Sarsasapogenin

(2aR,4S,5S,6aS,6bS,8aS,8bR,9S,10R,11aS,12aS,12bR)-5,6a,8a,9-tetramethyldocosahydrospiro[naphtho[2,1:4,5]indeno[2,1-b]furan-10,2-pyran]-4-ol

C27H44O3 (416.329)


(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.

   

5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Methyl hexadecanoic acid

Methyl palmitate, United States Pharmacopeia (USP) Reference Standard

C17H34O2 (270.2559)


Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Thymidine

1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione

C10H14N2O5 (242.0903)


Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].

   

linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.2246)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Pseudoprotodioscin

2-[4-Hydroxy-2-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-6-[[7,9,13-trimethyl-6-[3-methyl-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutyl]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosa-6,18-dien-16-yl]oxy]oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C51H82O21 (1030.5348)


Pseudoprotodioscin is a steroid saponin. Pseudoprotodioscin is a natural product found in Smilax menispermoidea, Trachycarpus fortunei, and other organisms with data available. Pseudoprotodioscin, a furostanoside, inhibits SREBP1/2 and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides[1]. Pseudoprotodioscin, a furostanoside, inhibits SREBP1/2 and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides[1]. Pseudoprotodioscin, a furostanoside, inhibits SREBP1/2 and microRNA 33a/b levels and reduces the gene expression regarding the synthesis of cholesterol and triglycerides[1].

   

LDR cpd

(1S,4E,12S,13S)-5,10-dimethyl-8,14,16-trioxatetracyclo[10.2.2.01,13.07,11]hexadeca-4,7(11),9-trien-15-one

C15H16O4 (260.1049)


Linderane is a member of dioxanes. Linderane is a natural product found in Cryptocarya densiflora, Neolitsea villosa, and other organisms with data available. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1]. Linderane, isolated from the root of Lindera aggregata, is an irreversible inhibitor cytochrome P450 2C9 (CYP2C9). Linderane has the potential to relieve pain and cramp[1].

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Crotonosid

6-amino-9-((2S,3S,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)-3H-purin-2(9H)-one;9-?-D-Ribofuranosylisoguanine

C10H13N5O5 (283.0917)


Crotonoside is a purine nucleoside. Crotonoside is a natural product found in Croton tiglium with data available. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 26 Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1]. Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1]. Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1].

   

Asperuloside

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

C18H22O11 (414.1162)


Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

   

Xanthotoxol

9-hydroxy-7H-furo[3,2-g]chromen-7-one

C11H6O4 (202.0266)


Isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip). Xanthotoxol is found in many foods, some of which are fats and oils, green vegetables, herbs and spices, and fig. Xanthotoxol is found in fats and oils. Xanthotoxol is isolated from Aegle marmelos (bael fruit), Angelica archangelica (angelica) and the seeds of Pastinaca sativa (parsnip Xanthotoxol is an 8-hydroxyfurocoumarin. Xanthotoxol is a natural product found in Citrus canaliculata, Prangos tschimganica, and other organisms with data available. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

Trigofoenoside D

2-[(3-hydroxy-6-{[6-hydroxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-en-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-4-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C51H84O23 (1064.5403)


Protogracillin is a steroid saponin. Protogracillin is a natural product found in Tribulus terrestris, Paris polyphylla var. chinensis, and other organisms with data available. Trigofoenoside D is found in fenugreek. Trigofoenoside D is isolated from seeds of fenugreek (Trigonella foenum-graecum). Protogracillin is a steroidal saponin isolated from Dioscorea zingiberensis Wright (DZW). Steroidal saponins from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action[1]. Protogracillin is a steroidal saponin isolated from Dioscorea zingiberensis Wright (DZW). Steroidal saponins from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action[1].

   

Bellidifolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy-

C14H10O6 (274.0477)


Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

febrifugine

3-[[(3aS,7aS)-2-hydroxy-3a,4,5,6,7,7a-hexahydro-3H-furo[3,2-b]pyridin-2-yl]methyl]quinazolin-4-one

C16H19N3O3 (301.1426)


Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Worenin

24-methyl-5,7,18,20-tetraoxa-13-azoniahexacyclo[11.11.0.02,10.04,8.015,23.017,21]tetracosa-1(24),2,4(8),9,13,15,17(21),22-octaene

C20H16NO4+ (334.1079)


Worenine is an alkaloid.

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Inokosterone

(2S,3R,5R,9R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-dimethyl-17-[(2R,3R,6R)-2,3,7-trihydroxy-6-methyl-heptan-2-yl]-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C27H44O7 (480.3087)


Inokosterone is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 26-hydroxy steroid, a 6-oxo steroid, a 22-hydroxy steroid and a phytoecdysteroid. Inokosterone is a natural product found in Zoanthus, Rhaponticum carthamoides, and other organisms with data available.

   

OnjisaponinF

Polygalasaponin XXXI;Onjisaponin F

C75H112O36 (1588.6933)


Onjisaponin F is a triterpenoid saponin. Onjisaponin F is a natural product found in Polygala tenuifolia and Polygala japonica with data available. Polygalasaponin XXXI (Onjisaponin F) is an effective adjuvant for intranasal administration of influenza Influenza hemagglutinin (HA) vaccine to protect influenza virus infection[1]. Polygalasaponin XXXI (Onjisaponin F) is an effective adjuvant for intranasal administration of influenza Influenza hemagglutinin (HA) vaccine to protect influenza virus infection[1].

   

3-(3,4-Dihydroxyphenyl)lactic acid

3-(3,4-DIHYDROXYPHENYL)LACTIC ACID DL-.BETA.-(3,4-DIHYDROXYPHENYL)LACTIC ACID

C9H10O5 (198.0528)


3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).

   

Anagyrine

7,14-Methano-4H,6H-dipyrido(1,2-a:1,2-e)(1,5)diazocin-4-one, 7,7a,8,9,10,11,13,14-octahydro-, (7R-(7alpha,7aalpha,14alpha))-

C15H20N2O (244.1576)


Anagyrine is an alkaloid. Anagyrine is a natural product found in Daphniphyllum oldhamii, Ormosia fordiana, and other organisms with data available. Thermospine is a natural product found in Platycelyphium voense, Thermopsis mongolica, and other organisms with data available. Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

(-)-3-Isothujone

Bicyclo(3.1.0)hexan-3-one, 4-methyl-1-(1-methylethyl)-, (1-alpha,4-alpha,5-alpha)-(+-)-

C10H16O (152.1201)


(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

2-Hydroxyadenine

FLUDARABINE PHOSPHATE IMPURITY, ISOGUANINE [USP IMPURITY]

C5H5N5O (151.0494)


2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50) [HMDB] 2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50). Isoguanine is an oxopurine that is 3,7-dihydro-purin-2-one in which the hydrogen at position 6 is substituted by an amino group.

   

D-Citronellol

Purifying relief soothing gel essence

C10H20O (156.1514)


Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].

   

Capsanthin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17-tetramethyl-19-[(4R)-2,6,6-trimethyl-4-oxidanyl-cyclohexen-1-yl]-1-[(1R,4S)-1,2,2-trimethyl-4-oxidanyl-cyclopentyl]nonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O3 (584.4229)


Capsanthin is found in green vegetables. Capsanthin is a constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical.Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids) Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). Constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Petunidin

1-Benzopyrylium, 2-(3,4-dihydroxy-5-methoxyphenyl)-3,5,7-trihydroxy-, chloride

C16H13ClO7 (352.035)


Petunidin chloride is an anthocyanidin chloride that has petunidin as the cationic component. It has a role as a metabolite. An anthocyanidin chloride that has petunidin as the cationic component.

