Telmisartan (BioDeep_00000001581)

 

Secondary id: BioDeep_00000397581

human metabolite blood metabolite


代谢物信息卡片


2-(4-{[4-methyl-6-(1-methyl-1H-1,3-benzodiazol-2-yl)-2-propyl-1H-1,3-benzodiazol-1-yl]methyl}phenyl)benzoic acid

化学式: C33H30N4O2 (514.2369)
中文名称: 替米沙坦
谱图信息: 最多检出来源 Homo sapiens(blood) 9.07%

分子结构信息

SMILES: CCCC1=NC2=C(C=C(C=C2C)C2=NC3=CC=CC=C3N2C)N1CC1=CC=C(C=C1)C1=CC=CC=C1C(O)=O
InChI: InChI=1S/C33H30N4O2/c1-4-9-30-35-31-21(2)18-24(32-34-27-12-7-8-13-28(27)36(32)3)19-29(31)37(30)20-22-14-16-23(17-15-22)25-10-5-6-11-26(25)33(38)39/h5-8,10-19H,4,9,20H2,1-3H3,(H,38,39)

描述信息

Telmisartan is an angiotensin II receptor antagonist (ARB) used in the management of hypertension. Generally, angiotensin II receptor blockers (ARBs) such as telmisartan bind to the angiotensin II type 1 (AT1) receptors with high affinity, causing inhibition of the action of angiotensin II on vascular smooth muscle, ultimately leading to a reduction in arterial blood pressure. Recent studies suggest that telmisartan may also have PPAR-gamma agonistic properties that could potentially confer beneficial metabolic effects.
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist
D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2805
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Telmisartan is a potent, long lasting antagonist of angiotensin II type 1 receptor (AT1), selectively inhibiting the binding of 125I-AngII to AT1 receptors with IC50 of 9.2 nM.

同义名列表

17 个代谢物同义名

2-(4-{[4-methyl-6-(1-methyl-1H-1,3-benzodiazol-2-yl)-2-propyl-1H-1,3-benzodiazol-1-yl]methyl}phenyl)benzoic acid; 4-((4-Methyl-6-(1-methyl-2-benzimidazolyl)-2-propyl-1-benzimidazolyl)methyl)-2-biphenylcarboxylic acid; 4-((4-Methyl-6-(1-methyl-2-benzimidazolyl)-2-propyl-1-benzimidazolyl)methyl)-2-biphenylcarboxylate; 4-((1,4-Dimethyl-2-propyl(2,6-bi-1H-benzimidazol)-1-yl)methyl)-(1,1-biphenyl)-2-carboxylic acid; 4-[(1,4-Dimethyl-2propyl[2,6-bi-1H-benzimidazol]-1-yl)methyl]-[1,1-biphenyl]-2-carboxylic acid; 4-((1,4-Dimethyl-2-propyl(2,6-bi-1H-benzimidazol)-1-yl)methyl)-(1,1-biphenyl)-2-carboxylate; 4-[(1,4-Dimethyl-2propyl[2,6-bi-1H-benzimidazol]-1-yl)methyl]-[1,1-biphenyl]-2-carboxylate; 4-[(1,7-Dimethyl-2-propyl-1H,3H-2,5-bibenzimidazol-3-yl)methyl]biphenyl-2-carboxylic acid; 4-[(1,7-Dimethyl-2-propyl-1H,3H-2,5-bibenzimidazol-3-yl)methyl]biphenyl-2-carboxylate; Telmisartan tablets; Telmisartan; BIBR 277Se; Micardis; BIBR-277; BIBR 277; Pritor; Telmisartan



数据库引用编号

45 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ABCB1, ACE, ACE2, AKT1, ALB, CAT, FAS, PPARG
Endoplasmic reticulum membrane 1 CYBB
Mitochondrion membrane 1 ABCG2
Nucleus 3 AKT1, ALB, PPARG
cytosol 5 AKT1, ALB, CAT, FAS, PPARG
dendrite 1 CYBB
mitochondrial membrane 1 ABCG2
nuclear body 1 FAS
phagocytic vesicle 1 CYBB
centrosome 1 ALB
nucleoplasm 3 ABCG2, AKT1, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 9 ABCB1, ABCG2, ACE, ACE2, AGTR1, AKT1, CYBB, FAS, SLCO1B3
lamellipodium 1 AKT1
Multi-pass membrane protein 7 ABCB1, ABCC2, ABCG2, AGTR1, CACNA1I, CYBB, SLCO1B3
cell cortex 1 AKT1
cell surface 5 ABCB1, ABCC2, ACE2, ADIPOQ, FAS
glutamatergic synapse 1 AKT1
Golgi apparatus 3 ALB, CCN2, FAS
Golgi membrane 1 INS
neuronal cell body 1 CYBB
postsynapse 1 AKT1
Lysosome 1 ACE
endosome 1 ACE
plasma membrane 13 ABCB1, ABCC2, ABCG2, ACE, ACE2, AGTR1, AKT1, CACNA1I, CCN2, CYBB, FAS, REN, SLCO1B3
Membrane 13 ABCB1, ABCC2, ABCG2, ACE, ACE2, AGTR1, AKT1, CACNA1I, CAT, CYBB, FAS, REN, SLCO1B3
apical plasma membrane 4 ABCB1, ABCC2, ABCG2, ACE2
basolateral plasma membrane 1 SLCO1B3
extracellular exosome 6 ABCB1, ACE, ACE2, ALB, CAT, FAS
endoplasmic reticulum 2 ADIPOQ, ALB
extracellular space 9 ACE, ACE2, ADIPOQ, ALB, CCL2, CCN2, IL6, INS, REN
perinuclear region of cytoplasm 1 PPARG
intercellular canaliculus 1 ABCC2
mitochondrion 1 CAT
protein-containing complex 3 AKT1, ALB, CAT
intracellular membrane-bounded organelle 3 CAT, CCN2, PPARG
Single-pass type I membrane protein 3 ACE, ACE2, FAS
Secreted 9 ACE, ACE2, ADIPOQ, ALB, CCL2, CCN2, IL6, INS, REN
extracellular region 10 ACE, ACE2, ADIPOQ, ALB, CAT, CCL2, CCN2, IL6, INS, REN
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
Cell projection, cilium 1 ACE2
external side of plasma membrane 2 ACE, FAS
Secreted, extracellular space, extracellular matrix 1 CCN2
microtubule cytoskeleton 1 AKT1
apical part of cell 1 REN
cell-cell junction 1 AKT1
vesicle 1 AKT1
Apical cell membrane 4 ABCB1, ABCC2, ABCG2, ACE2
Membrane raft 3 ABCG2, ACE2, FAS
focal adhesion 1 CAT
spindle 1 AKT1
extracellular matrix 1 CCN2
Peroxisome 1 CAT
collagen trimer 1 ADIPOQ
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ADIPOQ
receptor complex 1 PPARG
ciliary basal body 2 AKT1, ALB
cilium 1 ACE2
chromatin 1 PPARG
phagocytic vesicle membrane 1 CYBB
centriole 1 ALB
brush border membrane 3 ABCG2, ACE, ACE2
spindle pole 1 ALB
blood microparticle 1 ALB
sperm midpiece 1 ACE
Basolateral cell membrane 1 SLCO1B3
nuclear envelope 1 CYBB
endosome lumen 1 INS
monoatomic ion channel complex 1 CYBB
specific granule membrane 1 CYBB
tertiary granule membrane 1 CYBB
Melanosome 1 FAS
basal plasma membrane 2 ACE, SLCO1B3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ACE2, ALB, IL6, INS
platelet alpha granule lumen 1 ALB
voltage-gated calcium channel complex 1 CACNA1I
endocytic vesicle membrane 1 ACE2
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
perinuclear endoplasmic reticulum 1 CYBB
Basal cell membrane 1 SLCO1B3
external side of apical plasma membrane 2 ABCB1, ABCG2
CD95 death-inducing signaling complex 1 FAS
death-inducing signaling complex 1 FAS
[Isoform 1]: Cell membrane 1 FAS
catalase complex 1 CAT
NADPH oxidase complex 1 CYBB
interleukin-6 receptor complex 1 IL6
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
glycogen granule 1 FAS
ciliary transition fiber 1 ALB
[Processed angiotensin-converting enzyme 2]: Secreted 1 ACE2
[Isoform 2]: Apical cell membrane 1 ACE2


