Superoxide (BioDeep_00000004473)
Secondary id: BioDeep_00001868833
human metabolite Endogenous
代谢物信息卡片
化学式: O2- (31.98983)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 97.5%
分子结构信息
SMILES: [O-][O]
InChI: InChI=1S/HO2/c1-2/h1H/p-1
描述信息
Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress. Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the superoxide scavenging enzyme, superoxide dismutase, or SOD. SOD is an extremely efficient enzyme; it catalyzes the neutralization of superoxide nearly as fast as the two can diffuse together spontaneously in solution. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice. The latter species dies around 21 days after birth if the mitochondrial variant of SOD (Mn-SOD) is inactivated, and suffers from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts and female infertility when the cytoplasmic (Cu, Zn -SOD) variant is inactivated. With one unpaired electron, the superoxide ion is a free radical and therefore paramagnetic. In living organisms, superoxide dismutase protects the cell from the deleterious effects of superoxides.
Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress.; Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin.
D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
同义名列表
数据库引用编号
11 个数据库交叉引用编号
- ChEBI: CHEBI:18421
- KEGG: C00704
- PubChem: 5359597
- HMDB: HMDB0002168
- Wikipedia: Superoxide
- MeSH: Superoxides
- MetaCyc: SUPER-OXIDE
- foodb: FDB022880
- chemspider: 4514331
- CAS: 11062-77-4
- PubChem: 3971
分类词条
相关代谢途径
Reactome(41)
- Metabolism
- Disease
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Tolerance of reactive oxygen produced by macrophages
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- TP53 Regulates Transcription of Cell Death Genes
- TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain
- Adaptive Immune System
- Class I MHC mediated antigen processing & presentation
- Antigen processing-Cross presentation
- Cross-presentation of particulate exogenous antigens (phagosomes)
- Infection with Mycobacterium tuberculosis
- Leishmania infection
- Killing mechanisms
- WNT5:FZD7-mediated leishmania damping
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Parasitic Infection Pathways
BioCyc(15)
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- TCA cycle I (prokaryotic)
- mixed acid fermentation
- superpathway of glyoxylate bypass and TCA
- protein S-nitrosylation and denitrosylation
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- superoxide radicals degradation
- Entner-Doudoroff pathway I
- Entner-Doudoroff shunt
- reactive oxygen species degradation
- pentose phosphate pathway
- pentose phosphate pathway (non-oxidative branch)
- ethylene biosynthesis III (microbes)
- ethylene biosynthesis
代谢反应
1067 个相关的代谢反应过程信息。
Reactome(289)
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Generic Transcription Pathway:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- Transcriptional Regulation by TP53:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- TP53 Regulates Transcription of Cell Death Genes:
1,2-Naphthoquinone + H+ + TPNH ⟶ TPN + semiquinone
- TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain:
1,2-Naphthoquinone + H+ + TPNH ⟶ TPN + semiquinone
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stimuli:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stress:
GSH + H2O2 ⟶ GSSG + H2O
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Cellular response to chemical stress:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- VEGFA-VEGFR2 Pathway:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Innate Immune System:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- ROS, RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Latent infection of Homo sapiens with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Latent infection - Other responses of Mtb to phagocytosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Tolerance of reactive oxygen produced by macrophages:
H+ + O2.- ⟶ H2O2 + Oxygen
- Infection with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Bacterial Infection Pathways:
H+ + NADH + dlaT(ox.) ⟶ NAD + dlaT
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Adaptive Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Class I MHC mediated antigen processing & presentation:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen processing-Cross presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cross-presentation of particulate exogenous antigens (phagosomes):
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Signaling by Rho GTPases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- RHO GTPase Effectors:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- RHO GTPases Activate NADPH Oxidases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Kdm4c + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Kdm4c + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cellular responses to stimuli:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Cellular responses to stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Detoxification of Reactive Oxygen Species:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Innate Immune System:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- ROS and RNS production in phagocytes:
Cl- + H+ + H2O2 ⟶ H2O + HOCl
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + SUCCA + carbon dioxide + kdm4b + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + SUCCA + carbon dioxide + kdm4b + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Leishmania infection:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Killing mechanisms:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- WNT5:FZD7-mediated leishmania damping:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cytoprotection by HMOX1:
BV + TPNH ⟶ BIL + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cytoprotection by HMOX1:
BIL:ALB + O2.- ⟶ ALB + BV
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Cellular response to chemical stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Parasitic Infection Pathways:
Adenylate cyclase (Mg2+ cofactor) + Gs:GTP ⟶ Gs-activated adenylate cyclase
BioCyc(40)
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- protein S-nitrosylation and denitrosylation:
H2O + NAD+ + ammonium ⟶ H+ + NADH + hydroxylamine
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- protein S-nitrosylation and denitrosylation:
O2 + a [protein]-L-cysteine + nitric oxide ⟶ H+ + a [protein] 3-nitrosothio-L-alanine + superoxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
WikiPathways(1)
- Vitamin D-sensitive calcium signaling in depression:
7-Dehydrocholesterol ⟶ Vitamin D3
Plant Reactome(528)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Detoxification:
H+ + O2.- ⟶ H2O2 + Oxygen
- Reactive oxygen species (ROS) homeostasis:
H+ + O2.- ⟶ H2O2 + Oxygen
- Removal of superoxide radicals:
H+ + O2.- ⟶ H2O2 + Oxygen
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Responses to stimuli: biotic stimuli and stresses:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Cell Death and immunity:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Responses to stimuli: biotic stimuli and stresses:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Cell Death and immunity:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- Generation of superoxide radicals:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
INOH(0)
PlantCyc(201)
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
glutathione + hydrogen peroxide ⟶ GSSG + H2O
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
hydrogen peroxide ⟶ H2O + O2
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- superoxide radicals degradation:
hydrogen peroxide ⟶ H2O + O2
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- superoxide radicals degradation:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
- reactive oxygen species degradation:
Fe2+ + hydrogen peroxide ⟶ Fe3+ + OH- + hydroxyl radical
COVID-19 Disease Map(0)
PathBank(8)
- Degradation of Superoxides:
Hydrogen peroxide ⟶ Oxygen + Water
- Superoxide Radicals Degradation:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Degradation of Superoxides:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Degradation of Superoxides:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Degradation of Superoxides:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Degradation of Superoxides:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Degradation of Superoxides:
Hydrogen Ion + Superoxide ⟶ Hydrogen peroxide + Oxygen
- Superoxide Radicals Degradation:
Hydrogen peroxide ⟶ Oxygen + Water
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Miao He, Lili Jin, Feng Wang, Xin Wang, Yanli You, Hongyan He. Simple, ultrasensitive detection of superoxide anion radical mutations in melanoma mice with SERS microneedles.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Aug; 316(?):124292. doi:
10.1016/j.saa.2024.124292
. [PMID: 38669980] - Junxi Liu, Liping Qu, Feifei Wang, Zaoju Mei, Xinlang Wu, Bo Wang, Haiyang Liu, Li He. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue.