   

Apovincamine

Methyl (13aS,13bS)-13a-Ethyl-2,3,5,6,13a,13b-hexahydro-1H-indolo[3,2,1-de]pyrido[3,2,1-ij][1,5]naphthyridine-12-carboxylate (Apovincamine)

C21H24N2O2 (336.1838)


Apovincamine is an alkaloid. Apovincamine is a natural product found in Euglena gracilis with data available. C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids

   

RD4-2174

[(1S,4S,5S,6R,9S,10R,12R,14R)-4-benzoyloxy-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxo-7-tetracyclo[7.5.1.01,5.010,12]pentadeca-2,7-dienyl]methyl benzoate

C34H36O7 (556.2461)


Ingenol 3,20-dibenzoate is a benzoate ester. Ingenol 3,20-dibenzoate is a potent protein kinase C (PKC) isoform-selective agonist. Ingenol 3,20-dibenzoate induces selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induces morphologically typical apoptosis through de novo synthesis of macromolecules. Ingenol 3,20-dibenzoate increases the IFN-γ production and degranulation by NK cells, especially when NK cells are stimulated by NSCLC cells[1][2]. Ingenol 3,20-dibenzoate is a potent protein kinase C (PKC) isoform-selective agonist. Ingenol 3,20-dibenzoate induces selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induces morphologically typical apoptosis through de novo synthesis of macromolecules. Ingenol 3,20-dibenzoate increases the IFN-γ production and degranulation by NK cells, especially when NK cells are stimulated by NSCLC cells[1][2].

   

Asparagusic acid

5-19-07-00224 (Beilstein Handbook Reference)

C4H6O2S2 (149.9809)


Asparagusic acid is a sulfur-containing carboxylic acid, a dithiolanecarboxylic acid and a member of dithiolanes. It is a conjugate acid of an asparagusate. It derives from a hydride of a 1,2-dithiolane. Asparagusic acid is a natural product found in Asparagus officinalis with data available. Asparagusic acid is found in asparagus. Asparagusic acid is isolated from asparagus (Asparagus officinalis Isolated from asparagus (Asparagus officinalis) [DFC] Asparagusic acid is a sulfur-containing flavor component produced by Asparagus officinalis Linn., with anti-parasitic effect. Asparagusic acid is a plant growth inhibitor[1][2][3].

   

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

Vomifoliol

2-Cyclohexen-1-one, 4-hydroxy-4-((1E,3R)-3-hydroxy-1-buten-1-yl)-3,5,5-trimethyl-, (4S)-rel-

C13H20O3 (224.1412)


A fenchane monoterpenoid that is 3,5,5-trimethylcyclohex-2-en-1-one substituted by a hydroxy and a (1E)-3-hydroxybut-1-en-1-yl group at position 4. (6S,9R)-vomifoliol is a (6S)-vomifoliol with a R configuration for the hydroxy group at position 9. It has a role as a phytotoxin and a metabolite. It is an enantiomer of a (6R,9S)-vomifoliol. Vomifoliol is a natural product found in Sida acuta, Macrococculus pomiferus, and other organisms with data available. A (6S)-vomifoliol with a R configuration for the hydroxy group at position 9.

   

Glaucarubinone

Butyric acid, 4-ester with 1,3a.beta.,4,7,7a.alpha.,11,11a,11b.alpha.-octahydro-1.alpha.,2.alpha.,4.beta.,11.beta.-tetrahydroxy-3.alpha.,8,11a.beta.-trimethyl-2H-1,11c.beta.-(epoxymethano)phenanthro[10,1-bc]pyran-5,10(3H,6a.beta.H)-dione

C25H34O10 (494.2152)


Glaucarubinone is a quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties. It has a role as a geroprotector, a plant metabolite, an antineoplastic agent and an antimalarial. It is a carboxylic ester, a quassinoid, an organic heteropentacyclic compound, a tetrol, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. Glaucarubinone is a natural product found in Simarouba amara, Cunila, and other organisms with data available. A quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties.

   

4-Hydroxy-3-methoxybenzenemethanol

2-Pyridinecarboxylicacid, 6-amino-3-bromo-, methyl ester

C8H10O3 (154.063)


4-Hydroxy-3-methoxybenzenemethanol, also known as 4-hydroxy-3-methoxybenzyl alcohol or 3-methoxy-4-hydroxybenzyl alcohol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-Hydroxy-3-methoxybenzenemethanol is a drug. 4-Hydroxy-3-methoxybenzenemethanol is a sweet, anise, and balsam tasting compound. 4-hydroxy-3-methoxybenzenemethanol has been detected, but not quantified, in fruits and herbs and spices. This could make 4-hydroxy-3-methoxybenzenemethanol a potential biomarker for the consumption of these foods. Vanillyl alcohol is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols. Vanillyl alcohol has been used in trials studying the treatment of Smoking. Vanillyl alcohol is a natural product found in Artemisia rutifolia, Euglena gracilis, and other organisms with data available. Constituent of Capsicum subspecies; flavouring ingredient. 4-Hydroxy-3-methoxybenzenemethanol is found in herbs and spices and fruits. A monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

Podocaric Acid

(1S,4aS,10aR)-1,2,3,4,4a,9,10,10a-octahydro-6-hydroxy-1,4a-dimethylphenanthrene-1-carboxylic acid;(1S,4aS,10aR)-6-hydroxy-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid

C17H22O3 (274.1569)


Podocarpic acid is an abietane diterpenoid lacking the isopropyl substituent with an aromatic C-ring and a hydroxy group at the 12-position. It derives from a hydride of a podocarpane. Podocarpic acid is a natural product found in Podocarpus fasciculus, Nageia wallichiana, and other organisms with data available. Podocarpic acid is a natural product, which has the best all-round positive effect and acts as a novel TRPA1 activator.

   

Isopimaric acid

1-Phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydro-1,4a,7-trimethyl-, (1theta-(1alpha,4abeta,4balpha,7alpha,10aalpha))-

C20H30O2 (302.2246)


Isopimaric acid is a diterpenoid, a carbotricyclic compound and a monocarboxylic acid. It is a conjugate acid of an isopimarate. It derives from a hydride of an isopimara-7,15-diene. Isopimaric acid is a natural product found in Pinus brutia var. eldarica, Halocarpus bidwillii, and other organisms with data available. Isopimaric acid is isolated from Pinus palustris (pitch pine). D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.1002)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

Coclaurine

(1S)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a glycoside formed from glucose and safranal. It is found in the spice saffron, which comes from the crocus flower. Picrocrocin has a bitter taste and is the chemical most responsible for the taste of saffron. It is believed that picrocrocin is a degradation product of the carotenoid zeaxanthin (Wikipedia). Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Isolated from saffron (stamens of Crocus sativus). Food colour and flavouring ingredient Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

alpha-Methylene-gamma-butyrolactone

4-(3-FORMYL-2,5-DIMETHYL-1H-PYRROL-1-YL)BENZENECARBOXYLICACID

C5H6O2 (98.0368)


Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

Gardoside

(1S,4aS,6S,7aS)-6-hydroxy-7-methylidene-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a,5,6,7a-tetrahydro-1H-cyclopenta[c]pyran-4-carboxylic acid

C16H22O10 (374.1213)


Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.

   

Fustin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,7-dihydroxy-, (2R,3R)-rel-

C15H12O6 (288.0634)


Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].

   

bruceosideA

methyl (1R,2S,3R,6R,8S,9S,13S,14R,15R,16S,17S)-15,16-dihydroxy-9,13-dimethyl-3-(3-methylbut-2-enoyloxy)-4,10-dioxo-11-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-11-ene-17-carboxylate

C32H42O16 (682.2473)


Bruceoside A is a triterpenoid saponin. Bruceoside A is a natural product found in Brucea javanica with data available.