文献列表

  • L I Liusheng, Zhao Mingming, Chang Meiying, S I Yuan, Zhao Jinning, Yang Bin, Zhang Yu. Protective effect of modified Huangqi Chifeng decoction on immunoglobulin A nephropathy through toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-kappa B signaling pathway. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2024 Apr; 44(2):324-333. doi: 10.19852/j.cnki.jtcm.20240203.001. [PMID: 38504538]
  • Lu Xu, Qin Zhao, Yiqiong Xie, Ge Bai, Hongwen Liu, Qi Chen, Hongjue Duan, Lishan Wang, Hang Xu, Yuxiang Sun, Gao Ling, Weihong Ge, Yun Zhu. Telmisartan loading thermosensitive hydrogel repairs gut epithelial barrier for alleviating inflammatory bowel disease. Colloids and surfaces. B, Biointerfaces. 2024 Apr; 236(?):113799. doi: 10.1016/j.colsurfb.2024.113799. [PMID: 38367290]
  • Radka Kodešová, Helena Švecová, Aleš Klement, Miroslav Fér, Antonín Nikodem, Ganna Fedorova, Oleksandra Rieznyk, Martin Kočárek, Alina Sadchenko, Alica Chroňáková, Roman Grabic. Contamination of water, soil, and plants by micropollutants from reclaimed wastewater and sludge from a wastewater treatment plant. The Science of the total environment. 2023 Oct; 907(?):167965. doi: 10.1016/j.scitotenv.2023.167965. [PMID: 37866592]
  • Noha A T Abbas, Fawkia A Fayed, Rabab Saber El Sebaey, Heba A Hassan. Telmisartan and candesartan promote browning of white adipose tissue and reverse fatty liver changes in high fat diet fed male albino rats. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Oct; ?(?):. doi: 10.1007/s00210-023-02771-4. [PMID: 37831115]
  • Tian Xia, Lu-Lu Xu, Peng-Yue Guo, Wan-Ting Shi, Yan-Qiong Cheng, Ai-Jun Liu. Synergism of amlodipine and telmisartan or candesartan on blood pressure reduction by using SynergyFinder 3.0 and probability sum test in vivo. Pharmacology research & perspectives. 2023 04; 11(2):e01064. doi: 10.1002/prp2.1064. [PMID: 36810974]
  • Himanshu Sankrityayan, Vishwadeep Shelke, Ajinath Kale, Anil Bhanudas Gaikwad. Evaluating the potential of tauroursodeoxycholic acid as add-on therapy in amelioration of streptozotocin-induced diabetic kidney disease. European journal of pharmacology. 2023 Mar; 942(?):175528. doi: 10.1016/j.ejphar.2023.175528. [PMID: 36690052]
  • Xin Guan, Jianbing Wu, Jiahui Geng, Duorui Ji, Dasha Wei, Yong Ling, Yihua Zhang, Guojun Jiang, Tao Pang, Zhangjian Huang. A Novel Hybrid of Telmisartan and Borneol Ameliorates Neuroinflammation and White Matter Injury in Ischemic Stroke Through ATF3/CH25H Axis. Translational stroke research. 2022 Dec; ?(?):. doi: 10.1007/s12975-022-01121-5. [PMID: 36577854]
  • Nirmal Aravindaraj, Jeseeta Suresh, Venkateshwaran Krishnaswami, Shanmugarathinam Alagarsamy, Ruckmani Kandasamy. Guar gum based oral films for hypertensive urgencies. Natural product research. 2022 Dec; 36(24):6470-6473. doi: 10.1080/14786419.2022.2039919. [PMID: 35167380]
  • Xiuhong Zhou, Ma Yire A Zezi, Dandan Li, Jian Wang. Telmisartan ameliorates LPS-induced pneumonia in rats through regulation of the PPARγ/NF-κB pathway. Microbiology and immunology. 2022 Jul; 66(7):371-378. doi: 10.1111/1348-0421.12981. [PMID: 35485217]
  • Yan Wang, Tengrui Zhang, Chen Li, Jia Guo, Baohui Xu, Lixiang Xue. Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity by inducing the lipid oxidation. Asia-Pacific journal of clinical oncology. 2022 Jun; 18(3):217-223. doi: 10.1111/ajco.13574. [PMID: 33945216]
  • Vian Ahmed Wasta Esmail, Marwan S M Al-Nimer, Mohammed Omer Mohammed. Effects of Orlistat or Telmisartan on the Serum Free Fatty Acids in Non-alcoholic Fatty Liver Disease Patients: An Open-Labeled Randomized Controlled Study. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology. 2022 05; 33(5):421-426. doi: 10.5152/tjg.2020.19365. [PMID: 35678800]
  • B Rudresh Gowda, N Prakash, C R Santhosh, B H Pavithra, Rashmi Rajashekaraiah, M L Sathyanarayana, Suguna Rao, Prashantkumar Waghe, K R Anjan Kumar, G R Shivaprasad, Y Muralidhar. Effect of Telmisartan on Arsenic-Induced (Sub-chronic) Perturbations in Redox Homeostasis, Pro-inflammatory Cascade and Aortic Dysfunction in Wistar Rats. Biological trace element research. 2022 Apr; 200(4):1776-1790. doi: 10.1007/s12011-021-02804-0. [PMID: 34339004]
  • Aswathy R Devan, Bhagyalakshmi Nair, Ayana R Kumar, Lekshmi R Nath. An insight into the role of telmisartan as PPAR-γ/α dual activator in the management of nonalcoholic fatty liver disease. Biotechnology and applied biochemistry. 2022 Apr; 69(2):461-468. doi: 10.1002/bab.2123. [PMID: 33578449]
  • Paris J Baptiste, Angel Y S Wong, Anna Schultze, Marianne Cunnington, Johannes F E Mann, Catherine Clase, Clémence Leyrat, Laurie A Tomlinson, Kevin Wing. Effects of ACE inhibitors and angiotensin receptor blockers: protocol for a UK cohort study using routinely collected electronic health records with validation against the ONTARGET trial. BMJ open. 2022 03; 12(3):e051907. doi: 10.1136/bmjopen-2021-051907. [PMID: 35260450]