Journal of ethnopharmacology.
2024 Jun; 328(?):118021. doi:
10.1016/j.jep.2024.118021
. [PMID: 38492793] - Kai Wang, Junhua Liu, Ping Hai, Wei Zhang, Yuanyuan Shan, Jie Zhang. Novel angiogenesis inhibitors with superoxide anion radical amplification effect: Surmounting the Achilles' heels of angiogenesis inhibitors and photosensitizers.
European journal of medicinal chemistry.
2024 Jun; 272(?):116495. doi:
10.1016/j.ejmech.2024.116495
. [PMID: 38744089] - Yuantao Mao, Chuanchen Wu, Xin Wang, Fanghui Zhang, Xinru Qi, Xia Li, Ping Li, Bo Tang. Fluorescence imaging sheds light on the immune evasion mechanisms of hepatic stellate cells mediated by superoxide anion.
Communications biology.
2024 May; 7(1):558. doi:
10.1038/s42003-024-06245-y
. [PMID: 38730013] - Yosef Fichman, Linda Rowland, Thi Thao Nguyen, Shi-Jie Chen, Ron Mittler. Propagation of a rapid cell-to-cell H2O2 signal over long distances in a monolayer of cardiomyocyte cells.
Redox biology.
2024 Apr; 70(?):103069. doi:
10.1016/j.redox.2024.103069
. [PMID: 38364687] - Akansha Jain, Bo Ram Kim, Wenjie Yu, Thomas O Moninger, Philip H Karp, Brett A Wagner, Michael J Welsh. Mitochondrial uncoupling proteins protect human airway epithelial ciliated cells from oxidative damage.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Mar; 121(10):e2318771121. doi:
10.1073/pnas.2318771121
. [PMID: 38416686] - Jinyu Wu, Yangyang Fang, Liankun Xu, Xiaoxia Jin, Anam Iqbal, Zaib Un Nisa, Naila Ali, Chao Chen, Anis Ali Shah, Mansour K Gatasheh. The Glycine soja cytochrome P450 gene GsCYP82C4 confers alkaline tolerance by promoting reactive oxygen species scavenging.
Physiologia plantarum.
2024 Mar; 176(2):e14252. doi:
10.1111/ppl.14252
. [PMID: 38509813] - Pilar Irigoyen, Santiago Mansilla, Laura Castro, Adriana Cassina, Rossana Sapiro. Mitochondrial function and reactive oxygen species production during human sperm capacitation: Unraveling key players.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2024 Feb; 38(4):e23486. doi:
10.1096/fj.202301957rr
. [PMID: 38407497] - Yongyan Wang, Qinhan Zeng, Yuchen Tian, Qingwu Deng, Runsi Xiao, Xuanling Luo, Tao Zeng, Fan Zhang, Lei Zhang, Beibei Jiang, Qinglin Liu. The histone deacetylase SRT2 enhances the tolerance of chrysanthemum to low temperatures through the ROS scavenging system.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108405. doi:
10.1016/j.plaphy.2024.108405
. [PMID: 38354529] - Wing-Kee Lee, Stephanie Probst, Bettina Scharner, Timo Deba, Faouzi Dahdouh, Frank Thévenod. Distinct concentration-dependent oxidative stress profiles by cadmium in a rat kidney proximal tubule cell line.
Archives of toxicology.
2024 Jan; ?(?):. doi:
10.1007/s00204-023-03677-z
. [PMID: 38289529] - Shashibhushan Gahir, Pulimamidi Bharath, Deepak Saini, Gudipalli Padmaja, Agepati S Raghavendra. Role of mitochondria and chloroplasts during stomatal closure: Subcellular location of superoxide and H2O2 production in guard cells of Arabidopsis thaliana.
Journal of biosciences.
2024; 49(?):. doi:
"
. [PMID: 38516911] - Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta. Mitochondrial alternative oxidase pathway helps in nitrooxidative stress tolerance in germinating chickpea.
Journal of biosciences.
2024; 49(?):. doi:
"
. [PMID: 38726824] - Ana Jiménez, Sandra Correa, Francisca Sevilla. Identification of Superoxide Dismutase (SOD) Isozymes in Plant Tissues.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):205-212. doi:
10.1007/978-1-0716-3826-2_14
. [PMID: 38587745] - Ouardia Bendou, Nara Bueno-Ramos, Emilio L Marcos-Barbero, Rosa Morcuende, Juan B Arellano. Singlet Oxygen and Superoxide Anion Radical Detection by EPR Spin Trapping in Thylakoid Preparations.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):11-26. doi:
10.1007/978-1-0716-3826-2_2
. [PMID: 38587733] - Yaxin Wang, Li-Ming Zhao, Naijie Feng, Dianfeng Zheng, Xue Feng Shen, Hang Zhou, Wenxin Jiang, Youwei Du, Huimin Zhao, Xutong Lu, Peng Deng. Plant growth regulators mitigate oxidative damage to rice seedling roots by NaCl stress.
