Prostaglandin H2 (BioDeep_00000004425)

 

Secondary id: BioDeep_00000629492

human metabolite Endogenous


代谢物信息卡片


(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

化学式: C20H32O5 (352.2249622)
中文名称: 前列腺素H2
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 21.33%

分子结构信息

SMILES: CCCCCC(C=CC1C2CC(C1CC=CCCCC(=O)O)OO2)O
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18-14-19(17)25-24-18)10-7-4-5-8-11-20(22)23/h4,7,12-13,15-19,21H,2-3,5-6,8-11,14H2,1H3,(H,22,23)/b7-4-,13-12+/t15-,16+,17+,18-,19+/m0/s1

描述信息

Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways.
Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin .
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

同义名列表

50 个代谢物同义名

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid; (5Z)-7-{(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]hept-5-yl}hept-5-enoic acid; (5Z)-7-{(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]hept-5-yl}hept-5-enoate; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dien-1-Oic acid; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dien-1-Oic acid; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dienoic acid; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dien-1-Oate; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dien-1-Oate; (5Z,13E)-(15S)-9-alpha,11-alpha-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,13E,15S)-9-alpha,11-alpha-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,9alpha,11alpha,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dienoate; (5Z,13E)-(15S)-9alpha,11alpha-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,9Α,11α,13E,15S)-9,11-epidioxy-15-hydroxyprosta-5,13-dien-1-Oic acid; (5Z,13E,15S)-9alpha,11alpha-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,9a,11a,13E,15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dien-1-Oic acid; (5Z,13E)-(15S)-9-alpha,11-alpha-Epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,9Α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoic acid; (5Z,13E)-(15S)-9alpha,11alpha-Epidioxy-15-hydroxyprosta-5,13-dienoate; 9α,11α-epidioxy-15S-hydroxy-prosta-5Z,13E-dien-1-oic acid; (5Z,13E,15S)-9-alpha,11-alpha-Epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,9a,11a,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dienoic acid; (5Z,13E,15S)-9alpha,11alpha-Epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,9a,11a,13E,15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dien-1-Oate; (5Z,9Α,11α,13E,15S)-9,11-epidioxy-15-hydroxyprosta-5,13-dien-1-Oate; (15S)Hydroxy-9alpha,11alpha-(epoxymethano)prosta-5,13-dienoic acid; (5Z,13E)-(15S)-9Α,11α-epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-9a,11a-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,9Α,11α,13E,15S)-9,11-epidioxy-15-hydroxy-prosta-5,13-dienoate; (5Z,9a,11a,13E,15S)-9,11-Epidioxy-15-hydroxy-prosta-5,13-dienoate; (5Z,13E,15S)-9a,11a-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,13E)-(15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dienoic acid; (5Z,13E,15S)-9Α,11α-epidioxy-15-hydroxyprosta-5,13-dienoic acid; (15S)Hydroxy-9alpha,11alpha-(epoxymethano)prosta-5,13-dienoate; (5Z,13E)-(15S)-9a,11a-Epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-9Α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,13E,15S)-9Α,11α-epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,13E,15S)-9a,11a-Epidioxy-15-hydroxyprosta-5,13-dienoate; (5Z,13E)-(15S)-9,11-Epidioxy-15-hydroxyprosta-5,13-dienoate; 15-Hydroxy-9alpha,11alpha-peroxidoprosta-5,13-dienoic acid; 15-Hydroxy-9alpha,11alpha-peroxidoprosta-5,13-dienoate; 9S,11R-epidioxy-15S-hydroxy-5Z,13E-prostadienoic acid; 9S,11R-Epidioxy-15S-hydroxy-5Z,13E-prostadienoate; 9,11-Epoxymethano-PGH2; PGH2;Endoperoxide H2; Prostaglandin R2; Prostaglandin H2; Prostaglandin-H2; Endoperoxide H2; PGH(2); PGH2



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(16)

BioCyc(0)

PlantCyc(0)

代谢反应

246 个相关的代谢反应过程信息。

Reactome(191)

BioCyc(0)

WikiPathways(8)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(46)

PharmGKB(0)