   

1-Hydroxyanthraquinone

1-hydroxy-9,10-dihydroanthracene-9,10-dione

C14H8O3 (224.0473)


CONFIDENCE standard compound; INTERNAL_ID 8284 CONFIDENCE standard compound; INTERNAL_ID 25 D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

p-Menth-1-en-4-ol

Terpinen 4-ol, primary pharmaceutical reference standard

C10H18O (154.1358)


p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

Maltotetraose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Ethyl cinnamate

Cinnamic acid, ethyl ester (6CI,7CI,8CI); 3-Phenyl-2-propenoic acid ethyl ester

C11H12O2 (176.0837)


Occurs in storaxand is also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is found in many foods, some of which are corn, tarragon, tamarind, and ceylon cinnamon. Ethyl cinnamate is an alkyl cinnamate and an ethyl ester. Ethyl cinnamate is a natural product found in Hedychium spicatum, Cinnamomum verum, and other organisms with data available. Ethyl cinnamate is found in ceylan cinnamon. Ethyl cinnamate occurs in storax. Also present in many fruits, e.g. cherry, American cranberry, pineapple, blackberry and passion fruit. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].

   

Monuron

3-(p-Chlorophenyl)-1,1-dimethylurea

C9H11ClN2O (198.056)


CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7858; ORIGINAL_PRECURSOR_SCAN_NO 7856 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7928; ORIGINAL_PRECURSOR_SCAN_NO 7925 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7944; ORIGINAL_PRECURSOR_SCAN_NO 7942 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3857; ORIGINAL_PRECURSOR_SCAN_NO 3854 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7900; ORIGINAL_PRECURSOR_SCAN_NO 7898 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3846; ORIGINAL_PRECURSOR_SCAN_NO 3844 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7885; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3870; ORIGINAL_PRECURSOR_SCAN_NO 3866 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7933; ORIGINAL_PRECURSOR_SCAN_NO 7931 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3859; ORIGINAL_PRECURSOR_SCAN_NO 3857 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3877; ORIGINAL_PRECURSOR_SCAN_NO 3875 CONFIDENCE standard compound; INTERNAL_ID 446; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3866; ORIGINAL_PRECURSOR_SCAN_NO 3861

   

2-Methoxyestrone

2-(8S,9S,13S,14S)-3-Hydroxy-2-methoxy-13-methyl-7,8,9,11,12,14,15,16-octahydro-6H-cyclopenta[a]phenanthren-17-one

C19H24O3 (300.1725)


2-Methoxyestrone (or 2-ME1) belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 2-methoxyestrone is considered to be a steroid or steroid derivative. It is a by-product of estrone and 2-hydroxyestrone metabolism and has been detected in all mammals. More specifically, 2-methoxyestrone is an endogenous, naturally occurring methoxylated catechol estrogen and a metabolite of estrone that is formed by catechol O-methyltransferase via the intermediate 2-hydroxyestrone. 2-Methoxyestrone is part of the androgen and estrogen metabolic pathway. The acid ionization constant (pKa) of 2-methoxyestrone has been determined to be 10.81 (PMID: 516114). 2-Methoxyestrone can be metabolized to a sulfated derivative (2-methoxyestrone 3-sulfate) via steroid sulfotransferase (EC 2.8.2.15). It can also be glucuronidated to 2-methoxyestrone 3-glucuronide by UDP glucuronosyltransferase (EC 2.4.1.17). Unlike estrone but similarly to 2-hydroxyestrone and 2-methoxyestradiol, 2-methoxyestrone has very low affinity for the estrogen receptor and lacks significant estrogenic activity (PMID: 10865186). 2-methoxyestrone is a steroid derivative that is a byproduct of estrone and 2-hydroxyestrone metabolism. It is part of the androgen and estrogen metabolic pathway. The acid ionization constant (pKa) of 2-methoxyestrone is 10.81 (PMID: 516114). 2-Methoxyestrone can be metabolized to a sulfated derivative (2-Methoxyestrone 3-sulfate) via steroid sulfotransferase (EC 2.8.2.15). It can also be glucuronidated to 2-Methoxyestrone 3-glucuronide by UDP glucuronosyltransferase (EC 2.4.1.17). [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 2-Methoxyestrone is a methoxylated catechol estrogen and metabolite of estrone, with a pKa of 10.81.

   

3,4-Dihydroxyphenylglycol

4-(1,2-dihydroxyethyl)benzene-1,2-diol

C8H10O4 (170.0579)


3,4-Dihydroxyphenylglycol, also known as DHPG or DOPEG, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxyphenylglycol is an extremely weak basic (essentially neutral) compound. 3,4-Dihydroxyphenylglycol exists in all living organisms, ranging from bacteria to plants to humans. It is a potent antioxidant (PMID: 30007612). In mammals, 3,4-Dihydroxyphenylglycol is the primary metabolite of norepinephrine and is generated through the action of the enzyme monoamine oxidase (MAO). DHPG is then further metabolized by the enzyme Catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylglycol (MHPG). Within humans, 3,4-dihydroxyphenylglycol participates in a number of enzymatic reactions. In particular, 3,4-dihydroxyphenylglycol can be biosynthesized from 3,4-dihydroxymandelaldehyde; which is mediated by the enzyme alcohol dehydrogenase 1A. In addition, 3,4-dihydroxyphenylglycol and guaiacol can be converted into vanylglycol and pyrocatechol through its interaction with the enzyme catechol O-methyltransferase. Outside of the human body, 3,4-dihydroxyphenylglycol is found, on average, in the highest concentration in olives. High levels of DHPG (up to 368 mg/kg of dry weight) have been found in the pulp of natural black olives. This could make 3,4-dihydroxyphenylglycol a potential biomarker for the consumption of olives and olive oil. 3,4-Dihydroxyphenylglycol has been linked to Menkes disease (PMID: 19234788). DHPG level are lower in Menkes patients (3.57 ± 0.40 nM) than healthy infants 8.91 ± 0.77 nM). Menkes disease (also called “kinky hair disease”) is an X-linked recessive neurodevelopmental disorder caused by defects in a gene that encodes a copper-transporting ATPase (ATP7A). Affected infants typically appear healthy at birth and show normal neurodevelopment for 2-3 months. Subsequently there is loss of milestones (e.g., smiling, visual tracking, head control) and death in late infancy or childhood (PMID: 19234788). 3,4-Dihydroxyphenylglycol (DOPEG) is a normal norepinephrine metabolite present in CSF, plasma and urine in humans (PMID 6875564). In healthy individuals there is a tendency for free DOPEG to increase and for conjugated DOPEG to decrease with age; plasmatic DOPEG levels are significantly lower in depressed patients as compared to healthy controls (PMID 6671452). DL-1-(3,4-Dihydroxyphenyl)-1,2-ethanediol is found in olive. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

4-Guanidinobutanoic acid

4-[(diaminomethylidene)amino]butanoic acid

C5H11N3O2 (145.0851)


4-Guanidinobutanoic acid, also known as gamma-guanidinobutyrate or 4-(carbamimidamido)butanoate, belongs to the class of organic compounds known as gamma amino acids and derivatives. These are amino acids having a (-NH2) group attached to the gamma carbon atom. 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations. 4-Guanidinobutanoic acid exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, 4-Guanidinobutanoic acid has been detected, but not quantified in a few different foods, such as apples, french plantains, and loquats. This could make 4-guanidinobutanoic acid a potential biomarker for the consumption of these foods. Patients with hyperargininemia have an arginase deficiency which leads to blockade of the urea cycle in the last step with several clinical symptoms. Owing to the arginase deficiency this patients accumulate arginine which leads eventually to epileptogenic guanidino compounds (PMID 7752905). 4-guanidinobutanoic acid, also known as gamma-guanidinobutyrate or 4-(carbamimidamido)butanoate, belongs to gamma amino acids and derivatives class of compounds. Those are amino acids having a (-NH2) group attached to the gamma carbon atom. 4-guanidinobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 4-guanidinobutanoic acid can be found in apple, french plantain, and loquat, which makes 4-guanidinobutanoic acid a potential biomarker for the consumption of these food products. 4-guanidinobutanoic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as in human prostate tissue. 4-guanidinobutanoic acid exists in all eukaryotes, ranging from yeast to humans. Moreover, 4-guanidinobutanoic acid is found to be associated with cirrhosis. CONFIDENCE standard compound; ML_ID 15 KEIO_ID G032 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations. 4-Guanidinobutanoic acid is a normal metabolite present in low concentrations.