PeerJ.
2024; 12(?):e17068. doi:
10.7717/peerj.17068
. [PMID: 38495756] - M Shiraiwa, T Fang, J Wei, Psj Lakey, Bch Hwang, K C Edwards, S Kapur, Jem Mena, Y-K Huang, M A Digman, S A Weichenthal, S Nizkorodov, M T Kleinman. Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.
Research report (Health Effects Institute).
2023 Dec; ?(215):1-56. doi:
"
. [PMID: 38420854] - Yassmine M El-Gindy, Soliman M Zahran, Mohamed H Ahmed, Moyosore J Adegbeye, Abdelfattah Z M Salem, Monira Y Salam. Enhancing semen quality, antioxidant status and sex hormones of V-line rabbit bucks fed on supplemented diets with dried moringa leaves.
Animal biotechnology.
2023 Dec; 34(7):2626-2635. doi:
10.1080/10495398.2022.2110109
. [PMID: 36000985] - Rasa H Medovic, Ivan M Srejovic, Marija V Medovic, Isidora M Milosavljevic, Marina R Nikolic, Aleksandra Z Stojanovic, Milos B Kuzmanovic, Predrag M Djurdjevic, Sergey B Bolevich, Vladimir P Fisenko, Vladimir Lj Jakovljevic, Zoran R Igrutinovic. Variations of Redox Balance in Different Stages of Childhood Immune Thrombocytopenic Purpura.
Thrombosis and haemostasis.
2023 Dec; 123(12):1129-1139. doi:
10.1055/s-0043-1772683
. [PMID: 37604187] - Jinshan Dai. Antioxidant Capacity of Eugenol and Its Effect on Intestinal Flora Under in Vitro Simulated Conditions.
Studies in health technology and informatics.
2023 Nov; 308(?):715-722. doi:
10.3233/shti230904
. [PMID: 38007803] - Stefanos Dailianis, Dimitris Vlastos, Chloe Zoppou, Argyri Moschopoulou, Maria Antonopoulou. Different isoforms of parabens into marine environment: Biological effects on the bacterium Aliivibrio fischeri and the marine mussel Mytilus galloprovincialis.
The Science of the total environment.
2023 Nov; 900(?):165902. doi:
10.1016/j.scitotenv.2023.165902
. [PMID: 37524175] - Reda I Omara, Omar Abdullah Alkhateeb, Ahmed Hassan Abdou, Gabr A El-Kot, Atef A Shahin, Heba I Saad-El-Din, Rady Abdelghany, Wasimah B Al-Shammari, Muayad Albadrani, Yaser Hafez, Khaled Abdelaal. How to Differentiate between Resistant and Susceptible Wheat Cultivars for Leaf Rust Fungi Using Antioxidant Enzymes and Histological and Molecular Studies?.
Cells.
2023 11; 12(22):. doi:
10.3390/cells12222643
. [PMID: 37998379] - Giulia Blandino, Mara Fiorani, Barbara Canonico, Rita De Matteis, Andrea Guidarelli, Mariele Montanari, Gloria Buffi, Lucia Coppo, Elias S J Arnér, Orazio Cantoni. Clozapine suppresses NADPH oxidase activation, counteracts cytosolic H2O2, and triggers early onset mitochondrial dysfunction during adipogenesis of human liposarcoma SW872 cells.
Redox biology.
2023 11; 67(?):102915. doi:
10.1016/j.redox.2023.102915
. [PMID: 37866162] - Jing Wang, Bing-Zhe Fu, Shu-Xia Li, Xing Wang, Wen-Xue Song, Yu-Nong Ye, Peng-Fei Hu, Tong-Rui Wang. Effects of exogenous melatonin on growth and physiological characteristics of Agropyron mongolicum seedlings under drought stress.
Ying yong sheng tai xue bao = The journal of applied ecology.
2023 Nov; 34(11):2947-2957. doi:
10.13287/j.1001-9332.202311.004
. [PMID: 37997405] - Xiaofeng Zu, Lilan Luo, Zhen Wang, Jie Gong, Chao Yang, Yong Wang, Chunhui Xu, Xinhua Qiao, Xian Deng, Xianwei Song, Chang Chen, Bao-Cai Tan, Xiaofeng Cao. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice.
Nature communications.
2023 10; 14(1):6789. doi:
10.1038/s41467-023-42269-4
. [PMID: 37880207] - Zebu Song, Yang Chen, Hao Chang, Yanchen Guo, Qi Gao, Zhi Wei, Lang Gong, Guihong Zhang, ZeZhong Zheng. Rhein suppresses African swine fever virus replication in vitro via activating the caspase-dependent mitochondrial apoptosis pathway.
Virus research.
2023 Oct; ?(?):199238. doi:
10.1016/j.virusres.2023.199238
. [PMID: 37827302] - Bernadett Bákány, Réka Antal, Péter Szentesi, Tamás Emri, Éva Leiter, László Csernoch, Nancy P Keller, István Pócsi, Beatrix Dienes. The bZIP-type transcription factors NapA and RsmA modulate the volumetric ratio and the relative superoxide ratio of mitochondria in Aspergillus nidulans.
Biologia futura.
2023 Oct; ?(?):. doi:
10.1007/s42977-023-00184-1
. [PMID: 37814124] - Zeinab Farhat, Tyler Scheving, Diana S Aga, Pamela A Hershberger, Jo L Freudenheim, Rachael Hageman Blair, Manoj J Mammen, Lina Mu. Antioxidant and Antiproliferative Activities of Several Garlic Forms.
Nutrients.
2023 Sep; 15(19):. doi:
10.3390/nu15194099
. [PMID: 37836382] - Luca Valgimigli. Lipid Peroxidation and Antioxidant Protection.
Biomolecules.