3 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • William L Smith. A seven-step plan for becoming a moderately rich and famous biochemist. The Journal of biological chemistry. 2019 02; 294(6):1779-1793. doi: 10.1074/jbc.x118.006184. [PMID: 30737317]
  • Liang Dong, Hechang Zou, Chong Yuan, Yu H Hong, Charis L Uhlson, Robert C Murphy, William L Smith. Interactions of 2-O-arachidonylglycerol ether and ibuprofen with the allosteric and catalytic subunits of human COX-2. Journal of lipid research. 2016 06; 57(6):1043-50. doi: 10.1194/jlr.m067512. [PMID: 27059979]
  • Patrick Leclerc, Helena Idborg, Linda Spahiu, Charlotte Larsson, Natalia Nekhotiaeva, Johan Wannberg, Patric Stenberg, Marina Korotkova, Per-Johan Jakobsson. Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. Prostaglandins & other lipid mediators. 2013 Dec; 107(?):26-34. doi: 10.1016/j.prostaglandins.2013.09.001. [PMID: 24045148]
  • Takehiko Matsunobu, Toshiaki Okuno, Chieko Yokoyama, Takehiko Yokomizo. Thromboxane A synthase-independent production of 12-hydroxyheptadecatrienoic acid, a BLT2 ligand. Journal of lipid research. 2013 Nov; 54(11):2979-87. doi: 10.1194/jlr.m037754. [PMID: 24009185]
  • Angelo Sala, Giancarlo Folco, Robert C Murphy. Transcellular biosynthesis of eicosanoids. Pharmacological reports : PR. 2010 May; 62(3):503-10. doi: 10.1016/s1734-1140(10)70306-6. [PMID: 20631414]
  • Annalisa Bruno, Luigia Di Francesco, Isabella Coletta, Giorgina Mangano, Maria Alessandra Alisi, Lorenzo Polenzani, Claudio Milanese, Paola Anzellotti, Emanuela Ricciotti, Melania Dovizio, Andrea Di Francesco, Stefania Tacconelli, Marta L Capone, Paola Patrignani. Effects of AF3442 [N-(9-ethyl-9H-carbazol-3-yl)-2-(trifluoromethyl)benzamide], a novel inhibitor of human microsomal prostaglandin E synthase-1, on prostanoid biosynthesis in human monocytes in vitro. Biochemical pharmacology. 2010 Apr; 79(7):974-81. doi: 10.1016/j.bcp.2009.11.011. [PMID: 19925781]
  • Irene Zagol-Ikapitte, Venkataraman Amarnath, Manju Bala, L Jackson Roberts, John A Oates, Olivier Boutaud. Characterization of scavengers of gamma-ketoaldehydes that do not inhibit prostaglandin biosynthesis. Chemical research in toxicology. 2010 Jan; 23(1):240-50. doi: 10.1021/tx900407a. [PMID: 20041722]
  • Andreas Koeberle, Julia Bauer, Moritz Verhoff, Marika Hoffmann, Hinnak Northoff, Oliver Werz. Green tea epigallocatechin-3-gallate inhibits microsomal prostaglandin E(2) synthase-1. Biochemical and biophysical research communications. 2009 Oct; 388(2):350-4. doi: 10.1016/j.bbrc.2009.08.005. [PMID: 19665000]
  • Zakayi Kabututu, Michèle Manin, Jean-Christophe Pointud, Toshihiko Maruyama, Nanae Nagata, Sarah Lambert, Anne-Marie Lefrançois-Martinez, Antoine Martinez, Yoshihiro Urade. Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. Journal of biochemistry. 2009 Feb; 145(2):161-8. doi: 10.1093/jb/mvn152. [PMID: 19010934]
  • Rufina Schuligoi, Miriam Sedej, Maria Waldhoer, Anela Vukoja, Eva M Sturm, Irmgard T Lippe, Bernhard A Peskar, Akos Heinemann. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2. Journal of leukocyte biology. 2009 Jan; 85(1):136-45. doi: 10.1189/jlb.0608387. [PMID: 18835884]
  • Ke-He Ruan, Cori Wijaya, Vanessa Cervantes, Jiaxin Wu. Characterization of the prostaglandin H2 mimic: binding to the purified human thromboxane A2 receptor in solution. Archives of biochemistry and biophysics. 2008 Sep; 477(2):396-403. doi: 10.1016/j.abb.2008.05.022. [PMID: 18590695]