   

16a-Hydroxyestrone

(1S,10R,11S,13R,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16a-Hydroxyestrone or 16alpha-hydroxyestrone (16α-OH-E1 or 16a OHE1), or hydroxyestrone, is an endogenous steroidal estrogen and a major metabolite of estrone and estradiol. 16a-hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 16a-hydroxyestrone is considered to be a steroid molecule. 16a-hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1 respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 16a-Hydroxyestrone, on the other hand, has a significantly stronger estrogenic activity, and studies show that it may increase the risk of breast cancer. The binding of 16a-hydroxyestrone to the estrogen receptor is reported to be covalent and irreversible (PMID: 3186693). A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Acetamiprid

Pesticide4_Acetamiprid_C10H11ClN4_(1E)-N-[(6-chloropyridin-3-yl)methyl]-N-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

Biocytin

(3AS-(3aalpha,4beta,6aalpha))-N(6)-(5-(hexahydro-2-oxo-1H-thieno(3,4-D)imidazol-4-yl)-1-oxopentyl)-L-lysine

C16H28N4O4S (372.1831)


Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID: 8930409, 1384763, 2479450) [HMDB] Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID:8930409, 1384763, 2479450).

   

Glycerate

(2R)-2,3-dihydroxypropanoic acid

C3H6O4 (106.0266)


Glyceric acid is a colourless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria, an inborn error of metabolism, and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive, and metabolic acidosis. At sufficiently high levels, glyceric acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Glyceric acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated glyceric aciduria. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. Elevated values may also be due to microbial sources such as yeast (Aspergillus, Penicillium, probably Candida) or due to dietary sources containing glycerol (glycerine). Glyceric acid is isolated from various plants (e.g. brassicas, pulses, and Vicia faba). A colorless syrupy acid, obtained from oxidation of glycerol. It is a compound that is secreted excessively in the urine by patients suffering from D-glyceric aciduria and D-glycerate anemia. Deficiency of human glycerate kinase leads to D-glycerate acidemia/D-glyceric aciduria. Symptoms of the disease include progressive neurological impairment, hypotonia, seizures, failure to thrive and metabolic acidosis.; Glyceric acid is a natural three-carbon sugar acid. Salts and esters of glyceric acid are known as glycerates. Glyceric acid is found in many foods, some of which are peanut, common grape, garden tomato (variety), and french plantain. Glyceric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=473-81-4 (retrieved 2024-06-29) (CAS RN: 473-81-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cysteine S-sulfate

(2R)-2-amino-3-(sulfosulfanyl)propanoic acid

C3H7NO5S2 (200.9766)


Cysteine-S-sulfate (SSC) is produced by reaction of inorganic sulfite and cystine by a yet unknown pathway and is a very potent NMDA-receptor agonist. Electrophysiological studies have shown that SSC displays depolarizing properties similar to glutamate. Patients affected with either Molybdenum cofactor deficiency (MOCOD, an autosomal recessive disease that leads to a combined deficiency of the enzymes sulphite oxidase, an enzyme that catalyzes the conversion of sulfite to inorganic sulfate, xanthine dehydrogenase and aldehyde oxidase) or isolated sulphite oxidase deficiency (ISOD, an extremely rare autosomal recessive disorder with identical clinical manifestations to MOCOD) excrete elevated levels of SSC. This rare disorder is associated with brain damage (seizures, spastic quadriplegia, and cerebral atrophy), mental retardation, dislocated ocular lenses, blindness, and excretion in the urine of abnormally large amounts of SSC, sulfite, and thiosulfate but no inorganic sulfate (PMID: 17764028, 15558695). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C127; [MS2] KO008902 KEIO_ID C127

   

L-Histidinol

(2S)-2-amino-3-(1H-imidazol-5-yl)propan-1-ol

C6H11N3O (141.0902)


L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)

   

Salsolinol

1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline

C10H13NO2 (179.0946)


(r)-salsolinol, also known as salsolinol, (+-)-isomer or 1-methyl-6,7-dihydroxytetrahydroisoquinoline, is a member of the class of compounds known as tetrahydroisoquinolines. Tetrahydroisoquinolines are tetrahydrogenated isoquinoline derivatives (r)-salsolinol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (r)-salsolinol can be found in cocoa and cocoa products and fruits, which makes (r)-salsolinol a potential biomarker for the consumption of these food products (r)-salsolinol can be found primarily in blood, cerebrospinal fluid (CSF), and feces. Moreover, (r)-salsolinol is found to be associated with hypertension, multiple system atrophy, and parkinsons disease. Salsolinol belongs to the family of Isoquinolines. These are aromatic polycyclic compounds containing an isoquinoline moiety, which consists of a benzene ring fused to a pyridine ring and forming benzo[c]pyridine. Salsolinol is a biomarker for the consumption of bananas.

   

Dihydrobiopterin

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

C9H13N5O3 (239.1018)


Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia. Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB] 7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Nitrazepam

1, 3-Dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-one

C15H11N3O3 (281.08)


Nitrazepam is only found in individuals that have used or taken this drug. It is a benzodiazepine derivative used as an anticonvulsant and hypnotic.Nitrazepam belongs to a group of medicines called benzodiazepines. It acts on benzodiazepine receptors in the brain which are associated with the GABA receptors causing an enhanced binding of GABA (gamma amino butyric acid) to GABAA receptors. GABA is a major inhibitory neurotransmitter in the brain, involved in inducing sleepiness, muscular relaxation and control of anxiety and fits, and slows down the central nervous system. The anticonvulsant properties of nitrazepam and other benzodiazepines may be in part or entirely due to binding to voltage-dependent sodium channels rather than benzodiazepine receptors. Sustained repetitive firing seems to be limited by benzodiazepines effect of slowing recovery of sodium channels from inactivation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3683

   

4-Methylumbelliferone glucuronide

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[(4-methyl-2-oxo-2H-chromen-7-yl)oxy]oxane-2-carboxylic acid

C16H16O9 (352.0794)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

Sulfanilic acid

4-Sulfanilic acid, zinc (2:1) salt

C6H7NO3S (173.0147)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073

   

1-Methyladenine

1, 9-dihydro-1-Methyl-6H-purin-6-imine

C6H7N5 (149.0701)


1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase (EC:3.2.2.13). 1-Methyladenine is a product of alkylation damage in DNA which can be repaired by damage reversal by oxidative demethylation, a reaction requiring ferrous iron and 2-oxoglutarate as cofactor and co-substrate, respectively (PMID:15576352). 1-Methyladenine is found to be associated with adenosine deaminase (ADA) deficiency, which is an inborn error of metabolism. 1-Methyladenine is the product of reaction between 1-methyladenosine and water which is catalyzed by 1-methyladenosine nucleosidase. (EC:3.2.2.13) KEIO_ID M074

   

Deoxyinosine

9-(2-Deoxy-beta-delta-erythro-pentofuranosyl)-1,9-dihydro-6H-purin-6-one

C10H12N4O4 (252.0859)


Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

2,6-Dihydroxybenzoic acid

2,6-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-dihydroxybenzoic acid, also known as gamma-resorcylic acid or 6-hydroxysalicylic acid, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. 2,6-dihydroxybenzoic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 2,6-dihydroxybenzoic acid can be found in beer and olive, which makes 2,6-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 2,6-dihydroxybenzoic acid can be found primarily in blood and urine. 2,6-Dihydroxybenzoic acid (γ-resorcylic acid) is a dihydroxybenzoic acid. It is a very strong acid due to its intramolecular hydrogen bonding . 2,6-dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Dibutyl succinate

2,4-Dinitrofluorobenzene Sulfonic Acid

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

fleroxacin

6,8-difluoro-1-(2-fluoroethyl)-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Zoxazolamine

5-chloro-2,3-dihydro-1,3-benzoxazol-2-imine

C7H5ClN2O (168.009)


D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant C26170 - Protective Agent > C921 - Uricosuric Agent D002491 - Central Nervous System Agents

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Biperiden

1-{bicyclo[2.2.1]hept-5-en-2-yl}-1-phenyl-3-(piperidin-1-yl)propan-1-ol

C21H29NO (311.2249)


A muscarinic antagonist that has effects in both the central and peripheral nervous systems. It has been used in the treatment of arteriosclerotic, idiopathic, and postencephalitic parkinsonism. It has also been used to alleviate extrapyramidal symptoms induced by phenothiazine derivatives and reserpine. [PubChem] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Brompheniramine

3-(4-Bromophenyl)-N,N-dimethyl-3-(2-pyridinyl)-1-propanamine

C16H19BrN2 (318.0732)


Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. [HMDB] Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Taxol B

Benzenepropanoic acid, alpha-hydroxy-beta-((2-methyl-1-oxo-2-butenyl)amino)-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha(aR*,betaS*),11alpha,12alpha,12aalpha,12balpha))-

C45H53NO14 (831.3466)


Taxol B is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. Cephalomannine is a diterpene taxane obtained from the bark and leaves of the yew tree (Taxus brevifolia) and can convert to taxol. (NCI) Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog that can be isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2][3][4]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2].

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Tetracycline

(4S,4aS,5aS,6S,12aS)-4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide

C22H24N2O8 (444.1533)


Tetracycline is a broad spectrum polyketide antibiotic produced by the Streptomyces genus of Actinobacteria. It exerts a bacteriostatic effect on bacteria by binding reversible to the bacterial 30S ribosomal subunit and blocking incoming aminoacyl tRNA from binding to the ribosome acceptor site. It also binds to some extent to the bacterial 50S ribosomal subunit and may alter the cytoplasmic membrane causing intracellular components to leak from bacterial cells. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use > D06AA - Tetracycline and derivatives J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic (-)-Tetracycline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=60-54-8 (retrieved 2024-09-27) (CAS RN: 60-54-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pebulate

N-butyl-N-ethyl(propylsulfanyl)formamide

C10H21NOS (203.1344)


   

Nilutamide

5,5-Dimethyl-3-(4-nitro-3-(trifluoromethyl)phenyl)- 2,4-imidazolidinedione

C12H10F3N3O4 (317.0623)


Nilutamide is an antineoplastic hormonal agent primarily used in the treatment of prostate cancer. Nilutamide is a pure, nonsteroidal anti-androgen with affinity for androgen receptors (but not for progestogen, estrogen, or glucocorticoid receptors). Consequently, Nilutamide blocks the action of androgens of adrenal and testicular origin that stimulate the growth of normal and malignant prostatic tissue. Prostate cancer is mostly androgen-dependent and can be treated with surgical or chemical castration. To date, antiandrogen monotherapy has not consistently been shown to be equivalent to castration. CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4399; ORIGINAL_PRECURSOR_SCAN_NO 4395 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4426; ORIGINAL_PRECURSOR_SCAN_NO 4421 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4395; ORIGINAL_PRECURSOR_SCAN_NO 4393 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4406; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4403; ORIGINAL_PRECURSOR_SCAN_NO 4401 CONFIDENCE standard compound; INTERNAL_ID 279; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4490; ORIGINAL_PRECURSOR_SCAN_NO 4487 L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents

   

10-Deacetylbaccatin III

7-epi-10-Deacetylbaccatin III

C29H36O10 (544.2308)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.908 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2261 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate.

   

Clothianidin

((e)-1-(2-chloro-1,3-Thiazol-5-ylmethyl)-3-methyl-2-nitroguanidine)

C6H8ClN5O2S (249.0087)


CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals

   

pymetrozine

Pesticide4_Pymetrozine_C10H11N5O_(E)-4,5-Dihydro-6-methyl-4-[(3-pyridinylmethylene)amino]-1,2,4-triazin-3(2H)-one

C10H11N5O (217.0964)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 2947 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2674; ORIGINAL_PRECURSOR_SCAN_NO 2673 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2682; ORIGINAL_PRECURSOR_SCAN_NO 2681 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2679; ORIGINAL_PRECURSOR_SCAN_NO 2677 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2664; ORIGINAL_PRECURSOR_SCAN_NO 2662 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2667; ORIGINAL_PRECURSOR_SCAN_NO 2665

   

Propanil

N-(3,4-dichlorophenyl)propanimidic acid

C9H9Cl2NO (217.0061)


CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4459; ORIGINAL_PRECURSOR_SCAN_NO 4456 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4488 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4496; ORIGINAL_PRECURSOR_SCAN_NO 4493 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4485 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3051 CONFIDENCE standard compound; INTERNAL_ID 2331 CONFIDENCE standard compound; INTERNAL_ID 8484 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Estazolam

12-chloro-9-phenyl-2,4,5,8-tetraazatricyclo[8.4.0.0²,⁶]tetradeca-1(10),3,5,8,11,13-hexaene

C16H11ClN4 (294.0672)


Estazolam is only found in individuals that have used or taken this drug. It is a benzodiazepine with anticonvulsant, hypnotic, and muscle relaxant properties. It has been shown in some cases to be more potent than diazepam or nitrazepam. [PubChem]Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Tris(2-chloroethyl) phosphate

Phosphoric acid, tris(2-chloroethyl)ester

C6H12Cl3O4P (283.9539)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1032 CONFIDENCE standard compound; INTERNAL_ID 8252 CONFIDENCE standard compound; INTERNAL_ID 8790 CONFIDENCE standard compound; INTERNAL_ID 2463 D005411 - Flame Retardants

   

4-Nitrobenzoic acid

4-Nitrobenzoic acid, silver salt

C7H5NO4 (167.0219)


CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3571; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3551; ORIGINAL_PRECURSOR_SCAN_NO 3550 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3569; ORIGINAL_PRECURSOR_SCAN_NO 3568 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3553; ORIGINAL_PRECURSOR_SCAN_NO 3552 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3596; ORIGINAL_PRECURSOR_SCAN_NO 3594 CONFIDENCE standard compound; INTERNAL_ID 1247; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3589; ORIGINAL_PRECURSOR_SCAN_NO 3588

   

Cefaclor

(6R,7R)-7-[(2R)-2-amino-2-phenylacetamido]-3-chloro-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H14ClN3O4S (367.0394)


Cefaclor is only found in individuals that have used or taken this drug. It is a semisynthetic, broad-spectrum antibiotic derivative of cephalexin. [PubChem]Cefaclor, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that cefaclor interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3069 Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].

