Exact Mass: 31.9898

Exact Mass Matches: 31.9898

Found 38 metabolites which its exact mass value is equals to given mass value 31.9898, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Oxygen

Molecular oxygen

O2 (31.9898)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Methanol

Methanol-water mixture

CH4O (32.0262)


Methanol, also known as columbian spirit or CH3OH, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). The target of methanol in the eye is the retina, specifically the optic disk and optic nerve. Toxicity is due to the metabolic products of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. Methanol exists in all living organisms, ranging from bacteria to humans. Methanol is an alcoholic tasting compound. Outside of the human body, Methanol is found, on average, in the highest concentration within cow milk and sweet oranges. Methanol has also been detected, but not quantified in several different foods, such as prairie turnips, mountain yams, mentha (mint), watermelons, and pasta. Methanol is responsible for accidental, suicidal, and epidemic poisonings, resulting in death or permanent sequelae. Methanol is a potentially toxic compound. Visual disturbances develop between 18h to 48h after ingestion and range from mild photophobia and blurred vision to markedly reduced visual acuity and complete blindness. Methanol is metabolized to formaldehyde by alcohol dehydrogenase, then from that to formate by formaldehyde dehydrogenase, and then to carbon dioxide by limited H4 folate. It is the simplest alcohol, and is a light, volatile, colourless, flammable, poisonous liquid with a distinctive odor that is somewhat milder and sweeter than ethanol. Present in various wines and spirits. It is used as a solvent for the preparation of modified hop extracts and spice oleoresins D012997 - Solvents

   

Superoxide

Superoxide anion radical

O2- (31.9898)


Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress. Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the superoxide scavenging enzyme, superoxide dismutase, or SOD. SOD is an extremely efficient enzyme; it catalyzes the neutralization of superoxide nearly as fast as the two can diffuse together spontaneously in solution. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice. The latter species dies around 21 days after birth if the mitochondrial variant of SOD (Mn-SOD) is inactivated, and suffers from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts and female infertility when the cytoplasmic (Cu, Zn -SOD) variant is inactivated. With one unpaired electron, the superoxide ion is a free radical and therefore paramagnetic. In living organisms, superoxide dismutase protects the cell from the deleterious effects of superoxides. Superoxide is the anionic form O2. It is important as the product of the one-electron reduction of dioxygen (oxygen gas), which occurs widely in nature. With one unpaired electron, the superoxide ion is a free radical. It is also paramagnetic. The biological toxicity of superoxide is due to its capacity to inactivate iron-sulfur cluster containing enzymes (which are critical in a wide variety of metabolic pathways), thereby liberating free iron in the cell, which can undergo fenton-chemistry and generate the highly reactive hydroxyl radical. In its HO2 form, superoxide can also initiate lipid peroxidation of polyunsaturated fatty acids. It also reacts with carbonyl compounds and halogenated carbons to create toxic peroxy radicals. As such, superoxide is a main cause of oxidative stress.; Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to Methemoglobin. D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Hydrazine

Hydrazine sulfate (1:1) monosodium salt

H4N2 (32.0374)


Being bifunctional, with two amines, hydrazine is a key building block for the preparation of many heterocyclic compounds via condensation with a range of difunctional electrophiles. With 2,4-pentanedione, it condenses to give the 3,5-dimethylpyrazole. In the Einhorn-Brunner reaction hydrazines react with imides to give triazoles. Hydrazine is a convenient reductant because the by-products are typically nitrogen gas and water. Thus, it is used as an antioxidant, an oxygen scavenger, and a corrosion inhibitor in water boilers and heating systems. It is also used to reduce metal salts and oxides to the pure metals in electroless nickel plating and plutonium extraction from nuclear reactor waste. Hydrazine is an inorganic chemical compound with the formula N2H4. It is a colourless liquid with an ammonia-like odor and is derived from the same industrial chemistry processes that manufacture ammonia. However, hydrazine has physical properties that are more similar to those of water. The propanone azine is an intermediate in the Atofina-PCUK synthesis. Direct alkylation of hydrazines with alkyl halides in the presence of base affords alkyl-substituted hydrazines, but the reaction is typically inefficient due to poor control on level of substitution (same as in ordinary amines). The reduction of hydrazones to hydrazines present a clean way to produce 1,1-dialkylated hydrazines. Food contaminant arising from its use as a boiler water additive in production of steam used in food processing C78281 - Agent Affecting Musculoskeletal System > C1935 - Anticachexia Agent C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents

   

Sulfide

Sulphide(2-)

S (31.9721)