  • Ryszard J Gryglewski. Prostacyclin among prostanoids. Pharmacological reports : PR. 2008 Jan; 60(1):3-11. doi: . [PMID: 18276980]
  • Taro Yamada, Fusao Takusagawa. PGH2 degradation pathway catalyzed by GSH-heme complex bound microsomal prostaglandin E2 synthase type 2: the first example of a dual-function enzyme. Biochemistry. 2007 Jul; 46(28):8414-24. doi: 10.1021/bi700605m. [PMID: 17585783]
  • Shizuo Ichimura, Takeshi Uchida, Shuhei Taniguchi, Shusuke Hira, Takehiko Tosha, Isao Morishima, Teizo Kitagawa, Koichiro Ishimori. Unique peroxidase reaction mechanism in prostaglandin endoperoxide H synthase-2: compound I in prostaglandin endoperoxide H synthase-2 can be formed without assistance by distal glutamine residue. The Journal of biological chemistry. 2007 Jun; 282(22):16681-90. doi: 10.1074/jbc.m610785200. [PMID: 17403665]
  • Zhong Jian Cheng, Yan-Fen Jiang, Hong Ding, David Severson, Chris R Triggle. Vascular dysfunction in type 2 diabetic TallyHo mice: role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 products. Canadian journal of physiology and pharmacology. 2007 Mar; 85(3-4):404-12. doi: 10.1139/y07-010. [PMID: 17612649]
  • Giancarlo Folco, Robert C Murphy. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacological reviews. 2006 Sep; 58(3):375-88. doi: 10.1124/pr.58.3.8. [PMID: 16968946]
  • Irene Zagol-Ikapitte, Tina S Masterson, V Amarnath, Thomas J Montine, Katrin I Andreasson, Olivier Boutaud, John A Oates. Prostaglandin H(2)-derived adducts of proteins correlate with Alzheimer's disease severity. Journal of neurochemistry. 2005 Aug; 94(4):1140-5. doi: 10.1111/j.1471-4159.2005.03264.x. [PMID: 15992375]
  • Robert G Salomon. Levuglandins and isolevuglandins: stealthy toxins of oxidative injury. Antioxidants & redox signaling. 2005 Jan; 7(1-2):185-201. doi: 10.1089/ars.2005.7.185. [PMID: 15650407]
  • Irene Zagol-Ikapitte, Nathalie Bernoud-Hubac, Venkataraman Amarnath, L Jackson Roberts, Olivier Boutaud, John A Oates. Characterization of bis(levuglandinyl) urea derivatives as products of the reaction between prostaglandin H2 and arginine. Biochemistry. 2004 May; 43(18):5503-10. doi: 10.1021/bi049842r. [PMID: 15122916]
  • Lee-Ho Wang, Richard J Kulmacz. Thromboxane synthase: structure and function of protein and gene. Prostaglandins & other lipid mediators. 2002 Aug; 68-69(?):409-22. doi: 10.1016/s0090-6980(02)00045-x. [PMID: 12432933]
  • Roberta Vezza, Anna Maria Mezzasoma, Gigliola Venditti, Paolo Gresele. Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets. Thrombosis and haemostasis. 2002 Jan; 87(1):114-21. doi: 10.1055/s-0037-1612953. [PMID: 11848439]
  • E H Oliw, K Stark, J Bylund. Oxidation of prostaglandin H(2) and prostaglandin H(2) analogues by human cytochromes P450: analysis of omega-side chain hydroxy metabolites and four steroisomers of 5-hydroxyprostaglandin I(1) by mass spectrometry. Biochemical pharmacology. 2001 Aug; 62(4):407-15. doi: 10.1016/s0006-2952(01)00683-9. [PMID: 11448449]
  • M Soler, M Camacho, R Solá, L Vila. Mesangial cells release untransformed prostaglandin H2 as a major prostanoid. Kidney international. 2001 Apr; 59(4):1283-9. doi: 10.1046/j.1523-1755.2001.0590041283.x. [PMID: 11260389]
  • L Rosenfeld, G J Grover, C T Stier. Ifetroban sodium: an effective TxA2/PGH2 receptor antagonist. Cardiovascular drug reviews. 2001; 19(2):97-115. doi: 10.1111/j.1527-3466.2001.tb00058.x. [PMID: 11484065]