  • Shaoqi Zuo, Haoyu Meng, Jiahui Liang, Huajun Zhen, Ying Zhu, Yanbin Zhao, Kun Zhang, Jiayin Dai. Residues of Cardiovascular and Lipid-Lowering Drugs Pose a Risk to the Aquatic Ecosystem despite a High Wastewater Treatment Ratio in the Megacity Shanghai, China. Environmental science & technology. 2022 02; 56(4):2312-2322. doi: 10.1021/acs.est.1c05520. [PMID: 35129343]
  • Samar A Antar, Walied Abdo, Reda S Taha, Amira E Farage, Laila E El-Moselhy, Mohamed E Amer, Ahmed S Abdel Monsef, Amer M Abdel Hamid, Emadeldin M Kamel, Ahmad F Ahmeda, Ayman M Mahmoud. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life sciences. 2022 Feb; 291(?):120260. doi: 10.1016/j.lfs.2021.120260. [PMID: 34968466]
  • Yanjun Cui, Ying Li, Xiao Li, Liju Fan, Xueru He, Yuhao Fu, Zhanjun Dong. A Simple UPLC/MS-MS Method for Simultaneous Determination of Lenvatinib and Telmisartan in Rat Plasma, and Its Application to Pharmacokinetic Drug-Drug Interaction Study. Molecules (Basel, Switzerland). 2022 Feb; 27(4):. doi: 10.3390/molecules27041291. [PMID: 35209080]
  • Shufei Zeng, Denis Delic, Chang Chu, Yingquan Xiong, Ting Luo, Xiaoyi Chen, Mohamed M S Gaballa, Yao Xue, Xin Chen, Yaochen Cao, Ahmed A Hasan, Kai Stadermann, Sandra Frankenreiter, Lianghong Yin, Bernhard K Krämer, Thomas Klein, Berthold Hocher. Antifibrotic effects of low dose SGLT2 Inhibition with empagliflozin in comparison to Ang II receptor blockade with telmisartan in 5/6 nephrectomised rats on high salt diet. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Feb; 146(?):112606. doi: 10.1016/j.biopha.2021.112606. [PMID: 34968924]
  • Lei Zheng, Zhifeng Zhao, Jiayun Lin, Hongjie Li, Guangbo Wu, Xiaoliang Qi, Xiaolou Lou, Yongyang Bao, Haizhong Huo, Meng Luo. Telmisartan relieves liver fibrosis and portal hypertension by improving vascular remodeling and sinusoidal dysfunction. European journal of pharmacology. 2022 Jan; 915(?):174713. doi: 10.1016/j.ejphar.2021.174713. [PMID: 34942161]
  • Mohamed A Morsy, Seham A Abdel-Gaber, Rehab A Rifaai, Mostafa M Mohammed, Anroop B Nair, Walaa Yehia Abdelzaher. Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112374. doi: 10.1016/j.biopha.2021.112374. [PMID: 34915671]
  • Fenqing Shang, Xuan Guo, Yueer Chen, Chen Wang, Jie Gao, Ergang Wen, Baochang Lai, Liang Bai. Endothelial MicroRNA-483-3p Is Hypertension-Protective. Oxidative medicine and cellular longevity. 2022; 2022(?):3698219. doi: 10.1155/2022/3698219. [PMID: 35222797]
  • Zerrin Kutlu, Arzu Bilen, Muhammet Celik, Adem Maman, Mine Gulaboglu, Ayhan Kul, Zeynep Celik, Zekai Halici. The relationship of telmisartan with sclerostin in the osteoporosis model induced by ovariectomy in rats. The Journal of pharmacy and pharmacology. 2021 Dec; 73(12):1693-1702. doi: 10.1093/jpp/rgab123. [PMID: 34874446]
  • Di Chang, Ting-Ting Xu, Shi-Jun Zhang, Yu Cai, Shu-Dan Min, Zhen Zhao, Chun-Qiang Lu, Yuan-Cheng Wang, Shenghong Ju. Telmisartan ameliorates cardiac fibrosis and diastolic function in cardiorenal heart failure with preserved ejection fraction. Experimental biology and medicine (Maywood, N.J.). 2021 12; 246(23):2511-2521. doi: 10.1177/15353702211035058. [PMID: 34342551]
  • Ki Young Huh, Sang Won Lee, Si Beum Lee, Kyung Tae Kim, In-Jin Jang, SeungHwan Lee. Pharmacokinetic Interaction Among Ezetimibe, Rosuvastatin, and Telmisartan. Clinical pharmacology in drug development. 2021 11; 10(11):1290-1296. doi: 10.1002/cpdd.926. [PMID: 33647189]
  • Xiaolin Zhan, Wei Chen, Jian Chen, Changjiang Lei, Liqin Wei. Telmisartan Mitigates High-Glucose-Induced Injury in Renal Glomerular Endothelial Cells (rGECs) and Albuminuria in Diabetes Mice. Chemical research in toxicology. 2021 09; 34(9):2079-2086. doi: 10.1021/acs.chemrestox.1c00159. [PMID: 34464088]
  • Robert Krysiak, Marcin Basiak, Witold Szkróbka, Bogusław Okopień. The Impact of Telmisartan on Cardiometabolic Risk Factors in Hypertensive Male Siblings of Women With Polycystic Ovary Syndrome. Journal of clinical pharmacology. 2021 09; 61(9):1165-1173. doi: 10.1002/jcph.1872. [PMID: 33837974]
  • JungMin Choi, Ki-Chul Sung, Sang-Hyun Ihm, Chang-Hwan Yoon, Seung Woo Park, Sung-Ha Park, Jang-Young Kim, Sung-Uk Kwon, Hae-Young Lee. Central blood pressure lowering effect of telmisartan-rosuvastatin single-pill combination in hypertensive patients combined with dyslipidemia: A pilot study. Journal of clinical hypertension (Greenwich, Conn.). 2021 09; 23(9):1664-1674. doi: 10.1111/jch.14345. [PMID: 34384001]
  • Tamara Lang, Markus Himmelsbach, Franz Mlynek, Wolfgang Buchberger, Christian W Klampfl. Uptake and bio-transformation of telmisartan by cress (Lepidium sativum) from sewage treatment plant effluents using high-performance liquid chromatography/drift-tube ion-mobility quadrupole time-of-flight mass spectrometry. Environmental science and pollution research international. 2021 Sep; 28(36):50790-50798. doi: 10.1007/s11356-021-14289-4. [PMID: 33973117]
