6beta-Hydroxytestosterone (BioDeep_00000002966)
Main id: BioDeep_00000016688
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C19H28O3 (304.2038)
中文名称: 6,17-二羟基-6b,17b-雄甾-4-烯-3-酮
谱图信息:
最多检出来源 Homo sapiens(blood) 49.67%
分子结构信息
SMILES: C1[C@]2(C)[C@@]3([H])CC[C@]4(C)[C@@H](O)CC[C@@]4([H])[C@]3([H])C[C@@H](O)C2=CC(=O)C1
InChI: InChI=1S/C19H28O3/c1-18-7-5-11(20)9-15(18)16(21)10-12-13-3-4-17(22)19(13,2)8-6-14(12)18/h9,12-14,16-17,21-22H,3-8,10H2,1-2H3/t12-,13-,14-,16+,17-,18+,19-/m0/s1
描述信息
Testosterone is reported to have an acute vasodilating action in vitro, an effect that may impart a favourable haemodynamic response in patients with chronic heart failure.
同义名列表
30 个代谢物同义名
(1S,2R,8R,10R,11S,14S,15S)-8,14-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one; 6 beta-Hydroxytestosterone, (6alpha,17beta)-isomer; 6,17-Dihydroxy-(6beta,17beta)-androst-4-en-3-one; (6beta,17beta)-6,17-Dihydroxyandrost-4-en-3-one; 6,17-Dihydroxyandrost-4-en-3-one (acd/name 4.0); 6 beta-Hydroxytestosterone, (17beta)-isomer; 6,17-Dihydroxy-(6b,17b)-androst-4-en-3-one; (6b,17b)-6,17-Dihydroxyandrost-4-en-3-one; (6β,17β)-6,17-dihydroxyandrost-4-en-3-one; 6beta,17beta-Dihydroxy-4-androsten-3-one; 6beta,17beta-dihydroxyandrost-4-en-3-one; 2-Octadecanoyl-1-hexadecyl-sn-glycerol; 4-Androsten-6beta,17beta-diol-3-one; 6b,17b-Dihydroxyandrost-4-en-3-one; 6b,17b-Dihydroxy-4-androsten-3-one; 6β,17β-dihydroxy-4-androsten-3-one; 6β,17β-dihydroxyandrost-4-en-3-one; 4-Androsten-6b,17b-diol-3-one; 4-Androsten-6β,17β-diol-3-one; 6 beta Hydroxy testosterone; 6β-hydroxytestosterone; 4-Androsten-6,17-diol-3-one; 6-B-HYDROXY TESTOSTERONE-D3; 6 beta-Hydroxytestosterone; 6beta-hydroxytestosterone; 6 β hydroxy testosterone; 6b-Hydroxytestosterone; 6β-hydroxytestosterone; ST 19:2;O3; 6beta-Hydroxytestosterone
数据库引用编号
14 个数据库交叉引用编号
- ChEBI: CHEBI:34477
- KEGG: C14497
- PubChem: 222794
- PubChem: 65543
- HMDB: HMDB0006259
- Metlin: METLIN41851
- ChEMBL: CHEMBL2074878
- LipidMAPS: LMST02020054
- chemspider: 18558308
- CAS: 62-99-7
- PMhub: MS000007549
- PubChem: 17395497
- NIKKAJI: J239.113I
- KNApSAcK: 34477
分类词条
相关代谢途径
Reactome(6)
BioCyc(0)
PlantCyc(0)
代谢反应
72 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
CAF + H+ + Oxygen + TPNH ⟶ CH2O + H2O + Paraxanthine + TPN
- Miscellaneous substrates:
H+ + Oxygen + TPNH + atRA ⟶ 4OH-atRA + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Cytochrome P450 - arranged by substrate type:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Xenobiotics:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Miscellaneous substrates:
H+ + Oxygen + TES + TPNH ⟶ 6BHT + H2O + TPN
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Liyan Wang, Tingting Zhao, Yunxiang Wang, Banglian Hu, Jianfei Tao, Jinshan Ke, Tingfei Wei, Guangbo Ge, Qiang Meng, Changyuan Wang, Qi Liu, Huijun Sun, Jingjing Wu, Yanwei Chen. In vitro Measurement and In vivo Prediction of Time-Dependent Inhibitory Effects of Three Tyrosine Kinase Inhibitors on CYP3A Activity.
Current drug metabolism.