2023 08; 13(9):. doi:
10.3390/biom13091291
. [PMID: 37759691] - Abdelmoneim H Ali, Maitha Alsalmi, Rodah Alshamsi, Mohammed Tarique, Gafar Bamigbade, Imtisal Zahid, Muhammad Hamza Nazir, Muhammad Waseem, Basim Abu-Jdayil, Afaf Kamal-Eldin, Thom Huppertz, Mutamed Ayyash. Effect of whey protein isolate addition on set-type camel milk yogurt: Rheological properties and biological activities of the bioaccessible fraction.
Journal of dairy science.
2023 Aug; ?(?):. doi:
10.3168/jds.2023-23421
. [PMID: 37641311] - Wenjie Yang, Ruixin Liu, Xiaoyi Yin, Ke Wu, Zhi Yan, Xiaoming Wang, Guanwei Fan, Zhixin Tang, Yunlun Li, Haiqiang Jiang. Novel Near-Infrared Fluorescence Probe for Bioimaging and Evaluating Superoxide Anion Fluctuations in Ferroptosis-Mediated Epilepsy.
Analytical chemistry.
2023 08; 95(33):12240-12246. doi:
10.1021/acs.analchem.3c00852
. [PMID: 37556358] - Dong-Dong Wu, Sheng Jin, Ruo-Xiao Cheng, Wen-Jie Cai, Wen-Long Xue, Qing-Qing Zhang, Le-Jie Yang, Qi Zhu, Meng-Yao Li, Ge Lin, Yi-Zhen Wang, Xue-Pan Mu, Yu Wang, Igor Ying Zhang, Qi Zhang, Ying Chen, Sheng-Yang Cai, Bo Tan, Ye Li, Yun-Qian Chen, Pu-Juan Zhang, Chen Sun, Yue Yin, Ming-Jie Wang, Yi-Zhun Zhu, Bei-Bei Tao, Jia-Hai Zhou, Wei-Xue Huang, Yi-Chun Zhu. Hydrogen sulfide functions as a micro-modulator bound at the copper active site of Cu/Zn-SOD to regulate the catalytic activity of the enzyme.
Cell reports.
2023 Jul; 42(7):112750. doi:
10.1016/j.celrep.2023.112750
. [PMID: 37421623] - Xuan Meng, Huiyu Liu, Ning Zhao, Yajun Yang, Kai Zhao, Yujie Dai. Molecular Dynamics Study of the Effect of Charge and Glycosyl on Superoxide Anion Distribution near Lipid Membrane.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310926
. [PMID: 37446103] - Francesco Caruso, Miriam Rossi, Eric Eberhardt, Molly Berinato, Raiyan Sakib, Felipe Surco-Laos, Haydee Chavez. Maytenus octogona Superoxide Scavenging and Anti-Inflammatory Caspase-1 Inhibition Study Using Cyclic Voltammetry and Computational Docking Techniques.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310750
. [PMID: 37445927] - Linlin Shi, Ping Zhang, Jun Xu, Xiaohu Wu, Xinglu Pan, Lin He, Fengshou Dong, Yongquan Zheng. Systematic assessment of cyflumetofen toxicity in soil-earthworm (Eisenia fetida) microcosms.
Journal of hazardous materials.
2023 06; 452(?):131300. doi:
10.1016/j.jhazmat.2023.131300
. [PMID: 37002996] - Patricia Sánchez-Pérez, Ana Mata, May-Kristin Torp, Elia López-Bernardo, Christina M Heiestad, Jan Magnus Aronsen, Antonio Molina-Iracheta, Luis J Jiménez-Borreguero, Pablo García-Roves, Ana S H Costa, Christian Frezza, Michael P Murphy, Kåre-Olav Stenslokken, Susana Cadenas. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3.
Free radical biology & medicine.
2023 Jun; ?(?):. doi:
10.1016/j.freeradbiomed.2023.05.014
. [PMID: 37295539] - Ahlam Majid Azeez, Mahmoud Hussain Hadwan. Simple assay for quantifying xanthine oxidase activity.
Analytical biochemistry.
2023 May; 673(?):115192. doi:
10.1016/j.ab.2023.115192
. [PMID: 37225068] - Guanzhen Gao, Jingru Zhou, Huiqin Wang, Lijing Ke, Jianwu Zhou, Yanan Ding, Wei Ding, Suyun Zhang, Pingfan Rao. Fish oil nano-emulsion kills macrophage: Ferroptosis triggered by catalase-catalysed superoxide eruption.
Food chemistry.
2023 May; 408(?):135249. doi:
10.1016/j.foodchem.2022.135249
. [PMID: 36566546] - J N Caamaño, J Santiago-Moreno, F Martínez-Pastor, C Tamargo, A Salman, Á Fernández, M J Merino, E Lacalle, A Toledano-Díaz, C O Hidalgo. Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed.
Theriogenology.
2023 May; 206(?):18-27. doi:
10.1016/j.theriogenology.2023.05.004
. [PMID: 37172535] - Wei Li, Xiang Zheng, Rong Cheng, Chanjuan Zhong, Jie Zhao, Tyler H Liu, Tuyong Yi, Zhendong Zhu, Jieting Xu, Khalid Meksem, Liangying Dai, Shiming Liu. Soybean ZINC FINGER PROTEIN03 targets two SUPEROXIDE DISMUTASE1s and confers resistance to Phytophthora sojae.
Plant physiology.
2023 05; 192(1):633-647. doi:
10.1093/plphys/kiad083
. [PMID: 36782397] - Jin Wang, Xiaolei Wang, Shifeng Zhao, Xiaoyu Xi, Jinlin Feng, Rong Han. Brachypodium BdCHS is a homolog of Arabidopsis AtCHS involved in the synthesis of flavonoids and lateral root development.
Protoplasma.
2023 May; 260(3):999-1003. doi:
10.1007/s00709-022-01819-1
. [PMID: 36342530] - Li-Jun Yang, Jia-Bei He, Yu Jiang, Jianzhong Li, Zhen-Wei Zhou, Chuan Zhang, Xia Tao, Alex F Chen, Cheng Peng, He-Hui Xie. Berberine hydrochloride inhibits migration ability via increasing inducible NO synthase and peroxynitrite in HTR-8/SVneo cells.