  • B K Kubata, M Duszenko, Z Kabututu, M Rawer, A Szallies, K Fujimori, T Inui, T Nozaki, K Yamashita, T Horii, Y Urade, O Hayaishi. Identification of a novel prostaglandin f(2alpha) synthase in Trypanosoma brucei. The Journal of experimental medicine. 2000 Nov; 192(9):1327-38. doi: 10.1084/jem.192.9.1327. [PMID: 11067881]
  • Y Z Lin, H Deng, K H Ruan. Topology of catalytic portion of prostaglandin I(2) synthase: identification by molecular modeling-guided site-specific antibodies. Archives of biochemistry and biophysics. 2000 Jul; 379(2):188-97. doi: 10.1006/abbi.2000.1892. [PMID: 10898934]
  • R G Salomon, E Batyreva, K Kaur, D L Sprecher, M J Schreiber, J W Crabb, M S Penn, A M DiCorletoe, S L Hazen, E A Podrez. Isolevuglandin-protein adducts in humans: products of free radical-induced lipid oxidation through the isoprostane pathway. Biochimica et biophysica acta. 2000 May; 1485(2-3):225-35. doi: 10.1016/s1388-1981(00)00038-x. [PMID: 10832102]
  • S W Hwang, H Cho, J Kwak, S Y Lee, C J Kang, J Jung, S Cho, K H Min, Y G Suh, D Kim, U Oh. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proceedings of the National Academy of Sciences of the United States of America. 2000 May; 97(11):6155-60. doi: 10.1073/pnas.97.11.6155. [PMID: 10823958]
  • R G Salomon, K Kaur, E Batyreva. Isolevuglandin-protein adducts in oxidized low density lipoprotein and human plasma: a strong connection with cardiovascular disease. Trends in cardiovascular medicine. 2000 Feb; 10(2):53-9. doi: 10.1016/s1050-1738(00)00040-2. [PMID: 11150730]
  • H Hayakawa, L Raij. Relationship between hypercholesterolaemia, endothelial dysfunction and hypertension. Journal of hypertension. 1999 May; 17(5):611-9. doi: 10.1097/00004872-199917050-00004. [PMID: 10403604]
  • J L Johnson, K R Maddipati. Paradoxical effects of resveratrol on the two prostaglandin H synthases. Prostaglandins & other lipid mediators. 1998 Jun; 56(2-3):131-43. doi: 10.1016/s0090-6980(98)00052-5. [PMID: 9785383]
  • K Watanabe, K Kurihara, Y Tokunaga, O Hayaishi. Two types of microsomal prostaglandin E synthase: glutathione-dependent and -independent prostaglandin E synthases. Biochemical and biophysical research communications. 1997 Jun; 235(1):148-52. doi: 10.1006/bbrc.1997.6708. [PMID: 9196052]
  • A l Tsai, C Wei, H K Baek, R J Kulmacz, H E Van Wart. Comparison of peroxidase reaction mechanisms of prostaglandin H synthase-1 containing heme and mangano protoporphyrin IX. The Journal of biological chemistry. 1997 Apr; 272(14):8885-94. doi: 10.1074/jbc.272.14.8885. [PMID: 9083007]
  • S Itoh, R Lu, Y Bao, J D Morrow, L J Roberts, V L Schuster. Structural determinants of substrates for the prostaglandin transporter PGT. Molecular pharmacology. 1996 Oct; 50(4):738-42. doi: NULL. [PMID: 8863817]
  • A Ziyyat, B L Zhang, D Benzoni. Interactions between nitric oxide and prostanoids in isolated perfused kidneys of the rat. British journal of pharmacology. 1996 Sep; 119(2):388-92. doi: 10.1111/j.1476-5381.1996.tb15998.x. [PMID: 8886425]
  • L Somova. Prostaglandin H2/thromboxane A2 pathway in platelet aggregation and activity of Dahl salt-sensitive rat--a sulotroban study. Methods and findings in experimental and clinical pharmacology. 1996 Jun; 18(5):309-13. doi: . [PMID: 8817465]
  • G Cirino, R Sorrentino, C Cicala, L Sorrentino, A Pinto. Indomethacin and thromboxane A2/prostaglandin H2 antagonist SQ29,548 impair in vitro contractions of aortic rings of ex vivo-treated lipopolysaccharide rats. Journal of lipid mediators and cell signalling. 1996 Mar; 13(2):177-87. doi: 10.1016/0929-7855(95)00051-8. [PMID: 8925198]