  • Laura Beckmann, Axel Künstner, Marco L Freschi, Gianna Huber, Ines Stölting, Saleh M Ibrahim, Misa Hirose, Miriam Freitag, Ewan A Langan, Urte Matschl, Christina E Galuska, Beate Fuchs, Johannes K Knobloch, Hauke Busch, Walter Raasch. Telmisartan induces a specific gut microbiota signature which may mediate its antiobesity effect. Pharmacological research. 2021 08; 170(?):105724. doi: 10.1016/j.phrs.2021.105724. [PMID: 34116209]
  • Gangadhar Surabhi, Shubhajit Dhara, Anusree Maneesh, Kajal Chakraborty, Lokanatha Valluru, Sambasiva Reddy Chenchula. Polygalacto-fucopyranose from marine alga as a prospective antihypertensive lead. International journal of biological macromolecules. 2021 Jul; 183(?):589-599. doi: 10.1016/j.ijbiomac.2021.04.140. [PMID: 33933545]
  • Julie Lecavalier, Lyanne Fifle, Romain Javard. Treatment of proteinuria in dogs with telmisartan: A retrospective study. Journal of veterinary internal medicine. 2021 Jul; 35(4):1810-1818. doi: 10.1111/jvim.16146. [PMID: 33969924]
  • Zhi Zhang, Fa-Zhan Wang, Zai-Xin Li, Xiang-Rong Song. Telmisartan Attenuates the Growth of Epithelium-like Cells and Glomerular Injury in Spontaneously Hypertensive Rats. Current medical science. 2021 Jun; 41(3):498-504. doi: 10.1007/s11596-021-2368-4. [PMID: 34129200]
  • Safy Badr, Samar Rezq, Rasha H Abdelghany. Endogenous β-endorphin plays a pivotal role in angiotensin II-mediated central neurochemical changes and pressor response. Chemico-biological interactions. 2021 Jun; 342(?):109475. doi: 10.1016/j.cbi.2021.109475. [PMID: 33872574]
  • Jin Wang, Dan Li, Zhinan Zhang, Yan Zhang, Zhandong Lei, Wenwen Jin, Jimin Cao, Xiangying Jiao. Autoantibody against angiotensin II type I receptor induces pancreatic β-cell apoptosis via enhancing autophagy. Acta biochimica et biophysica Sinica. 2021 May; 53(6):784-795. doi: 10.1093/abbs/gmab049. [PMID: 33928341]
  • Brittany L Fowler, Darko Stefanovski, Rebecka S Hess, Kathryn McGonigle. Effect of telmisartan, angiotensin-converting enzyme inhibition, or both, on proteinuria and blood pressure in dogs. Journal of veterinary internal medicine. 2021 May; 35(3):1231-1237. doi: 10.1111/jvim.16102. [PMID: 33769606]
  • Toshihide Takagi, Takato Masada, Keiko Minami, Makoto Kataoka, Ken-Ichi Izutsu, Kazuki Matsui, Shinji Yamashita. In Vitro Sensitivity Analysis of the Gastrointestinal Dissolution Profile of Weakly Basic Drugs in the Stomach-to-Intestine Fluid Changing System: Explanation for Variable Plasma Exposure after Oral Administration. Molecular pharmaceutics. 2021 04; 18(4):1711-1719. doi: 10.1021/acs.molpharmaceut.0c01207. [PMID: 33629861]
  • Yahya M Naguib, Rehab M Samaka, Mohamed S Rizk, Omnia Ameen, Shaimaa M Motawea. Countering adipose tissue dysfunction could underlie the superiority of telmisartan in the treatment of obesity-related hypertension. Cardiovascular diabetology. 2021 03; 20(1):70. doi: 10.1186/s12933-021-01259-w. [PMID: 33761942]
  • Sri Nagarjun Batchu, Harmandeep Kaur, Veera Ganesh Yerra, Suzanne L Advani, M Golam Kabir, Youan Liu, Thomas Klein, Andrew Advani. Lung and Kidney ACE2 and TMPRSS2 in Renin-Angiotensin System Blocker-Treated Comorbid Diabetic Mice Mimicking Host Factors That Have Been Linked to Severe COVID-19. Diabetes. 2021 03; 70(3):759-771. doi: 10.2337/db20-0765. [PMID: 33310740]
  • Xiao-Nan Wang, Ying Li, Lu Meng, Cong-Yang Ding, Zhan-Jun Dong. Evaluation of influence of telmisartan on the pharmacokinetics and tissue distribution of canagliflozin in rats and mice. Annals of palliative medicine. 2021 Mar; 10(3):3086-3096. doi: 10.21037/apm-21-65. [PMID: 33752434]
  • Chang Hee Kim, Sol Ip Kang, Dongseong Shin. Pharmacokinetic Interaction Between Telmisartan and Rosuvastatin/Ezetimibe After Multiple Oral Administration in Healthy Subjects. Advances in therapy. 2021 02; 38(2):1094-1105. doi: 10.1007/s12325-020-01592-8. [PMID: 33326064]
  • Ahmed Elsonbaty, Mohamed A Hasan, Maya S Eissa, Wafaa S Hassan, Sara Abdulwahab. Synchronous Spectrofluorimetry Coupled with Third-Order Derivative Signal Processing for the Simultaneous Quantitation of Telmisartan and Chlorthalidone Drug Combination in Human Plasma. Journal of fluorescence. 2021 Jan; 31(1):97-106. doi: 10.1007/s10895-020-02639-3. [PMID: 33089428]
  • Valeria R Martínez, María V Aguirre, Juan S Todaro, Augusto Martins Lima, Nikolaos Stergiopulos, Evelina G Ferrer, Patricia Am Williams. Zinc complexation improves angiotensin II receptor type 1 blockade and in vivo antihypertensive activity of telmisartan. Future medicinal chemistry. 2021 01; 13(1):13-23. doi: 10.4155/fmc-2020-0093. [PMID: 33243020]
  • Yoshie Tsujiya, Ai Hasegawa, Motohiro Yamamori, Noboru Okamura. Telmisartan-Induced Cytotoxicity via G2/M Phase Arrest in Renal Cell Carcinoma Cell Lines. Biological & pharmaceutical bulletin. 2021; 44(12):1878-1885. doi: 10.1248/bpb.b21-00654. [PMID: 34853271]