Journal of ethnopharmacology.
2023 Apr; 305(?):116087. doi:
10.1016/j.jep.2022.116087
. [PMID: 36584918] - Ya Ren, Houmin Fan, Lili Zhu, Tao Lin, Tingting Ren. [Blueberry attenuates liver injury in metabolic dysfunction-associated liver disease by promoting the expression of mitofilin/Mic60 in human hepatocytes and inhibiting the production of superoxide].
Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology.
2023 Apr; 39(4):318-324. doi:
. [PMID: 37087549]
- N R Kokila, B Mahesh, Ramith Ramu, B Roopashree, K Mruthunjaya. α-Amylase inhibitory potential of Thunbergia mysorensis leaves extract and bioactive compounds by in vitro and computational approach.
Journal of biomolecular structure & dynamics.
2023 Mar; ?(?):1-17. doi:
10.1080/07391102.2023.2190408
. [PMID: 36927385] - Xuefeng Jiang, Min Li, Yule Wang, Chao Wang, Yingchao Wang, Tianruo Shen, Lili Shen, Xiaogang Liu, Yi Wang, Xin Li. 1,2,4,5-Tetrazine-tethered probes for fluorogenically imaging superoxide in live cells with ultrahigh specificity.
Nature communications.
2023 Mar; 14(1):1401. doi:
10.1038/s41467-023-37121-8
. [PMID: 36918556] - Jorge G García, Eduardo Ansorena, Iñigo Izal, Guillermo Zalba, Carlos de Miguel, Fermín I Milagro. Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5).
Journal of physiology and biochemistry.
2023 Mar; ?(?):. doi:
10.1007/s13105-023-00955-3
. [PMID: 36905456] - Kristina Radoman, Vladimir Zivkovic, Nebojsa Zdravkovic, Natalia Vasilievna Chichkova, Sergey Bolevich, Vladimir Jakovljevic. Effects of dandelion root on rat heart function and oxidative status.
BMC complementary medicine and therapies.
2023 Mar; 23(1):78. doi:
10.1186/s12906-023-03900-5
. [PMID: 36899315] - Fatima Zohra Hechaichi, Hamdi Bendif, Chawki Bensouici, Sulaiman A Alsalamah, Boutheina Zaidi, Mustapha Mounir Bouhenna, Nabila Souilah, Mohammed I Alghonaim, Abderrahim Benslama, Samir Medjekal, Ashraf A Qurtam, Mohamed Djamel Miara, Fehmi Boufahja. Phytochemicals, Antioxidant and Antimicrobial Potentials and LC-MS Analysis of Centaurea parviflora Desf. Extracts.
Molecules (Basel, Switzerland).
2023 Feb; 28(5):. doi:
10.3390/molecules28052263
. [PMID: 36903521] - Nadeem Iqbal, Zalán Czékus, Péter Poór, Attila Ördög. Ethylene-dependent regulation of oxidative stress in the leaves of fusaric acid-treated tomato plants.
Plant physiology and biochemistry : PPB.
2023 Feb; 196(?):841-849. doi:
10.1016/j.plaphy.2023.02.047
. [PMID: 36870159] - Milos Krivokapic, Israpil Alisultanovich Omarov, Vladimir Zivkovic, Tamara Nikolic Turnic, Vladimir Jakovljevic. Changes in Left Ventricular Ejection Fraction and Oxidative Stress after Phosphodiesterase Type-5 Inhibitor Treatment in an Experimental Model of Retrograde Rat Perfusion.
Medicina (Kaunas, Lithuania).
2023 Feb; 59(3):. doi:
10.3390/medicina59030458
. [PMID: 36984459] - Sandra Yu, Francesco Caruso, Stuart Belli, Miriam Rossi. Scavenging of Superoxide in Aprotic Solvents of Four Isoflavones That Mimic Superoxide Dismutase.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24043815
. [PMID: 36835226] - Yuantao Tan, Yaoke Duan, Qing Chi, Rong Wang, Yue Yin, Dongjie Cui, Shuang Li, Aiying Wang, Ruonan Ma, Bing Li, Zhen Jiao, Hao Sun. The Role of Reactive Oxygen Species in Plant Response to Radiation.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24043346
. [PMID: 36834758] - Masannagari Pallavi, Vani Rajashekaraiah. Synergistic activity of vitamin-C and vitamin-E to ameliorate the efficacy of stored erythrocytes.
Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine.
2023 Feb; 30(1):87-95. doi:
10.1016/j.tracli.2022.09.002
. [PMID: 36084917] - Swati Singh, Nidhi Kandhol, Sangeeta Pandey, Vijay Pratap Singh, Durgesh Kumar Tripathi, Devendra Kumar Chauhan. Nitric oxide overcomes copper and copper oxide nanoparticle-induced toxicity in Sorghum vulgare seedlings through regulation of ROS and proline metabolism.
Functional plant biology : FPB.
2023 Feb; 50(2):183-194. doi:
10.1071/fp22021
. [PMID: 36216024] - Gokul Sudhakaran, Ravi Rajesh, Ajay Guru, Mariadhas Valan Arasu, Pusparathinam Gopinath, Jesu Arockiaraj. Nimbin analogs N5 and N7 regulate the expression of lipid metabolic genes and inhibit lipid accumulation in high-fat diet-induced zebrafish larvae: An antihyperlipidemic study.
Tissue & cell.
2023 Feb; 80(?):102000. doi:
10.1016/j.tice.2022.102000
. [PMID: 36542946] - Lucas B Menezes, Bruna B Segat, Hugo Tolentino, Daniele C Pires, Larissa M de M Mattos, Hyan M Hottum, Marcos D Pereira, Alexandra Latini, Adolfo Horn, Christiane Fernandes. ROS scavenging of SOD/CAT mimics probed by EPR and reduction of lipid peroxidation in S. cerevisiae and mouse liver, under severe hydroxyl radical stress condition.