  • J E Harlan, D Picot, P J Loll, R M Garavito. Calibration of size-exclusion chromatography: use of a double Gaussian distribution function to describe pore sizes. Analytical biochemistry. 1995 Jan; 224(2):557-63. doi: 10.1006/abio.1995.1087. [PMID: 7733458]
  • J C Lavoie, P Chessex. The increase in vasomotor tone induced by a parenteral lipid emulsion is linked to an inhibition of prostacyclin production. Free radical biology & medicine. 1994 Jun; 16(6):795-9. doi: 10.1016/0891-5849(94)90195-3. [PMID: 8070683]
  • A K Okwu, D E Mais, P V Halushka. Agonist-induced phosphorylation of human platelet TXA2/PGH2 receptors. Biochimica et biophysica acta. 1994 Mar; 1221(1):83-8. doi: 10.1016/0167-4889(94)90220-8. [PMID: 8130280]
  • D Komiotis, C T Lim, J P Dieter, G C Le Breton, D L Venton. PgH2 analogs as potential antiplatelet derivatives. Journal of medicinal chemistry. 1992 Aug; 35(16):3033-9. doi: 10.1021/jm00094a017. [PMID: 1501231]
  • G Remuzzi, G A FitzGerald, C Patrono. Thromboxane synthesis and action within the kidney. Kidney international. 1992 Jun; 41(6):1483-93. doi: 10.1038/ki.1992.217. [PMID: 1501404]
  • N Bank, H S Aynedjian. Role of thromboxane in impaired renal vasodilatation response to acetylcholine in hypercholesterolemic rats. The Journal of clinical investigation. 1992 May; 89(5):1636-42. doi: 10.1172/jci115760. [PMID: 1569203]
  • K C Malcolm, F A Fitzpatrick. Indirect actions of thapsigargin on human platelets: activation of eicosanoid biosynthesis and cellular signaling pathways. The Journal of pharmacology and experimental therapeutics. 1992 Mar; 260(3):1244-9. doi: ". [PMID: 1532033]
  • J A Bellan, R K Minkes, M D Kerstein, S V Shah, P J Kadowitz, S Cassin, D B McNamara. Concentration-activity profile of the modulation of cyclooxygenase product formation by reduced glutathione in microsomal fractions from the goat lung. Biochimica et biophysica acta. 1990 Jun; 1044(3):315-22. doi: 10.1016/0005-2760(90)90075-9. [PMID: 2114178]
  • G R Martinez, K A Walker, D R Hirschfeld, P J Maloney, D S Yang, R P Rosenkranz. [(1H-imidazol-1-yl)methyl]- and [(3-pyridinyl)methyl]pyrroles as thromboxane synthetase inhibitors. Journal of medicinal chemistry. 1989 Apr; 32(4):890-7. doi: 10.1021/jm00124a027. [PMID: 2704033]
  • W Hornberger, H Patscheke. Transient concentrations and agonist potency of PGH2 in platelet activation by endogenous arachidonate. Eicosanoids. 1989; 2(4):241-8. doi: . [PMID: 2517034]
  • J Quilley, J C McGiff, A Nasjletti. Role of endoperoxides in arachidonic acid-induced vasoconstriction in the isolated perfused kidney of the rat. British journal of pharmacology. 1989 Jan; 96(1):111-6. doi: 10.1111/j.1476-5381.1989.tb11790.x. [PMID: 2522332]
  • P R Mayeux, H E Morton, J Gillard, A Lord, T A Morinelli, A Boehm, D E Mais, P V Halushka. The affinities of prostaglandin H2 and thromboxane A2 for their receptor are similar in washed human platelets. Biochemical and biophysical research communications. 1988 Dec; 157(2):733-9. doi: 10.1016/s0006-291x(88)80311-5. [PMID: 2974286]
  • M Ujihara, S Tsuchida, K Satoh, K Sato, Y Urade. Biochemical and immunological demonstration of prostaglandin D2, E2, and F2 alpha formation from prostaglandin H2 by various rat glutathione S-transferase isozymes. Archives of biochemistry and biophysics. 1988 Aug; 264(2):428-37. doi: 10.1016/0003-9861(88)90308-6. [PMID: 3041912]