2021; 22(10):802-810. doi:
10.2174/1389200222666210902130319
. [PMID: 34473615] - Yao Fu, Xiaoxiao Tian, Lingling Han, Yilin Li, Ying Peng, Jiang Zheng. Mechanism-based inactivation of cytochrome P450 2D6 by Notopterol.
Chemico-biological interactions.
2020 May; 322(?):109053. doi:
10.1016/j.cbi.2020.109053
. [PMID: 32198085] - Mengjun Shi, Yiping Cui, Cunyu Liu, Changqin Li, Zhenhua Liu, Wen-Yi Kang. CYPs-mediated drug-drug interactions on psoralidin, isobavachalcone, neobavaisoflavone and daidzein in rats liver microsomes.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Feb; 136(?):111027. doi:
10.1016/j.fct.2019.111027
. [PMID: 31870919] - Ji-Zong Jiang, Bao-Hua Yang, Li-Li Ji, Li Yang, Yu-Chang Mao, Zhuo-Han Hu, Zheng-Tao Wang, Chang-Hong Wang. Metabolic-induced cytotoxicity of diosbulbin B in CYP3A4-expressing cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2017 Feb; 38(?):59-66. doi:
10.1016/j.tiv.2016.11.006
. [PMID: 27836570] - Masayuki Tsujimoto, Chie Agawa, Shinya Ueda, Takayoshi Yamane, Haruna Kitayama, Aya Terao, Tomoya Fukuda, Tetsuya Minegaki, Kohshi Nishiguchi. Inhibitory Effects of Juices Prepared from Individual Vegetables on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.
Biological & pharmaceutical bulletin.
2017; 40(9):1561-1565. doi:
10.1248/bpb.b17-00116
. [PMID: 28867739] - Mari Hashimoto, Kaoru Kobayashi, Mana Yamazaki, Yasuhiro Kazuki, Shoko Takehara, Mitsuo Oshimura, Kan Chiba. Cyp3a deficiency enhances androgen receptor activity and cholesterol synthesis in the mouse prostate.
The Journal of steroid biochemistry and molecular biology.
2016 10; 163(?):121-8. doi:
10.1016/j.jsbmb.2016.04.018
. [PMID: 27137100] - Ajeeth K Pingili, Shyamala Thirunavukkarasu, Mehmet Kara, David D Brand, Akemi Katsurada, Dewan S A Majid, L Gabriel Navar, Frank J Gonzalez, Kafait U Malik. 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone-Metabolite, Mediates Angiotensin II-Induced Renal Dysfunction in Male Mice.
Hypertension (Dallas, Tex. : 1979).
2016 May; 67(5):916-26. doi:
10.1161/hypertensionaha.115.06936
. [PMID: 26928804] - Anaïs Michaut, Dounia Le Guillou, Caroline Moreau, Simon Bucher, Mitchell R McGill, Sophie Martinais, Thomas Gicquel, Isabelle Morel, Marie-Anne Robin, Hartmut Jaeschke, Bernard Fromenty. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen.
Toxicology and applied pharmacology.
2016 Feb; 292(?):40-55. doi:
10.1016/j.taap.2015.12.020
. [PMID: 26739624] - Ajeeth K Pingili, Mehmet Kara, Nayaab S Khan, Anne M Estes, Zongtao Lin, Wei Li, Frank J Gonzalez, Kafait U Malik. 6β-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice.
Hypertension (Dallas, Tex. : 1979).
2015 Jun; 65(6):1279-87. doi:
10.1161/hypertensionaha.115.05396
. [PMID: 25870196] - Xi-feng Zhang, Ju Liu, Feng Ye, Sen-guo Ji, Ni Zhang, Ru-sen Cao, Ling He, Jiang-chuan Wu, Xing-fu Li. Effects of triptolide on the pharmacokinetics of cyclophosphamide in rats: a possible role of cytochrome P3A4 inhibition.
Chinese journal of integrative medicine.
2014 Jul; 20(7):534-9. doi:
10.1007/s11655-014-1710-0
. [PMID: 24420925] - Jeffrey C Sivils, Tiffany M Ancrum, Lisa J Bain. LOSS of Mrp1 alters detoxification enzyme expression in a tissue- and hormonal-status-specific manner.
Journal of applied toxicology : JAT.