Journal of inorganic biochemistry.
2023 02; 239(?):112062. doi:
10.1016/j.jinorgbio.2022.112062
. [PMID: 36403436] - Edgar Pascual-Morales, Pamela Jiménez-Chávez, Juan E Olivares-Grajales, Luis Sarmiento-López, Wylly R García-Niño, Aline López-López, Paul H Goodwin, Janet Palacios-Martínez, Ana I Chávez-Martínez, Luis Cárdenas. Role of a LORELEI- like gene from Phaseolus vulgaris during a mutualistic interaction with Rhizobium tropici.
PloS one.
2023; 18(12):e0294334. doi:
10.1371/journal.pone.0294334
. [PMID: 38060483] - Toshihide Yamasaki. [Development of a Radioiodinated Probe for in Vivo Detection of Lipid Radicals and Evaluation Using Middle Cerebral Artery Occlusion Model].
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2023; 143(1):21-26. doi:
10.1248/yakushi.22-00137
. [PMID: 36596535] - Gan Yang, Fan Su, Datong Hu, Chen Ruan, Ping Che, Yingying Zhang, Jing Wang. Optimization of the Extraction Process and Antioxidant Activity of Polysaccharide Extracted from Centipeda minima.
Chemistry & biodiversity.
2023 Jan; 20(1):e202200626. doi:
10.1002/cbdv.202200626
. [PMID: 36448941] - Mengfan Liu, Xueyang Sun, Boya Chen, Rongchen Dai, Zhichao Xi, Hongxi Xu. Insights into Manganese Superoxide Dismutase and Human Diseases.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415893
. [PMID: 36555531] - Ngoc Bao An Nguyen, Lo-Yun Chen, Po-Jen Chen, Mohamed El-Shazly, Tsong-Long Hwang, Jui-Hsin Su, Chun-Han Su, Pei-Tzu Yen, Bo-Rong Peng, Kuei-Hung Lai. MS/MS Molecular Networking Unveils the Chemical Diversity of Biscembranoid Derivatives, Neutrophilic Inflammatory Mediators from the Cultured Soft Coral Sarcophyton trocheliophorum.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232415464
. [PMID: 36555103] - Ting Fang, Yu-Kai Huang, Jinlai Wei, Jessica E Monterrosa Mena, Pascale S J Lakey, Michael T Kleinman, Michelle A Digman, Manabu Shiraiwa. Superoxide Release by Macrophages through NADPH Oxidase Activation Dominating Chemistry by Isoprene Secondary Organic Aerosols and Quinones to Cause Oxidative Damage on Membranes.
Environmental science & technology.
2022 12; 56(23):17029-17038. doi:
10.1021/acs.est.2c03987
. [PMID: 36394988] - Nannan Xi, Yang Li, Xinghui Xia. A review of pesticide phototransformation on the leaf surface: Models, mechanism, and influencing factors.
Chemosphere.
2022 Dec; 308(Pt 1):136260. doi:
10.1016/j.chemosphere.2022.136260
. [PMID: 36058377] - Jing Feng, Xiao Li, Ying Xiao, Fei-Ran Zhang, Zi-Qi Liu, Hua-Feng Zhang, Xiao-Hua Yang. Effects of Se-enriched Chrysanthemum morifolium on lifespan and antioxidant defense-related gene expression of Drosophila melanogaster model.
Journal of food biochemistry.
2022 12; 46(12):e14503. doi:
10.1111/jfbc.14503
. [PMID: 36331088] - Maria Fernanda Taviano, Sonia Núñez, Adrián Millán-Laleona, Concetta Condurso, Antonella Verzera, Maria Merlino, Monica Ragusa, Natalizia Miceli, Víctor López. Volatile composition, antidiabetic, and anti-obesity potential of Brassica incana leaf and flowering top extracts.
Pharmaceutical biology.
2022 Dec; 60(1):1994-2001. doi:
10.1080/13880209.2022.2128825
. [PMID: 36219451] - Abhay Punia, Nalini Singh Chauhan. Effect of daidzein on growth, development and biochemical physiology of insect pest, Spodoptera litura (Fabricius).
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2022 Dec; 262(?):109465. doi:
10.1016/j.cbpc.2022.109465
. [PMID: 36103973] - Xinxu Yuan, Owais M Bhat, Yao Zou, Xiang Li, Yang Zhang, Pin-Lan Li. Endothelial Acid Sphingomyelinase Promotes NLRP3 Inflammasome and Neointima Formation During Hypercholesterolemia.
Journal of lipid research.
2022 12; 63(12):100298. doi:
10.1016/j.jlr.2022.100298
. [PMID: 36252682] - Dexin Jin, Yihan Lv, Dongyang He, Dongmei Zhang, Yue Liu, Tingting Zhang, Fangyuan Cheng, Ya-Nan Zhang, Jiaqiong Sun, Jiao Qu. Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst.
Chemosphere.
2022 Dec; 308(Pt 3):136461. doi:
10.1016/j.chemosphere.2022.136461
. [PMID: 36122752] - Arslan Hafeez, Rizwan Rasheed, Muhammad Arslan Ashraf, Muhammad Rizwan, Shafaqat Ali. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress.
Chemosphere.
2022 Dec; 308(Pt 3):136523. doi:
10.1016/j.chemosphere.2022.136523
. [PMID: 36165928] - Xin Yang, Weiqing Lan, XinYu Zhao, Ai Lang, Jing Xie. Inhibitory effects of chitosan grafted chlorogenic acid on antioxidase activity, and lipid and protein oxidation of sea bass (Lateolabrax japonicus) fillets stored at 4 °C.
Journal of the science of food and agriculture.