   

Olopatadine

2-[(2Z)-2-[3-(dimethylamino)propylidene]-9-oxatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,11,13-hexaen-5-yl]acetic acid

C21H23NO3 (337.1678)


Used to treat allergic conjunctivitis (itching eyes), olopatadine inhibits the release of histamine from mast cells. It is a relatively selective histamine H1 antagonist that inhibits the in vivo and in vitro type 1 immediate hypersensitivity reaction including inhibition of histamine induced effects on human conjunctival epithelial cells. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents

   

Morin

2-(2,4-Dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one, 9CI

C15H10O7 (302.0427)


Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

C-Quens

Chlormadinone Acetate

C23H29ClO4 (404.1754)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Agroclavine

InChI=1\C16H18N2\c1-10-6-13-12-4-3-5-14-16(12)11(8-17-14)7-15(13)18(2)9-10\h3-6,8,13,15,17H,7,9H2,1-2H

C16H18N2 (238.147)


An ergot alkaloid that is ergoline which contains a double bond between positions 8 and 9, and which is substituted by methyl groups at positions 6 and 8.

   
   

Natamycin

(1R,3S,5R,7R,8E,12R,14E,16E,18E,20E,22R,24S,25R,26S)-22-{[(3S,4S,5S,6R)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


Natamycin is only found in individuals that have used or taken this drug. It is an amphoteric macrolide antifungal antibiotic from Streptomyces natalensis or S. chattanoogensis. It is used for a variety of fungal infections, mainly topically. [PubChem]Like other polyene antibiotics, Natamycin inhibits fungal growth by binding to sterols. Specifically, Natamycin binds to ergosterol in the plasma membrane, preventing ergosterol-dependent fusion of vacuoles, as well as membrane fusion and fission. This differs from the mechanism of most other polyene antibiotics, which tend to work by altering fungal membrane permeability instead. Primarily used as a surface treatment to prevent growth of yeasts and moulds, especies on cheese. Permitted agent in USA for surface treatment of cheeses as mould-inhibitor. No reported allergic reactions and it has GRAS status G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

12,13-DiHOME

(9Z,12S,13S)-12,13-dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


12,13-DHOME (CAS: 263399-35-5), also known as 12,13-dihydroxy-9-octadecenoic acid or 12,13-DiHOME, is the epoxide hydrolase metabolite of the leukotoxin 12,13-EpOME. 12,13-EpOME acts as a protoxin, with the corresponding epoxide hydrolase 12,13-DHOME specifically exerting toxicity. Both the EpOME and the DHOME are shown to have neutrophil chemotactic activity. 12,13-DHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of the linoleic acid diol that has been reported to be toxic in human tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation (PMID: 17435320, 12021203, 12127265). 12,13-DHOME is the epoxide hydrolase metabolite of the leukotoxin12,13-EpOME. 12,13-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 12,13-DiHOME specifically exerting toxicity. Both the EpOME and the DiHOME are shown to have neutrophil chemotactic activity. 12,13-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. 12,13-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 12,13-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. (PMID: 17435320, 12021203, 12127265) [HMDB]

   

Adrenic acid

7,10,13,16-Docosatetraenoic acid (van) adrenic acid

C22H36O2 (332.2715)


Adrenic acid, also known as 7,10,13,16-docosatetraenoic acid or adrenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Adrenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Adrenic acid can be found in blood and in human myelin tissue. Within the cell, adrenic acid is primarily located in the cytoplasm, in the membrane (predicted from logP), and in the peroxisome. It can also be found in the extracellular space. In humans, adrenic acid is involved in alpha-linolenic acid and linoleic acid metabolism. Docosatetraenoic acid designates any straight chain 22:4 fatty acid. In particular, all-cis-7,10,13,16-docosatetraenoic acid is an ω-6 fatty acid with the trivial name adrenic acid (AdA). This is a naturally occurring polyunsaturated fatty acid formed through a 2-carbon chain elongation of arachidonic acid. It is one of the most abundant fatty acids in the early human brain. This unsaturated fatty acid is also metabolized by cells into biologically active products, such as dihomoprostaglandins and dihomo-epoxyeicosatrienoic acids (dihomo-EETs) (Wikipedia). Adrenic acid, which is a prostacyclin inhibitor, appears to be a potential prothrombotic agent (PMID: 1642692). Adrenic acid, which is a prostacyclin inhibitor, appears to be potential prothrombotic agent. (PMID 1642692) [HMDB]

   

Bovinic acid

9-cis,11-trans-Octadecadienoic acid solution

C18H32O2 (280.2402)


Bovinic acid is a conjugated linoleic acid, present in human adipose tissue; the amount of bovinic acid in humans is significantly related to milk fat intake. Conjugated linoleic acids (CLAs) are a group of naturally occurring fatty acids present mainly in fats from ruminants. Milk contains over 20 isomers of CLA but the predominant one is cis-9,trans-11-CLA (bovinic acid). Biomedical studies with animal models have shown that this isomer has anticarcinogenic and anti-atherogenic activities. Bovinic acid is produced as an intermediate in the rumen biohydrogenation of linoleic acid but not of linolenic acid. However, it is only a transient intermediate, and the major source of milk fat CLA is from endogenous synthesis (PMID: 10393134, 15736916).

   

Zaleplon

N-(3-(3-Cyanopyrazolo(1,5-a)pyrimidin-7-yl)phenyl)-N-ethylacetamide

C17H15N5O (305.1277)


Zaleplon is a sedative/hypnotic, mainly used for insomnia. It is known as a nonbenzodiazepine hypnotic. Zaleplon interacts with the GABA receptor complex and shares some of the pharmacological properties of the benzodiazepines. Zaleplon is a schedule IV drug in the United States. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

Cisapride

4-amino-5-chloro-N-[(3S,4R)-1-[3-(4-fluorophenoxy)propyl]-3-methoxypiperidin-4-yl]-2-methoxybenzamide

C23H29ClFN3O4 (465.1831)


In many countries (including Canada) cisapride has been either withdrawn or has had its indications limited due to reports about long QT syndrome due to cisapride, which predisposes to arrhythmias. The FDA issued a warning letter regarding this risk to health care professionals and patients. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Cisapride (R 51619) is an orally active 5-HT4 receptor agonist with an EC50 value of 140 nM. Cisapride is a hERG blocker with an IC50 value of 9.4 nM. Cisapride is a gastroprokinetic agent that stimulates gastrointestinal motor activity[1][2][3][4].

   

Fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


Fenoprofen is only found in individuals that have used or taken this drug. It is an anti-inflammatory analgesic and antipyretic highly bound to plasma proteins. It is pharmacologically similar to aspirin, but causes less gastrointestinal bleeding. [PubChem]Fenoprofens exact mode of action is unknown, but it is thought that prostaglandin synthetase inhibition is involved. Fenoprofen has been shown to inhibit prostaglandin synthetase isolated from bovine seminal vesicles. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Pemoline

2-amino-5-phenyl-4,5-dihydro-1,3-oxazol-4-one

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

Norwogonin

5,7,8-Trihydroxyflavone

C15H10O5 (270.0528)


Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]

   

Dihomo-alpha-linolenic acid

11,14,17-Eicosatrienoic acid, (Z,Z,Z)-isomer

C20H34O2 (306.2559)


Dihomolinolenic acid, also known as 11,14,17-eicosatrienoic acid or (11z,14z,17z)-eicosa-11,14,17-trienoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, dihomolinolenic acid is considered to be a fatty acid lipid molecule. Dihomolinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Dihomolinolenic acid can be found in evening primrose, which makes dihomolinolenic acid a potential biomarker for the consumption of this food product. Dihomolinolenic acid can be found primarily in blood and feces. Dihomo-alpha-linolenic acid, also known as 11,14,17-eicosatrienoic acid, is a rare polyunsaturated fatty acid of the omega-3 series. In normal humans, it represents less than 0.25\\% of serum phospholipid fatty acids. However, it is one of the most active essential fatty acids when assayed for the inhibition of fatty acid elongation/desaturation reactions which convert dietary C-18 fatty acids to C-20 eicosanoid precursors. (http://www.caymanchem.com)

   

Dihomolinoleate (20:2n6)

(11Z,14Z)-icosa-11,14-dienoic acid

C20H36O2 (308.2715)


Eicosadienoic acid is an omega-6 fatty acid found in human milk (PMID: 15256803). Omega-6 fatty acids are a family of unsaturated fatty acids which have in common a carbon-carbon double bond in the n−6 position; that is, the sixth bond from the end of the fatty acid. The biological effects of the omega−6 fatty acids are largely mediated by their conversion to n-6 eicosanoids that bind to diverse receptors found in every tissue of the body. Eicosadienoic acid has been identified in the human placenta (PMID: 32033212). Isolated from lipids of Ginkgo biloba (ginkgo) Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2]. Eicosadienoic acid is a rare, naturally occurring n-6 polyunsaturated fatty acid found mainly in animal tissues[1][2].