A sulfide or sulphide (UK) is an anion of sulfur in its lowest oxidation state of 2-. Sulfide is also a slightly archaic term for thioethers, a common type oforganosulfur compound that are well known for their bad odors. Sulfides are moderately strong reducing agents. They react with oxygen in the air in elevated temperatures to form higher-valence sulfur salts, such as sulfates and sulfur dioxide. (Wikipedia). Sulfur (Greek is theion) is the chemical element in the periodic table that has the symbol S and atomic number 16. It is an abundant, tasteless, odorless, multivalent non-metal. Sulfur, in its native form, is a yellow crystalline solid. In nature, it can be found as the pure element or as sulfide and sulfate minerals. It is an essential element for life, and is widely used in biochemical processes. Sulfur is an important part of many enzymes and also in antioxidant molecules like glutathione and thioredoxin. The amino acids cysteine and methionine contain sulfur, as do all polypeptides, proteins, and enzymes which contain these amino acids. This makes sulfur a necessary component of all living cells. Disulfide bonds between polypeptides are very important in protein assembly and structure. They are largely responsible for the mechanical strength and insolubility of the protein keratin, found in outer skin, hair, and feathers, and the element contributes to their pungent odor when burned. (Wikipedia). Homocysteine and taurine are also sulfur containing amino acids but are not coded for by DNA nor are they part of the primary structure of proteins. Some forms of bacteria use hydrogen sulfide (H2S) in the place of water as the electron donor in a primitive photosynthesis-like process. Sulfur is absorbed by plants via the roots from soil as the sulfate ion and reduced to sulfide before it is incorporated into cysteine and other organic sulfur compounds (sulfur assimilation). Inorganic sulfur forms a part of iron-sulfur clusters, and sulfur is the bridging ligand in the CuA site of cytochrome c oxidase. Sulfur is an important component of coenzyme A. At room temperature, sulfur is a soft bright yellow solid. Although sulfur is blamed for the smell of rotten eggs elemental sulfur has only the faintest odor (the odor associated with rotten eggs is actually due to hydrogen sulfide and organic sulfur compounds). It burns with a blue flame that emits sulfur dioxide, notable for its peculiar suffocating odor. Sulfur is insoluble in water but soluble in carbon disulfide and to a lesser extent in other organic solvents such as benzene. Through its major derivative, sulfuric acid (H2SO4), sulfur ranks as one of the more important industrial raw materials. It is of prime importance to every sector of the worlds economies. The Latin name of the element is sulfur with an F. Since it is an original Latin name and not a Classical Greek loan, the fricative phoneme is indeed denoted with f rather than ph. Its commercial uses are primarily in fertilizers, but it is also widely used in gunpowder, matches, insecticides and fungicides; A flammable, poisonous gas with a characteristic odor of rotten eggs. It is used in the manufacture of chemicals, in metallurgy, and as an analytical reagent. (From Merck Index, 11th ed.) The burning of coal and petroleum by industry and power plants liberates huge amounts of sulfur dioxide (SO2) which reacts with atmospheric water and oxygen to produce sulfuric acid. This sulfuric acid is a component of acid rain, which lowers the pH of soil and freshwater bodies, resulting in substantial damage to the natural environment and chemical weathering of statues and architecture. A sulfide is an anion of sulfur in its lowest oxidation state of 2-. [Wikipedia]

   

SULFIDE

SULFIDE

S-2 (31.9721)


   

methanol

methanol

CH4O (32.0262)


The primary alcohol that is the simplest aliphatic alcohol, comprising a methyl and an alcohol group. D012997 - Solvents

   

hydrazine hydrate

hydrazine hydrate

H4N2 (32.0374)


   

methanol-13c

methanol-13c

CH4O (32.0262)


   

methanol-14c (5-20 mci/mmol)

methanol-14c (5-20 mci/mmol)

CH4O (32.0262)


   

METHANOL-18O

METHANOL-18O

CH4O (32.0262)


   

Oxygen-17O2

Oxygen-17O2

O2 (31.9898)


   

(2H2)Formaldehyde

(2H2)Formaldehyde

CD2O (32.0231)


   

silane

silane

H4Si (32.0082)


   

AIR

AIR

O2 (31.9898)


   

Silsesquioxanes

Silsesquioxanes

H4Si (32.0082)


   

OXYGEN-18O2, 97 ATOM 18O

OXYGEN-18O2, 97 ATOM 18O

O2 (31.9898)


   

Phosphinidene

Phosphinidene

HP (31.9816)


   

Sulfur

Sulfur

S (31.9721)


D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AB - Preparations containing sulfur D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AC - Medicated shampoos

   

Dioxidanyliumyl

Dioxidanyliumyl

O2+ (31.9898)


   

Lithium hydrogenacetylide

Lithium hydrogenacetylide

C2HLi (32.0238)


   

Aminooxidanide

Aminooxidanide

H2NO- (32.0136)


   

Sulfur anion

Sulfur anion

S- (31.9721)


   

RFPDX@

Methanol, or methyl alcohol [UN1230] [Flammable liquid, Poison]

CH4O (32.0262)


D012997 - Solvents

   

Sulfide ion

Sulfide ion

S-2 (31.9721)


   

Aminoxyl

Aminoxyl

H2NO (32.0136)


   

Methanol-d

Methanol-d

CH4O (32.0262)


   

Methanol-d4

Methanol-d4

CH4O (32.0262)


   

Phosphanediide

Phosphanediide

HP-2 (31.9816)


   

Hydridohydroxidonitrogen(.)

Hydridohydroxidonitrogen(.)

H2NO (32.0136)


   

Sulfur-34(2-)

Sulfur-34(2-)

S-2 (31.9721)


   

Oxygen

Dioxygen

O2 (31.9898)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

HYDRAZINE

HYDRAZINE

H4N2 (32.0374)


C78281 - Agent Affecting Musculoskeletal System > C1935 - Anticachexia Agent C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor D009676 - Noxae > D002273 - Carcinogens D000970 - Antineoplastic Agents

   

Superoxide

Superoxide

O2- (31.9898)


D009676 - Noxae > D016877 - Oxidants > D013481 - Superoxides D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

hydroxyazanide

hydroxyazanide

H2NO (32.0136)


An inorganic anion that is the conjugate base of hydroxylamine, arising from deprotonation of the amino function.

   

sulfide(2-)

sulfide(2-)

S (31.9721)


A divalent inorganic anion obtained by removal of both protons from hydrogen sulfide.

   

singlet dioxygen

singlet dioxygen

O2 (31.9898)


A reactive oxygen species that is the lowest excited state of the dioxygen molecule.

   

triplet dioxygen

triplet dioxygen

O2 (31.9898)