2022 Nov; 102(14):6236-6245. doi:
10.1002/jsfa.11972
. [PMID: 35502594] - Lei Liu, Hui Li, Na Li, Shuxin Li, Junhong Guo, Xiangnan Li. Parental salt priming improves the low temperature tolerance in wheat offspring via modulating the seed proteome.
Plant science : an international journal of experimental plant biology.
2022 Nov; 324(?):111428. doi:
10.1016/j.plantsci.2022.111428
. [PMID: 36007631] - Ahmad Humayan Kabir, Md Atikur Rahman, Md Mostafizur Rahman, Philip Brailey-Jones, Ki-Won Lee, Jeffrey L Bennetzen. Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots.
Journal of applied microbiology.
2022 Nov; 133(5):2760-2778. doi:
10.1111/jam.15651
. [PMID: 35665578] - Xiang Li, Dongjing Deng, Gizem Cataltepe, Ángela Román, Christopher R Buckley, Carolina Cassano Monte-Bello, Aleksandra Skirycz, Camila Caldana, Michael J Haydon. A reactive oxygen species Ca2+ signalling pathway identified from a chemical screen for modifiers of sugar-activated circadian gene expression.
The New phytologist.
2022 Nov; 236(3):1027-1041. doi:
10.1111/nph.18380
. [PMID: 35842791] - Parmeshwar Lal Meena, Ajay Kumar Surela, Jitendra Kumar Saini, Lata Kumari Chhachhia. Millettia pinnata plant pod extract-mediated synthesis of Bi2O3 for degradation of water pollutants.
Environmental science and pollution research international.
2022 Nov; 29(52):79253-79271. doi:
10.1007/s11356-022-21435-z
. [PMID: 35708808] - Konappa Narasimhamurthy, Arakere C Udayashankar, Savitha De Britto, Senapathyhalli N Lavanya, Mostafa Abdelrahman, Krishnamurthy Soumya, Hunthrike Shekar Shetty, Chowdappa Srinivas, Sudisha Jogaiah. Chitosan and chitosan-derived nanoparticles modulate enhanced immune response in tomato against bacterial wilt disease.
International journal of biological macromolecules.
2022 Nov; 220(?):223-237. doi:
10.1016/j.ijbiomac.2022.08.054
. [PMID: 35970370] - Si Long, Bowen Liu, Jiongjiong Gong, Ruijia Wang, Shuanghong Gao, Tianqi Zhu, Huan Guo, Tieyuan Liu, Yuefei Xu. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):248-261. doi:
10.1016/j.plaphy.2022.09.010
. [PMID: 36152510] - B Haridevamuthu, Ajay Guru, Raghul Murugan, Gokul Sudhakaran, Raman Pachaiappan, Mikhlid H Almutairi, Bader O Almutairi, Annie Juliet, Jesu Arockiaraj. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects.
Neuroscience letters.
2022 Nov; 790(?):136889. doi:
10.1016/j.neulet.2022.136889
. [PMID: 36179902] - Finosh G Thankam, Bisma Khwaja, Megan Nguyen, Osama Ahsan, Devendra K Agrawal. Acute exposure of minimally oxLDL elicits survival responses by downregulating the mediators of NLRP3 inflammasome in cultured RAW 264.7 macrophages.
Journal of biochemistry.
2022 Oct; 172(5):265-276. doi:
10.1093/jb/mvac063
. [PMID: 35993502] - Marie-Charlotte Guillou, Emilie Vergne, Sophie Aligon, Sandra Pelletier, Fabienne Simonneau, Aurélia Rolland, Salem Chabout, Gregory Mouille, Kay Gully, Philippe Grappin, Françoise Montrichard, Sébastien Aubourg, Jean-Pierre Renou. The peptide SCOOP12 acts on reactive oxygen species homeostasis to modulate cell division and elongation in Arabidopsis primary root.
Journal of experimental botany.
2022 10; 73(18):6115-6132. doi:
10.1093/jxb/erac240
. [PMID: 35639812] - Nourhan Hisham Shady, Abdullah H Altemani, Faisal H Altemani, Sherif A Maher, Mahmoud A Elrehany, Entesar Ali Saber, Ahmed M Badawi, Fatma Mohamed Abd El-Mordy, Nada M Mohamed, Mohammed A S Abourehab, Ahmed M Sayed, Usama Ramadan Abdelmohsen, Soad A Mohamad. The Potential of Corchorus olitorius Seeds Buccal Films for Treatment of Recurrent Minor Aphthous Ulcerations in Human Volunteers.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27207020
. [PMID: 36296628] - Jinyu Gu, Chunmei Hu, Xiangwei Jia, Yanfang Ren, Dongming Su, Junyu He. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice.
Plant physiology and biochemistry : PPB.
2022 Oct; 189(?):104-114. doi:
10.1016/j.plaphy.2022.08.010
. [PMID: 36081232] - Alex C Johnson, Thomas H Pendergast, Srinivasa Chaluvadi, Jeffrey L Bennetzen, Katrien M Devos. Identification of microRNAs responsive to arbuscular mycorrhizal fungi in Panicum virgatum (switchgrass).
BMC genomics.
2022 Oct; 23(1):688. doi:
10.1186/s12864-022-08797-x
. [PMID: 36199042] - Walimuni Prabhashini Kaushalya Mendis Abeysekera, Galbada Arachchige Sirimal Premakumara, Wanigasekera Daya Ratnasooriya, Walimuni Kanchana Subhashini Mendis Abeysekera. Anti-inflammatory, cytotoxicity and antilipidemic properties: novel bioactivities of true cinnamon (Cinnamomum zeylanicum Blume) leaf.
BMC complementary medicine and therapies.
2022 Oct; 22(1):259. doi:
10.1186/s12906-022-03728-5
. [PMID: 36195907] - Chun-Qu Chen, Xin-Yue Tian, Jian Li, Shuang Bai, Zhuo-Yan Zhang, Yuan Li, Hong-Rui Cao, Zhi-Chang Chen. Two central circadian oscillators OsPRR59 and OsPRR95 modulate magnesium homeostasis and carbon fixation in rice.