  • Mahmoud Teaima, Rehab Abdelmonem, Yomna A Adel, Mohamed A El-Nabarawi, Tayseer M El-Nawawy. Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug design, development and therapy. 2021; 15(?):4603-4614. doi: 10.2147/dddt.s327860. [PMID: 34785889]
  • Yuichi Miyagawa, Ryota Akabane, Atsushi Sakatani, Mizuki Ogawa, Masayoshi Nagakawa, Hirosumi Miyakawa, Naoyuki Takemura. Effects of telmisartan on proteinuria and systolic blood pressure in dogs with chronic kidney disease. Research in veterinary science. 2020 Dec; 133(?):150-156. doi: 10.1016/j.rvsc.2020.09.019. [PMID: 32992126]
  • Asti Swari Paramanindita, Yahdiana Harahap, Budi Prasaja, Tri Rahayu Wijayanti, Windy Lusthom, Raden Efi Sofiah, Monika Sandra, Yunia Trisari. A bioequivalence study of two telmisartan 80 mg tablets in healthy Indonesian subjects: an open label, three-way, three-period, partial replicate crossover study. Drug development and industrial pharmacy. 2020 Nov; 46(11):1747-1752. doi: 10.1080/03639045.2020.1820042. [PMID: 32892655]
  • Bianca N Lourenço, Amanda E Coleman, Scott A Brown, Chad W Schmiedt, Max C Parkanzky, Kate E Creevy. Efficacy of telmisartan for the treatment of persistent renal proteinuria in dogs: A double-masked, randomized clinical trial. Journal of veterinary internal medicine. 2020 Nov; 34(6):2478-2496. doi: 10.1111/jvim.15958. [PMID: 33165969]
  • Rodolfo Pedro Rothlin, Héctor Miguel Vetulli, Mariano Duarte, Facundo Germán Pelorosso. Telmisartan as tentative angiotensin receptor blocker therapeutic for COVID-19. Drug development research. 2020 11; 81(7):768-770. doi: 10.1002/ddr.21679. [PMID: 32356926]
  • Chia Siang Kow, Syed Shahzad Hasan. The Potential Benefit of Telmisartan to Protect Overweight Patients with COPD from the Acquisition of COVID-19. Obesity (Silver Spring, Md.). 2020 11; 28(11):2035. doi: 10.1002/oby.22976. [PMID: 32692903]
  • Alexandre Duvignaud, Edouard Lhomme, Thierry Pistone, Racha Onaisi, Rémi Sitta, Valérie Journot, Duc Nguyen, Nathan Peiffer-Smadja, Antoine Crémer, Stéphane Bouchet, Thomas Darnaud, Delphine Poitrenaud, Lionel Piroth, Christine Binquet, Jean-François Michel, Benjamin Lefèvre, David Lebeaux, Josselin Lebel, Julie Dupouy, Caroline Roussillon, Anne Gimbert, Linda Wittkop, Rodolphe Thiébaut, Joanna Orne-Gliemann, Jean-Philippe Joseph, Laura Richert, Xavier Anglaret, Denis Malvy. Home Treatment of Older People with Symptomatic SARS-CoV-2 Infection (COVID-19): A structured Summary of a Study Protocol for a Multi-Arm Multi-Stage (MAMS) Randomized Trial to Evaluate the Efficacy and Tolerability of Several Experimental Treatments to Reduce the Risk of Hospitalisation or Death in outpatients aged 65 years or older (COVERAGE trial). Trials. 2020 Oct; 21(1):846. doi: 10.1186/s13063-020-04619-1. [PMID: 33050924]
  • Farshad M Shirazi, Shireen Banerji, Samaneh Nakhaee, Omid Mehrpour. Effect of angiotensin II blockers on the prognosis of COVID-19: a toxicological view. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2020 Oct; 39(10):2001-2002. doi: 10.1007/s10096-020-03932-6. [PMID: 32557325]
  • Valeria R Martínez, María V Aguirre, Juan S Todaro, Evelina G Ferrer, Patricia A M Williams. Improvement of the Anticancer Activities of Telmisartan by Zn(II) Complexation and Mechanisms of Action. Biological trace element research. 2020 Oct; 197(2):454-463. doi: 10.1007/s12011-019-02013-w. [PMID: 31863274]
  • Päivi Hirvensalo, Aleksi Tornio, Terhi Launiainen, Maria Paile-Hyvärinen, Tuija Tapaninen, Mikko Neuvonen, Janne T Backman, Mikko Niemi. UGT1A3 and Sex Are Major Determinants of Telmisartan Pharmacokinetics-A Comprehensive Pharmacogenomic Study. Clinical pharmacology and therapeutics. 2020 10; 108(4):885-895. doi: 10.1002/cpt.1928. [PMID: 32498119]
  • Xuan Jin, Moo Hyun Kim, Ki Hoon Han, Soon Jun Hong, Jeong-Cheon Ahn, Jung-Hoon Sung, Jin-Man Cho, Han Cheol Lee, So-Yeon Choi, Kyounghoon Lee, Woo-Shik Kim, Moo-Yong Rhee, Ju Han Kim, Seung Pyo Hong, Byung Su Yoo, Eun Joo Cho, Jae-Hwan Lee, Pum-Joon Kim, Chang-Gyu Park, Min Su Hyon, Jin Ho Shin, Sang Hyun Lee, Ki Chul Sung, Jinyong Hwang, Kihwan Kwon, In-Ho Chae, Jeong-Sook Seo, Hyungseop Kim, Hana Lee, Yoonhwa Cho, Hyo-Soo Kim. Efficacy and safety of co-administered telmisartan/amlodipine and rosuvastatin in subjects with hypertension and dyslipidemia. Journal of clinical hypertension (Greenwich, Conn.). 2020 10; 22(10):1835-1845. doi: 10.1111/jch.13893. [PMID: 32937023]
  • Keigo Nakayama, Hidetaka Kamimura, Hiroshi Suemizu, Nao Yoneda, Megumi Nishiwaki, Kazuhiko Iwamoto, Mari Mizunaga, Tamotsu Negoro, Soichiro Ito, Hiroshi Yamazaki, Yukihiro Nomura. Predicted values for human total clearance of a variety of typical compounds with differently humanized-liver mouse plasma data. Drug metabolism and pharmacokinetics. 2020 Aug; 35(4):389-396. doi: 10.1016/j.dmpk.2020.05.004. [PMID: 32690433]