2013 Aug; 33(8):766-73. doi:
10.1002/jat.2727
. [PMID: 22522787] - Yonglong Han, Xiangle Meng, Dan Li, Zhiyong Zhou, Qi Yu, Yan Li, Cheng Guo. [In vitro inhibition of five traditional Chinese medicine injections on rat liver microsomal CYP3A].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Feb; 36(4):492-5. doi:
. [PMID: 21598550]
- Yassar Farooq, Gordon C K Roberts. Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4.
The Biochemical journal.
2010 Dec; 432(3):485-93. doi:
10.1042/bj20100744
. [PMID: 20879989] - Furong Qiu, Rong Zhang, Guangji Wang, Chenglu Gao, Jianguo Sun, Jian Jiang, Yueming Ma. Activation of CYP3A-mediated testosterone 6β-hydroxylation by tanshinone IIA and midazolam 1-hydroxylation by cryptotanshinone in human liver microsomes.
Xenobiotica; the fate of foreign compounds in biological systems.
2010 Dec; 40(12):800-6. doi:
10.3109/00498254.2010.519062
. [PMID: 20964620] - Esther G van de Kerkhof, Inge A M de Graaf, Anna-Lena B Ungell, Geny M M Groothuis. Induction of metabolism and transport in human intestine: validation of precision-cut slices as a tool to study induction of drug metabolism in human intestine in vitro.
Drug metabolism and disposition: the biological fate of chemicals.
2008 Mar; 36(3):604-13. doi:
10.1124/dmd.107.018820
. [PMID: 18094037] - Yoshihiro Uesawa, Kiminori Mohri. The use of heat treatment to eliminate drug interactions due to grapefruit juice.
Biological & pharmaceutical bulletin.
2006 Nov; 29(11):2274-8. doi:
10.1248/bpb.29.2274
. [PMID: 17077528] - Toshiyuki Shimizu, Kei Akimoto, Takuya Yoshimura, Takuro Niwa, Kaoru Kobayashi, Michio Tsunoo, Kan Chiba. Autoinduction of MKC-963 [(R)-1-(1-cyclohexylethylamino)-4-phenylphthalazine] metabolism in healthy volunteers and its retrospective evaluation using primary human hepatocytes and cDNA-expressed enzymes.
Drug metabolism and disposition: the biological fate of chemicals.
2006 Jun; 34(6):950-4. doi:
10.1124/dmd.105.007997
. [PMID: 16531475] - Thomas M Polasek, John O Miners. Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate.
European journal of clinical pharmacology.
2006 Mar; 62(3):203-8. doi:
10.1007/s00228-005-0091-x
. [PMID: 16416302] - Kazuhiko Hanada, Rie Ogawa, Kishin Son, Yuuki Sasaki, Akashi Kikkawa, Shiho Ichihara, Hiroyasu Ogata. Effects of indoxylsulfate on the in vitro hepatic metabolism of various compounds using human liver microsomes and hepatocytes.
Nephron. Physiology.
2006; 103(4):p179-86. doi:
10.1159/000092919
. [PMID: 16645322] - Ralf Peter Meyer, Christoph Eugen Hagemeyer, Rolf Knoth, Michel Rene Kaufmann, Benedikt Volk. Anti-epileptic drug phenytoin enhances androgen metabolism and androgen receptor expression in murine hippocampus.
Journal of neurochemistry.
2006 Jan; 96(2):460-72. doi:
10.1111/j.1471-4159.2005.03555.x
. [PMID: 16336225] - Taekrho Kim, Shellie M Callahan, Kishor M Wasan, Lane J Brunner. Effect of high-density lipoprotein associated cyclosporine on hepatic metabolism and renal function.
PDA journal of pharmaceutical science and technology.
2003 Sep; 57(5):341-50. doi:
. [PMID: 14677627]
- Andrew A Shaw, Stephen D Hall, Michael R Franklin, Raymond E Galinsky. The influence of L-glutamine on the depression of hepatic cytochrome P450 activity in male rats caused by total parenteral nutrition.
Drug metabolism and disposition: the biological fate of chemicals.
2002 Feb; 30(2):177-82. doi:
10.1124/dmd.30.2.177
. [PMID: 11792688] - R B Ibrahim, J G Wilson, M E Thorsby, D J Edwards. Effect of buprenorphine on CYP3A activity in rat and human liver microsomes.
Life sciences.
2000 Feb; 66(14):1293-8. doi:
10.1016/s0024-3205(00)00436-7
. [PMID: 10755464]