Molecular plant.
2022 10; 15(10):1602-1614. doi:
10.1016/j.molp.2022.09.008
. [PMID: 36114668] - Manuel Iván Girón-Pérez, Verónica S Mary, Héctor R Rubinstein, Gladys A Toledo-Ibarra, Martín G Theumer. Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress.
International journal of environmental health research.
2022 Oct; 32(10):2309-2323. doi:
10.1080/09603123.2021.1962814
. [PMID: 34404283] - Abbas Abou-Hamdan, Roman Mahler, Philipp Grossenbacher, Olivier Biner, Dan Sjöstrand, Martin Lochner, Martin Högbom, Christoph von Ballmoos. Functional design of bacterial superoxide:quinone oxidoreductase.
Biochimica et biophysica acta. Bioenergetics.
2022 10; 1863(7):148583. doi:
10.1016/j.bbabio.2022.148583
. [PMID: 35671795] - Wei-Wei Cai, Xiao-Meng Hu, Yu-Mei Wang, Chang-Feng Chi, Bin Wang. Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs: Preparation, Identification, Antioxidant Activity, and Stability against Thermal, pH, and Simulated Gastrointestinal Digestion Treatments.
Marine drugs.
2022 Sep; 20(10):. doi:
10.3390/md20100626
. [PMID: 36286450] - Mizanur Rahman, Martin Irmler, Micol Introna, Johannes Beckers, Lena Palmberg, Gunnar Johanson, Swapna Upadhyay, Koustav Ganguly. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface.
Scientific reports.
2022 09; 12(1):16396. doi:
10.1038/s41598-022-20657-y
. [PMID: 36180488] - Justyna Nawrocka, Kamil Szymczak, Aleksandra Maćkowiak, Monika Skwarek-Fadecka, Urszula Małolepsza. Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Botrytis cinerea Induced by Trichoderma virens TRS 106.
Cells.
2022 09; 11(19):. doi:
10.3390/cells11193051
. [PMID: 36231012] - Anna Schulten, Björn Pietzenuk, Julia Quintana, Marleen Scholle, Regina Feil, Marcus Krause, Maida Romera-Branchat, Vanessa Wahl, Edouard Severing, George Coupland, Ute Krämer. Energy status-promoted growth and development of Arabidopsis require copper deficiency response transcriptional regulator SPL7.
The Plant cell.
2022 09; 34(10):3873-3898. doi:
10.1093/plcell/koac215
. [PMID: 35866980] - Chao Li, Wei Tang, Shanglong Chen, Juping He, Xiaojing Li, Xucheng Zhu, Haimei Li, Yao Peng. Phytochemical Properties and In Vitro Biological Activities of Phenolic Compounds from Flower of Clitoria ternatea L.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196336
. [PMID: 36234873] - Rajveer Singh, Shivani Chandel, Arijit Ghosh, Tushar Matta, Anupam Gautam, Arka Bhattacharya, Srivalliputturu Sarath Babu, Soumi Sukla, Debasish Nag, Velayutham Ravichandiran, Syamal Roy, Dipanjan Ghosh. Glucogallin Attenuates the LPS-Induced Signaling in Macrophages and Protects Mice against Sepsis.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911254
. [PMID: 36232563] - Myoung Hui Lee, Kyeong-Min Kim, Wan-Gyu Sang, Chon-Sik Kang, Changhyun Choi. Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810734
. [PMID: 36142649] - M Vidová Uğurbaş, D Ogurčáková, M Haus, I Boroňová, L Čuchráč, J Vašková. Effect of Annona muricata aqueous leaf extract on reactive oxygen and nitrogen species.
European review for medical and pharmacological sciences.
2022 09; 26(18):6497-6504. doi:
10.26355/eurrev_202209_29748
. [PMID: 36196736] - Yanhui Che, Tongtong Yao, Hongrui Wang, Zihan Wang, Hongbo Zhang, Guangyu Sun, Huihui Zhang. Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco.
Plant physiology and biochemistry : PPB.
2022 Sep; 186(?):40-51. doi:
10.1016/j.plaphy.2022.06.027
. [PMID: 35803090] - Wei Chen, Bingru Huang. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass.
Physiologia plantarum.
2022 Sep; 174(5):e13766. doi:
10.1111/ppl.13766
. [PMID: 36053893] - Zhi-Qi Ren, Lin-Qian Yu, Hao Wang, Gui-Feng Li, Li-Ge Zhang, Xue-Ning Du, Bao-Cheng Huang, Ren-Cun Jin. Inorganic quantum dots - anammox consortia hybrid for stable nitrogen elimination under high-intensity solar-simulated irradiation.
Water research.
2022 Sep; 223(?):119033. doi:
10.1016/j.watres.2022.119033
. [PMID: 36058096] - Bita Soheili-Moghaddam, Sedigheh Mousanejad, Mehdi Nasr-Esfahani, Hamed Hassanzade-Khankahdani, Houssein Karbalaie-Khiyavie. Identification of novel associations of candidate genes with resistance to Rhizoctonia solani AG-3PT in Solanum tuberosum stem canker.
International journal of biological macromolecules.
2022 Aug; 215(?):321-333. doi:
10.1016/j.ijbiomac.2022.06.105
. [PMID: 35718157] - Dimitrij Holzmann, Stephanie Bethmann, Peter Jahns. Zeaxanthin Epoxidase Activity Is Downregulated by Hydrogen Peroxide.
Plant & cell physiology.
2022 Aug; 63(8):1091-1100. doi:
10.1093/pcp/pcac081
. [PMID: 35674150] - Zaenal Abidin, Huai-Ting Huang, Yeh-Fang Hu, Jui-Jen Chang, Chih-Yang Huang, Yu-Sheng Wu, Fan-Hua Nan. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei).
Fish & shellfish immunology.
2022 Aug; 127(?):876-890. doi:
10.1016/j.fsi.2022.07.007
. [PMID: 35810967]