  • Sudeep Pushpakom, Ruwanthi Kolamunnage-Dona, Claire Taylor, Terry Foster, Cath Spowart, Marta García-Fiñana, Graham J Kemp, Thomas Jaki, Saye Khoo, Paula Williamson, Munir Pirmohamed. TAILoR (TelmisArtan and InsuLin Resistance in Human Immunodeficiency Virus [HIV]): An Adaptive-design, Dose-ranging Phase IIb Randomized Trial of Telmisartan for the Reduction of Insulin Resistance in HIV-positive Individuals on Combination Antiretroviral Therapy. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020 05; 70(10):2062-2072. doi: 10.1093/cid/ciz589. [PMID: 31425580]
  • Amany H Hasanin, Reham Hussein Mohamed. Telmisartan alone or in combination with etanercept improves anemia associated with rheumatoid arthritis in rats: a possible role of anti-inflammatory and reno-protective effects. Pharmacological reports : PR. 2020 Apr; 72(2):379-388. doi: 10.1007/s43440-019-00033-w. [PMID: 32048253]
  • Hui Chen, Min Li, Lei Liu, Danjun Zhu, Gang Tian. Telmisartan improves myocardial remodeling by inhibiting leptin autocrine activity and activating PPARγ. Experimental biology and medicine (Maywood, N.J.). 2020 04; 245(7):654-666. doi: 10.1177/1535370220908215. [PMID: 32075431]
  • Elizabeth S Childress, Joseph M Salamoun, Stefan R Hargett, Stephanie J Alexopoulos, Sing-Young Chen, Divya P Shah, José Santiago-Rivera, Christopher J Garcia, Yumin Dai, Simon P Tucker, Kyle L Hoehn, Webster L Santos. [1,2,5]Oxadiazolo[3,4-b]pyrazine-5,6-diamine Derivatives as Mitochondrial Uncouplers for the Potential Treatment of Nonalcoholic Steatohepatitis. Journal of medicinal chemistry. 2020 03; 63(5):2511-2526. doi: 10.1021/acs.jmedchem.9b01440. [PMID: 32017849]
  • Ya Huang, Yanping Li, Qinhui Liu, Jinhang Zhang, Zijing Zhang, Tong Wu, Qin Tang, Cuiyuan Huang, Rui Li, Jian Zhou, Guorong Zhang, Yingnan Zhao, Hui Huang, Jinhan He. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochemical and biophysical research communications. 2020 03; 523(3):787-794. doi: 10.1016/j.bbrc.2019.12.111. [PMID: 31948761]
  • Denis Delić, Franziska Wiech, Richard Urquhart, Ogsen Gabrielyan, Kathrin Rieber, Marcel Rolser, Oleg Tsuprykov, Ahmed A Hasan, Bernhard K Krämer, Patrick Baum, Andreas Köhler, Florian Gantner, Michael Mark, Berthold Hocher, Thomas Klein. Linagliptin and telmisartan induced effects on renal and urinary exosomal miRNA expression in rats with 5/6 nephrectomy. Scientific reports. 2020 02; 10(1):3373. doi: 10.1038/s41598-020-60336-4. [PMID: 32099009]
  • Hui-Hua Chen, Si-Ning Wang, Tong-Tong Cao, Jia-Li Zheng, Jing Tian, Xiao-Li Shan, Pei Zhao, Wei Guo, Ming Xu, Chen Zhang, Rong Lu. Stachydrine hydrochloride alleviates pressure overload-induced heart failure and calcium mishandling on mice. Journal of ethnopharmacology. 2020 Feb; 248(?):112306. doi: 10.1016/j.jep.2019.112306. [PMID: 31626909]
  • Yadong Liu, Song Chen, Jiannan Liu, Yinshan Jin, Shiliang Yu, Ruihua An. Telmisartan inhibits oxalate and calcium oxalate crystal-induced epithelial-mesenchymal transformation via PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway. Life sciences. 2020 Jan; 241(?):117108. doi: 10.1016/j.lfs.2019.117108. [PMID: 31786192]
  • José María Mora-Gutiérrez, José Antonio Rodríguez, María A Fernández-Seara, Josune Orbe, Francisco Javier Escalada, María José Soler, María Fernanda Slon Roblero, Marta Riera, José Antonio Páramo, Nuria Garcia-Fernandez. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Scientific reports. 2020 01; 10(1):26. doi: 10.1038/s41598-019-56856-3. [PMID: 31913319]
  • Ze-Fen Wang, Jie Li, Chao Ma, Chong Huang, Zhi-Qiang Li. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochemical pharmacology. 2020 01; 171(?):113674. doi: 10.1016/j.bcp.2019.113674. [PMID: 31634455]
  • Atsuki Hosoda, Yoshio Matsumoto, Yuuki Toriyama, Takumi Tsuji, Yuya Yoshida, Shuji Masamichi, Takeyuki Kohno. Telmisartan Exacerbates Cisplatin-Induced Nephrotoxicity in a Mouse Model. Biological & pharmaceutical bulletin. 2020; 43(9):1331-1337. doi: 10.1248/bpb.b20-00174. [PMID: 32879207]
  • Elias Rawish, Laura Nickel, Franziska Schuster, Ines Stölting, Alex Frydrychowicz, Kathrin Saar, Norbert Hübner, Alaa Othman, Lars Kuerschner, Walter Raasch. Telmisartan prevents development of obesity and normalizes hypothalamic lipid droplets. The Journal of endocrinology. 2020 01; 244(1):95-110. doi: 10.1530/joe-19-0319. [PMID: 31585441]
  • May Yw Wong, Sonia Saad, Muh Geot Wong, Stefanie Stangenberg, Wolfgang Jarolimek, Heidi Schilter, Amgad Zaky, Anthony Gill, Carol Pollock. Semicarbazide-sensitive amine oxidase inhibition ameliorates albuminuria and glomerulosclerosis but does not improve tubulointerstitial fibrosis in diabetic nephropathy. PloS one. 2020; 15(6):e0234617. doi: 10.1371/journal.pone.0234617. [PMID: 32555665]
  • Magdalena Mielczarek-Puta, Dagmara Otto-Ślusarczyk, Alicja Chrzanowska, Agnieszka Filipek, Wojciech Graboń. Telmisartan Influences the Antiproliferative Activity of Linoleic Acid in Human Colon Cancer Cells. Nutrition and cancer. 2020; 72(1):98-109. doi: 10.1080/01635581.2019.1613552. [PMID: 31094234]