   

Ethylene thiourea

4,5-dihydro-1H-imidazole-2-thiol

C3H6N2S (102.0252)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 271 CONFIDENCE standard compound; INTERNAL_ID 8704

   

2-Furoic acid

furan-2-carboxylic acid

C5H4O3 (112.016)


Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Cyclohexylamine

Aminohexahydrobenzene

C6H13N (99.1048)


Cyclohexylamine is a food contaminant arising from its use as a boiler water additive Cyclohexylamine, also called hexahydroaniline, 1-aminocyclohexane, or aminohexahydrobenzene, is an organic chemical, an amine derived from cyclohexane. It is a clear to yellowish liquid with fishy odor, with melting point of 17.7 °C and boiling point 134.5 °C, miscible with water. Like other amines, it is of mildly alkaline nature, compared to strong bases such as NaOH, but it is a stronger base than its aromatic sister compound aniline, which differs only in that its ring is aromatic. It is flammable, with flash point at 28.6 °C. Explosive mixtures with air can be formed above 26 °C. It is toxic by both ingestion and inhalation; the inhalation itself may be fatal. It readily absorbs through skin, which it irritates. It is corrosive. Cyclohexylamine is listed as an extremely hazardous substance as defined by Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act Food contaminant arising from its use as a boiler water additive CONFIDENCE standard compound; INTERNAL_ID 2441 CONFIDENCE standard compound; INTERNAL_ID 8266 KEIO_ID C114

   

4-Chloro-o-phenylenediamine

4-Chloro-ortho-phenylenediamine

C6H7ClN2 (142.0298)


   

2-Aminobenzimidazole

2-Aminobenzimidazole tartrate(2:1), (L)-(+)-isomer

C7H7N3 (133.064)


CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042

   

dCDP

[({[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C9H15N3O10P2 (387.0233)


dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. [HMDB]. dCDP is found in many foods, some of which are oil palm, sweet bay, garden onion (variety), and italian sweet red pepper. dCDP is a substrate for Uridine-cytidine kinase 1, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Ribonucleoside-diphosphate reductase large subunit, Nucleoside diphosphate kinase A, Nucleoside diphosphate kinase 7, Ribonucleoside-diphosphate reductase M2 chain, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase 6 and UMP-CMP kinase. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

N-NITROSOMETHYLETHYLAMINE

N-Nitrosomethylethylamine (NMEA)

C3H8N2O (88.0637)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 3449

   

Penicillin V

(2S,5R,6R)-3,3-Dimethyl-7-oxo-6-[(phenoxyacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C16H18N2O5S (350.0936)


Penicillin V is narrow spectrum antibiotic used to treat mild to moderate infections caused by susceptible bacteria. It is a natural penicillin antibiotic that is administered orally. Penicillin V may also be used in some cases as prophylaxis against susceptible organisms. Natural penicillins are considered the drugs of choice for several infections caused by susceptible gram positive aerobic organisms, such as Streptococcus pneumoniae, groups A, B, C and G streptococci, nonenterococcal group D streptococci, viridans group streptococci, and non-penicillinase producing staphylococcus. Aminoglycosides may be added for synergy against group B streptococcus (S. agalactiae), S. viridans, and Enterococcus faecalis. The natural penicillins may also be used as first or second line agents against susceptible gram positive aerobic bacilli such as Bacillus anthracis, Corynebacterium diphtheriae, and Erysipelothrix rhusiopathiae. Natural penicillins have limited activity against gram negative organisms; however, they may be used in some cases to treat infections caused by Neisseria meningitidis and Pasteurella. They are not generally used to treat anaerobic infections. Resistance patterns, susceptibility and treatment guidelines vary across regions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Ipratropium bromide

(endo,Syn)-(+-)-3-(3-hydroxy-1-oxo-2-phenylpropoxy)-8-methyl-8-(1-methylethyl)-8-azoniabicyclo[3.2.1]octane bromide

C20H30NO3+ (332.2226)


Ipratropium bromide is only found in individuals that have used or taken this drug. It is a muscarinic antagonist structurally related to atropine but often considered safer and more effective for inhalation use. It is used for various bronchial disorders, in rhinitis, and as an antiarrhythmic. [PubChem]Ipratropium bromide is an anticholinergic agent. It blocks muscarinic cholinergic receptors, without specificity for subtypes, resulting in a decrease in the formation of cyclic guanosine monophosphate (cGMP). Most likely due to actions of cGMP on intracellular calcium, this results in decreased contractility of smooth muscle. D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

Acetylcarnitine

O-Acety-L-carnitine hydrochloride

[C9H18NO4]+ (204.1236)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A143; [MS2] KO009087 KEIO_ID A143

   

4-Chloroaniline

4-Chloroaniline, trifluoroboron salt (1:1)

C6H6ClN (127.0189)


CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3539; ORIGINAL_PRECURSOR_SCAN_NO 3535 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3530; ORIGINAL_PRECURSOR_SCAN_NO 3527 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3546; ORIGINAL_PRECURSOR_SCAN_NO 3542 CONFIDENCE standard compound; INTERNAL_ID 1361; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3544; ORIGINAL_PRECURSOR_SCAN_NO 3541 CONFIDENCE standard compound; INTERNAL_ID 4138 CONFIDENCE standard compound; INTERNAL_ID 8258 CONFIDENCE standard compound; INTERNAL_ID 8115

   

Dibenz(a,h)acridine

Dibenz(a,h)acridine

C21H13N (279.1048)


D009676 - Noxae > D002273 - Carcinogens CONFIDENCE standard compound; INTERNAL_ID 8267

   

N-Phenyl-2-naphthylamine

N-beta -Naphthyl-N-phenylamine

C16H13N (219.1048)


CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28

   

3-(3-hydroxyphenyl)propionate

dihydro-3-Coumaric acid, monosodium salt

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID: 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID: 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID: 15479001, 12663291). hMPP has been found to be a metabolite of Clostridium, Escherichia, and Eubacterium (PMID: 28393285, 19520845). 3-(3-Hydroxyphenyl)propanoic acid is a flavonoid metabolite. 3-(3-Hydroxyphenyl)propanoic acid is a phenolic acid metabolite formed by the gut microflora detected after the consumption of whole grain. 3-(3-Hydroxyphenyl)propanoic (hMPP) acid is one of the major metabolites of ingested caffeic acid (PMID 15479001) and of the phenolic degradation products of proanthocyanidins (the most abundant polyphenol present in chocolate) by the microflora in the colon (PMID 12663291). mHPP is suspected to have antioxidants properties and is actively absorbed by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers (PMID 15479001, 12663291). [HMDB] 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

3-Hydroxyaspartic acid

D-Aspartic acid,3-hydroxy-, (3S)-rel-

C4H7NO5 (149.0324)