  • K H Thierauch, D Gabriel, G Prior, E Schillinger. Desensitisation of human platelets against stimulation by thromboxane mimics--reduction in receptor capacity and loss of functional response. Biomedica biochimica acta. 1988; 47(10-11):S75-8. doi: NULL. [PMID: 2470362]
  • O T Mak. Prostacyclin production in vascular endothelium of patients with Blackfoot disease. Advances in experimental medicine and biology. 1988; 242(?):119-25. doi: 10.1007/978-1-4684-8935-4_14. [PMID: 3072861]
  • M Hecker, A Hatzelmann, V Ullrich. Preparative HPLC purification of prostaglandin endoperoxides and isolation of novel cyclooxygenase-derived arachidonic acid metabolites. Biochemical pharmacology. 1987 Mar; 36(6):851-5. doi: 10.1016/0006-2952(87)90175-4. [PMID: 3105538]
  • T Kuzuya, S Hoshida, M Yamagishi, M Ohmori, M Inoue, T Kamada, M Tada. Effect of OKY-046, a thromboxane A2 synthetase inhibitor, on arachidonate-induced platelet aggregation: possible role of "prostaglandin H2 steal" mechanism. Japanese circulation journal. 1986 Nov; 50(11):1071-8. doi: 10.1253/jcj.50.1071. [PMID: 3102802]
  • J Beitz, H J Mest. Thromboxane A2 (TXA2) formation by washed human platelets under the influence of low and high density lipoproteins from healthy donors. Prostaglandins, leukotrienes, and medicine. 1986 Aug; 23(2-3):303-9. doi: 10.1016/0262-1746(86)90197-6. [PMID: 3094032]
  • C Giessler, J Beitz, P Mentz, W Förster. The influence of lipoproteins (LDL and HDL) on PGI2-formation by isolated aortic preparations of rabbits. Prostaglandins, leukotrienes, and medicine. 1986 May; 22(2):221-34. doi: 10.1016/0262-1746(86)90091-0. [PMID: 3523542]
  • I M Zulak, M L Puttemans, A B Schilling, E R Hall, D L Venton. A fast, nondestructive purification scheme for prostaglandin H2 using a nonaqueous, bonded-phase high-performance liquid chromatography system. Analytical biochemistry. 1986 Apr; 154(1):152-61. doi: 10.1016/0003-2697(86)90509-9. [PMID: 3085539]
  • A R Morrison. Biochemistry and pharmacology of renal arachidonic acid metabolism. The American journal of medicine. 1986 Jan; 80(1A):3-11. doi: 10.1016/0002-9343(86)90927-7. [PMID: 3080877]
  • A S Adeagbo, I Bishai, J Lees, P M Olley, F Coceani. Evidence for a role of prostaglandin I2 and thromboxane A2 in the ductus venosus of the lamb. Canadian journal of physiology and pharmacology. 1985 Sep; 63(9):1101-5. doi: 10.1139/y85-181. [PMID: 3902179]
  • J R Beetens, A E Van Hoydonck, A G Herman. Stimulation of prostacyclin production by vitamin C in ram seminal vesicle microsomes: possible mode of action. Archives internationales de pharmacodynamie et de therapie. 1985 Sep; 277(1):56-65. doi: . [PMID: 3904652]
  • L D Brace, D L Venton, G C Le Breton. Thromboxane A2/prostaglandin H2 mobilizes calcium in human blood platelets. The American journal of physiology. 1985 Jul; 249(1 Pt 2):H1-7. doi: 10.1152/ajpheart.1985.249.1.h1. [PMID: 3925795]
  • H L Lippton, P M Horwitz, D B McNamara, L J Ignarro, A Z Landry, A L Hyman, P J Kadowitz. The effects of amrinone on human platelet aggregation: evidence that amrinone does not act through a cyclic nucleotide mechanism in platelet rich plasma. Prostaglandins, leukotrienes, and medicine. 1985 May; 18(2):193-204. doi: 10.1016/0262-1746(85)90019-8. [PMID: 3925461]
  • R A Armstrong, R L Jones, V Peesapati, S G Will, N H Wilson. Competitive antagonism at thromboxane receptors in human platelets. British journal of pharmacology. 1985 Mar; 84(3):595-607. doi: 10.1111/j.1476-5381.1985.tb16139.x. [PMID: 2580580]