  • Junying Wang, Juan Liu, Xiangrong Song, Chunmei Fu. Simultaneous Determination of Telmisartan and Pitavastatin Calcium in Intestinal Perfusate by HPLC: Application to Intestinal Absorption Interaction Study. Pharmaceutical nanotechnology. 2020; 8(4):313-322. doi: 10.2174/2211738508666200607181727. [PMID: 32515316]
  • Pengshou Li, Yingying Peng, Qixiang Ma, Ziyong Li, Xiaohua Zhang. Study on the Formation of Antihypertensive Twin Drugs by Caffeic Acid and Ferulic Acid with Telmisartan. Drug design, development and therapy. 2020; 14(?):977-992. doi: 10.2147/dddt.s225705. [PMID: 32184567]
  • Radhakrishnan Surendrakumar, Akbar Idhayadhulla, Saud Alarifi, Nazeer Anis Ahamed, Chidambaram Sathish Kumar. Antioxidant Activity of Telmisartan-Cu(II) Nanoparticles Connected 2-Pyrimidinamine and Their Evaluation of Cytotoxicity Activities. BioMed research international. 2020; 2020(?):8872479. doi: 10.1155/2020/8872479. [PMID: 33282956]
  • Lu Huang, Liu Yang, Jie Huang, Hong-Yi Tan, Shi-Kun Liu, Cheng-Xian Guo, Xiao-Cong Zuo, Guo-Ping Yang, Qi Pei. Effects of UGT1A1 Polymorphism, Gender and Triglyceride on the Pharmacokinetics of Telmisartan in Chinese Patients with Hypertension: A Population Pharmacokinetic Analysis. European journal of drug metabolism and pharmacokinetics. 2019 Dec; 44(6):797-806. doi: 10.1007/s13318-019-00567-7. [PMID: 31254178]
  • James R Foster, Shohta Ueno, Mao Xiang Chen, Jenni Harvey, Simon J Dowell, Andrew J Irving, Andrew J Brown. N-Palmitoylglycine and other N-acylamides activate the lipid receptor G2A/GPR132. Pharmacology research & perspectives. 2019 12; 7(6):e00542. doi: 10.1002/prp2.542. [PMID: 31768260]
  • Du Hyong Cho. Telmisartan Inhibits Nitric Oxide Production and Vessel Relaxation via Protein Phosphatase 2A-mediated Endothelial NO Synthase-Ser1179 Dephosphorylation. Journal of Korean medical science. 2019 Nov; 34(42):e266. doi: 10.3346/jkms.2019.34.e266. [PMID: 31674157]
  • Seol Ju Moon, Ji-Young Jeon, Kyung-Sang Yu, Min-Gul Kim. Pharmacokinetic Interaction Among Telmisartan, Amlodipine, and Hydrochlorothiazide After a Single Oral Administration in Healthy Male Subjects. Clinical therapeutics. 2019 11; 41(11):2273-2282. doi: 10.1016/j.clinthera.2019.08.020. [PMID: 31564513]
  • Sameh Saber, Mohamed Basuony, Abdelrahman S Eldin. Telmisartan ameliorates dextran sodium sulfate-induced colitis in rats by modulating NF-κB signalling in the context of PPARγ agonistic activity. Archives of biochemistry and biophysics. 2019 08; 671(?):185-195. doi: 10.1016/j.abb.2019.07.014. [PMID: 31326516]
  • Alessandra Ammazzalorso, Cristina Maccallini, Pasquale Amoia, Rosa Amoroso. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. European journal of medicinal chemistry. 2019 Jul; 173(?):261-273. doi: 10.1016/j.ejmech.2019.04.030. [PMID: 31009912]
  • Michael Böhm, Helmut Schumacher, Koon K Teo, Eva M Lonn, Felix Mahfoud, Johannes F E Mann, Giuseppe Mancia, Josep Redon, Roland E Schmieder, Nikolaus Marx, Karen Sliwa, Michael A Weber, Bryan Williams, Salim Yusuf. Cardiovascular outcomes and achieved blood pressure in patients with and without diabetes at high cardiovascular risk. European heart journal. 2019 07; 40(25):2032-2043. doi: 10.1093/eurheartj/ehz149. [PMID: 30919899]
  • Berna I Aydoğan, Emrah Erarslan, Uğur Ünlütürk, Sevim Güllü. Effects of telmisartan and losartan treatments on bone turnover markers in patients with newly diagnosed stage I hypertension. Journal of the renin-angiotensin-aldosterone system : JRAAS. 2019 Jul; 20(3):1470320319862741. doi: 10.1177/1470320319862741. [PMID: 31328615]
  • Lu Cao, Cui Zhao, Hongliang Cong, Kai Hou, Lianghui Wan, Jixiang Wang, Lili Zhao, Haiyang Yan. The effect of Telmisartan on the expression of connexin43 and neointimal hyperplasia in a rabbit iliac artery restenosis model. Heart and vessels. 2019 Jul; 34(7):1230-1239. doi: 10.1007/s00380-018-01338-1. [PMID: 30671641]
  • Mani Ganesh, Udhumansha Ubaidulla, Grace Rathnam, Hyun Tae Jang. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. International journal of biological macromolecules. 2019 Jun; 131(?):879-885. doi: 10.1016/j.ijbiomac.2019.03.141. [PMID: 30905757]
  • Xiaoduo Fan, Paul Copeland, Shukair Nawras, Amy Harrington, Oliver Freudenreich, Donald C Goff, David C Henderson. Adjunctive telmisartan treatment on body metabolism in clozapine or olanzapine treated patients with schizophrenia: a randomized, double blind, placebo controlled trial. Psychopharmacology. 2019 Jun; 236(6):1949-1957. doi: 10.1007/s00213-019-5181-z. [PMID: 30747254]
