phosphoinositide signaling after pertussis toxin treatment. Molecular pharmacology. 1997 Sep; 52(3):406-14. doi: 10.1124/mol.52.3.406. [PMID: 9281602]
  • M R Hirvonen, L Paljärvi, K M Savolainen. Malaoxon-induced neurotoxicity in old rats: alterations in cerebral inositol lipid signalling, brain tissue calcium levels and early neuronal injury. Toxicology. 1993 Apr; 79(2):157-67. doi: 10.1016/0300-483x(93)90129-g. [PMID: 8497869]
  • J R Atack, S M Cook, A P Watt, S R Fletcher, C I Ragan. In vitro and in vivo inhibition of inositol monophosphatase by the bisphosphonate L-690,330. Journal of neurochemistry. 1993 Feb; 60(2):652-8. doi: 10.1111/j.1471-4159.1993.tb03197.x. [PMID: 8380439]
  • A B Cubitt, E Geras-Raaka, M C Gershengorn. Thyrotropin-releasing hormone receptor occupancy determines the fraction of the responsive pool of inositol lipids hydrolysed in rat pituitary tumour cells. The Biochemical journal. 1990 Oct; 271(2):331-6. doi: 10.1042/bj2710331. [PMID: 2173558]
  • S Shak, M A Davitz, M L Wolinsky, V Nussenzweig, M J Turner, A Gurnett. Partial characterization of the cross-reacting determinant, a carbohydrate epitope shared by decay accelerating factor and the variant surface glycoprotein of the African Trypanosoma brucei. Journal of immunology (Baltimore, Md. : 1950). 1988 Mar; 140(6):2046-50. doi: . [PMID: 2450138]
  • M Ishihara, N S Fedarko, H E Conrad. Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth. The Journal of biological chemistry. 1987 Apr; 262(10):4708-16. doi: . [PMID: 2951371]
  • M Hokin-Neaverson, K Sadeghian. Lithium-induced accumulation of inositol 1-phosphate during cholecystokinin octapeptide- and acetylcholine-stimulated phosphatidylinositol breakdown in dispersed mouse pancreas acinar cells. The Journal of biological chemistry. 1984 Apr; 259(7):4346-52. doi: . [PMID: 6323467]
  • W R Sherman, L Y Munsell, Y H Wong. Differential uptake of lithium isotopes by rat cerebral cortex and its effect on inositol phosphate metabolism. Journal of neurochemistry. 1984 Mar; 42(3):880-2. doi: 10.1111/j.1471-4159.1984.tb02765.x. [PMID: 6319612]