  • G Mallarkey, G M Smith. A comparative study of the involvement of the prostaglandin H2/thromboxane A2 pathway in intravascular platelet aggregation in guinea-pigs and rats. British journal of pharmacology. 1985 Feb; 84(2):425-30. doi: 10.1111/j.1476-5381.1985.tb12926.x. [PMID: 3156648]
  • H L Lippton, P M Horwitz, D B McNamara, A Z Landry, P J Kadowitz. Influence of verapamil and diltiazem on aggregatory responses in cat and rabbit platelet rich plasma. Prostaglandins, leukotrienes, and medicine. 1984 Oct; 16(1):121-30. doi: 10.1016/0262-1746(84)90092-1. [PMID: 6440150]
  • L J Marnett, P H Siedlik, R C Ochs, W R Pagels, M Das, K V Honn, R H Warnock, B E Tainer, T E Eling. Mechanism of the stimulation of prostaglandin H synthase and prostacyclin synthase by the antithrombotic and antimetastatic agent, nafazatrom. Molecular pharmacology. 1984 Sep; 26(2):328-35. doi: . [PMID: 6434940]
  • G C Le Breton, J P Lipowski, H Feinberg, D L Venton, T Ho, K K Wu. Antagonism of thromboxane A2/prostaglandin H2 by 13-azaprostanoic acid prevents platelet deposition to the de-endothelialized rabbit aorta in vivo. The Journal of pharmacology and experimental therapeutics. 1984 Apr; 229(1):80-4. doi: NULL. [PMID: 6423815]
  • A G Herman. [Localization of prostacyclin activity in the rabbit aorta]. Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie. 1984; 46(4):233-52. doi: ". [PMID: 6393629]
  • B Spławińska, J Spławiński, T Corell, G Hasselmann, M Nieszpaur, B Jakubek. Release of prostacyclin (PGI2) by the layers of corpus of rat stomach. Prostaglandins. 1983 Jul; 26(1):139-50. doi: 10.1016/0090-6980(83)90081-3. [PMID: 6415758]
  • J P Rybicki, G C Le Breton. Prostaglandin H2 directly lowers human platelet cAMP levels. Thrombosis research. 1983 Jun; 30(5):407-14. doi: 10.1016/0049-3848(83)90174-3. [PMID: 6310815]
  • J Beitz, M Panse, W Förster. Low density lipoprotein (LDL) from male volunteers stimulated the thromboxane formation by human platelets. Prostaglandins, leukotrienes, and medicine. 1983 Apr; 10(4):443-8. doi: 10.1016/0262-1746(83)90056-2. [PMID: 6574527]
  • D B McNamara, F G Boineau, M McMullen-Laird, H L Lippton, H S She, J E Lewy, P J Kadowitz. Prostaglandin endoperoxide metabolism by microsomes of whole kidneys from normal, congenital unilateral hydronephrotic and unilateral ureteral obstructed rats. Prostaglandins. 1982 Nov; 24(5):585-605. doi: 10.1016/0090-6980(82)90030-2. [PMID: 6962465]
  • P Strittmatter, E T Machuga, G J Roth. Reduced pyridine nucleotides and cytochrome b5 as electron donors for prostaglandin synthetase reconstituted in dimyristyl phosphatidylcholine vesicles. The Journal of biological chemistry. 1982 Oct; 257(20):11883-6. doi: 10.1016/s0021-9258(18)33648-2. [PMID: 6811590]
  • Z Qureshi, L M Cagen. Prostaglandins F2 alpha produced by rabbit renal slices is not a metabolite of prostaglandins E2. Biochemical and biophysical research communications. 1982 Feb; 104(4):1255-63. doi: 10.1016/0006-291x(82)91385-7. [PMID: 6803799]
  • S Greenberg. Vascular responses of the perfused intestine to vasoactive agents during the development of two-kidney, one-clip Goldblatt hypertension in dogs. Circulation research. 1981 Jun; 48(6 Pt 1):895-906. doi: 10.1161/01.res.48.6.895. [PMID: 7226449]
  • F A Fitzpatrick, J E Pike. Factors affecting prostaglandin endoperoxide transformation: antibodies against PGH2. Progress in lipid research. 1981; 20(?):179-82. doi: 10.1016/0163-7827(81)90033-3. [PMID: 7342082]
  • . . . . doi: . [PMID: 20346915]
  • . . . . doi: . [PMID: 18682561]