  • Hua Zhang, Yi Cui, Yingxin Zhao, Yuanli Dong, Dandan Duan, Juan Wang, Lin Sheng, Tiantian Ji, Tingting Zhou, Wenjing Hu, Yali Chen, Shangwen Sun, Gary Gong, Qiang Chai, Zhendong Liu. Effects of sartans and low-dose statins on cerebral white matter hyperintensities and cognitive function in older patients with hypertension: a randomized, double-blind and placebo-controlled clinical trial. Hypertension research : official journal of the Japanese Society of Hypertension. 2019 05; 42(5):717-729. doi: 10.1038/s41440-018-0165-7. [PMID: 30552406]
  • Yan Wang, Jingjing Xue, Yan Li, Xin Zhou, Shun Qiao, Dewu Han. Telmisartan protects against high glucose/high lipid-induced apoptosis and insulin secretion by reducing the oxidative and ER stress. Cell biochemistry and function. 2019 Apr; 37(3):161-168. doi: 10.1002/cbf.3383. [PMID: 30907023]
  • Sinem Kiyici, Metin Guclu, Ferah Budak, Deniz Sigirli, Ercan Tuncel. Even Short-Term Telmisartan Treatment Ameliorated Insulin Resistance But Had No Influence on Serum Adiponectin and Tumor Necrosis Factor-Alpha Levels in Hypertensive Patients with Metabolic Syndrome. Metabolic syndrome and related disorders. 2019 04; 17(3):167-172. doi: 10.1089/met.2018.0129. [PMID: 30688550]
  • Reem Elkholy, Mohamed Balaha, Noha El-Anwar, Samah Kandeel, Sabiha Hedya, Mohamed-Nabih Abd-El Rahman. Fisetin and telmisartan each alone or in low-dose combination alleviate OVA-induced food allergy in mice. Pharmacological reports : PR. 2019 Apr; 71(2):330-337. doi: 10.1016/j.pharep.2018.12.009. [PMID: 30826574]
  • Vajir Malek, Nisha Sharma, Himanshu Sankrityayan, Anil Bhanudas Gaikwad. Concurrent neprilysin inhibition and renin-angiotensin system modulations prevented diabetic nephropathy. Life sciences. 2019 Mar; 221(?):159-167. doi: 10.1016/j.lfs.2019.02.027. [PMID: 30769114]
  • Dongqing Zha, Tao Yao, Liping Bao, Ping Gao, Xiaoyan Wu. Telmisartan attenuates diabetic nephropathy progression by inhibiting the dimerization of angiotensin type-1 receptor and adiponectin receptor-1. Life sciences. 2019 Mar; 221(?):109-120. doi: 10.1016/j.lfs.2019.01.044. [PMID: 30699330]
  • Xiao-Bin Zhang, Jing-Huang Cai, Yu-Yun Yang, Yi-Ming Zeng, Hui-Qing Zeng, Miao Wang, Xiao Cheng, Xiongbiao Luo, Henry Chidozie Ewurum. Telmisartan attenuates kidney apoptosis and autophagy-related protein expression levels in an intermittent hypoxia mouse model. Sleep & breathing = Schlaf & Atmung. 2019 Mar; 23(1):341-348. doi: 10.1007/s11325-018-1720-9. [PMID: 30219962]
  • Fenfen Peng, Hongyu Li, Bohui Yin, Yuxian Wang, Yihua Chen, Zhaozhong Xu, Chongwei Luo, Haibo Long. [Effect of telmisartan on expression of metadherin in the kidney of mice with unilateral ureter obstruction]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2019 02; 39(2):156-161. doi: 10.12122/j.issn.1673-4254.2019.09.05. [PMID: 30890502]
  • Eun Jeong Jeon, Dong Young Kim, Na Hyun Lee, Hye-Eun Choi, Hyae Gyeong Cheon. Telmisartan induces browning of fully differentiated white adipocytes via M2 macrophage polarization. Scientific reports. 2019 02; 9(1):1236. doi: 10.1038/s41598-018-38399-1. [PMID: 30718686]
  • Izabela Zakrocka, Katarzyna M Targowska-Duda, Artur Wnorowski, Tomasz Kocki, Krzysztof Jóźwiak, Waldemar A Turski. Angiotensin II type 1 receptor blockers decrease kynurenic acid production in rat kidney in vitro. Naunyn-Schmiedeberg's archives of pharmacology. 2019 02; 392(2):209-217. doi: 10.1007/s00210-018-1572-7. [PMID: 30370429]
  • Dongqing Zha, Saiqun Wu, Ping Gao, Xiaoyan Wu. Telmisartan Attenuates Uric Acid-Induced Epithelial-Mesenchymal Transition in Renal Tubular Cells. BioMed research international. 2019; 2019(?):3851718. doi: 10.1155/2019/3851718. [PMID: 30993112]
  • Dailong Fang, Quansheng Jin, Zhaohui Jin, Fazhan Wang, Lingjing Huang, Yuhan Yang, Zhiyao He, Yongmei Liu, Chunling Jiang, Jinhui Wu, Xiangrong Song. Folate-Modified Liposomes Loaded with Telmisartan Enhance Anti-Atherosclerotic Potency for Advanced Atherosclerosis in ApoE-/- Mice. Journal of biomedical nanotechnology. 2019 Jan; 15(1):42-61. doi: 10.1166/jbn.2019.2676. [PMID: 30480514]
  • Moustafa Fathy, Esraa M M A Khalifa, Michael Atef Fawzy. Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats. Life sciences. 2019 Jan; 216(?):207-214. doi: 10.1016/j.lfs.2018.11.031. [PMID: 30452970]
  • Yu Fu, Jiajun Zhu, Yalin Zhang, Zuwang Liu, Han Su, Juan Kong. Vitamin D Regulates the Expressions of AQP-1 and AQP-4 in Mice Kidneys. BioMed research international. 2019; 2019(?):3027036. doi: 10.1155/2019/3027036. [PMID: 30809535]
  • Jiagen Wen, Meizi Zeng, Zhaoqian Liu, Honghao Zhou, Heng Xu, Min Huang, Wei Zhang. The influence of telmisartan on metformin pharmacokinetics and pharmacodynamics. Journal of pharmacological sciences. 2019 Jan; 139(1):37-41. doi: 10.1016/j.jphs.2018.11.007. [PMID: 30538075]
  • Seol Ju Moon, Ji-Young Jeon, Kyungho Jang, Kyung-Sang Yu, Yeji Lim, Min-Gul Kim. Pharmacokinetic interactions between telmisartan/amlodipine and rosuvastatin after multiple oral administrations in healthy Korean male subjects. Drug design, development and therapy. 2019; 13(?):2533-2542. doi: 10.2147/dddt.s210364. [PMID: 31440035]