A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086

   

Citramalate

2-Hydroxy-2-methyl-(b)-butanedioic acid

C5H8O5 (148.0372)


Citramalic acid, also known as 2-Methylmalic acid, is an analog of malic acid. The structure of citramalic acid is similar to the structure of malic acid except it has an extra CH3 group on position 2. It is also classified as a 2-hydroxydicarboxylic acid. Citramalic acid exists in two isomers, L-citramalic acid and D-citramalic acid. The L-isomer is more biologically relevant isomer. Citramalic acid is found in almost all living organisms from microbes to plants to humans although citramalate is primarily produced from bacteria. L-citramalic acid was first isolated from the peel of apples in 1954 (PMID: 13160011). It has also been isolated in wine and other ripening fruit (PMID: 13807713). Citramalic acid can inhibit the production of malic acid. Citramalic acid is also an important microbial metabolite and has been found to be a byproduct of Saccharomyces yeast species, as well as Propionibacterium acnes and Aspergillus niger (PMID: 31827810) (http://drweyrich.weyrich.com/labs/oat.html) (PMID: 7628083). Citramalic acid is a component of the C5-branched dibasic acid metabolism pathway. It can be broken down by the enzyme citramalate lyase, which converts citramalate to acetate and pyruvate. Citramalate synthase is an enzyme found in bacteria that synthesizes citramalic acid from acetyl-CoA, pyruvate and water. Citramalic acid may have a useful role in medical diagnoses. It has been found in the urine of two brothers with autistic features (PMID: 7628083). Citramalic acid can also be used as a urinary marker for gut dysbiosis (PMID: 31669633). Dysbiosis is a disorder of the bacterial flora of the human digestive tract. It is usually diagnosed clinically by direct detection of an abnormal pattern of the intestinal microbiota. Constituent of apple peel. (R)-2-Hydroxy-2-methylbutanedioic acid is found in pomes.

   

Palatinose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

3-HODE + 9-HODE

13-Hydroxy-9,11-octadecadienoic acid, (S)-(e,Z)-isomer

C18H32O3 (296.2351)


13-Hydroxyoctadecadienoic acid (13-HODE) (CAS: 18104-45-5), also known as 13(S)-hydroxy-9Z,11E-octadecadienoic acid or 13(S)-HODE, is the major lipoxygenation product synthesized in the body from linoleic acid. 13-HODE prevents cell adhesion to endothelial cells and can inhibit cancer metastasis. 13-HODE synthesis is enhanced by cyclic AMP. gamma-Linolenic acid, a desaturated metabolite of linoleic acid, causes substantial stimulation of 13-HODE synthesis. A fall in gamma-linolenic acid synthesis with age may be related to the age-related fall in 13-HODE formation (PMID: 9561154). 13-HODE is considered an intermediate in linoleic acid metabolism. It is generated from 13(S)-HPODE via the enzyme lipoxygenase (EC 1.13.11.12). 13-HODE has been shown to be involved in cell proliferation and differentiation in a number of systems. 13-HODE is found to be produced by prostate tumours and cell lines and researchers believe that there is a link between linoleic acid metabolism and the development or progression of prostate cancer (PMID: 9367845).

   

(2E)-Decenoyl-ACP

1-Amino-1-cyclopentanecarboxylic acid

C6H11NO2 (129.079)


(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050

   

Methyl sulfate

Methyl hydrogen sulphuric acid

CH4O4S (111.983)


KEIO_ID M062

   

S-Methylthioglycolate

(Methylthio)acetic acid

C3H6O2S (106.0088)


   

Phenoxyacetic acid

Glycollic acid phenyl ether

C8H8O3 (152.0473)


Phenoxyacetic acid is found in cocoa and cocoa products. Phenoxyacetic acid is a flavouring ingredient. Phenoxyacetic acid is present in cocoa bean Phenoxyacetic acid is a flavouring ingredient. It is found in cocoa and cocoa products. COVID info from PDB, Protein Data Bank KEIO_ID P129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.

   

Norspermidine

Initiating explosive iminobispropylamine (dot)

C6H17N3 (131.1422)


Norspermidine, also known as caldine or dipropylentriamin, belongs to the class of organic compounds known as dialkylamines. These are organic compounds containing a dialkylamine group, characterized by two alkyl groups bonded to the amino nitrogen. Norspermidine exists in all living organisms, ranging from bacteria to humans. Norspermidine has been detected, but not quantified, in several different foods, such as narrowleaf cattails, agaves, hickory nuts, sour cherries, and european chestnuts. Norspermidine is a polyamine of similar structure to the more common spermidine. While norspermidine has been found to occur naturally in some species of plants, bacteria, and algae, it is not known to be a natural product in humans as spermidine is. [HMDB]. Norspermidine is found in many foods, some of which are lentils, sweet bay, sea-buckthornberry, and lemon thyme. KEIO_ID B040

   

Betonicine

(2S-trans)-2-Carboxylato-4-hydroxy-1,1-dimethylpyrrolidinium

C7H13NO3 (159.0895)


Betonicine (4-hydroxy-L-prolinebetaine) and its cis isomer, turicine, are naturally occurring substituted pyrrolidines. It is not naturally produced by humans and can only be obtained through consumption of certain plant products. Betonicine was used as an analgesic 1000 years ago and is still available commercially from herbalists today. Betonicine has been isolated from Achillea millefolium L. (common yarrow) and probably from A. atrata L. (black yarrow); it is an alkaloid. Betonicine has been identified as a metabolically inert cell protectant that protects plants against extremes in osmolarity and growth temperatures. Betonicine is found in the fruit juices of yellow orange, blood orange, lemon, mandarin and bitter orange (PMID: 21838291) KEIO_ID B090

   

Butyrylcarnitine

(3R)-3-(Butyryloxy)-4-(trimethylammonio)butanoic acid

C11H21NO4 (231.1471)


Butyrylcarnitine, also known as (3R)-3-(butyryloxy)-4-(trimethylammonio)butanoate or L-carnitine butyryl ester, is classified as a member of the acylcarnitines. Acylcarnitines are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. Butyrylcarnitine is considered to be practically insoluble (in water) and acidic. Butyrylcarnitine is elevated in patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, in infants with acute acidosis and generalized muscle weakness, and in middle-aged patients with chronic myopathy localized in muscle (OMIM: 201470). Butyrylcarnitine is elevated in patients with acyl-coa dehydrogenase, short-chain (SCAD) deficiencyin; in infants with acute acidosis and generalized muscle weakness; and in middle-aged patients with chronic myopathy localized in muscle. (OMIM 201470) [HMDB] Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.0484)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Xanthylic acid

{[(2R,3S,4R,5R)-5-(2,6-dioxo-2,3,6,9-tetrahydro-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H13N4O9P (364.042)


Xanthylic acid, also known as xmp or (9-D-ribosylxanthine)-5-phosphate, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Xanthylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Xanthylic acid can be found in a number of food items such as common grape, black-eyed pea, java plum, and wild rice, which makes xanthylic acid a potential biomarker for the consumption of these food products. Xanthylic acid exists in all living species, ranging from bacteria to humans. In humans, xanthylic acid is involved in several metabolic pathways, some of which include azathioprine action pathway, glutamate metabolism, mercaptopurine action pathway, and purine metabolism. Xanthylic acid is also involved in several metabolic disorders, some of which include purine nucleoside phosphorylase deficiency, succinic semialdehyde dehydrogenase deficiency, xanthine dehydrogenase deficiency (xanthinuria), and molybdenum cofactor deficiency. Xanthosine monophosphate is an intermediate in purine metabolism. It is a ribonucleoside monophosphate. It is formed from IMP via the action of IMP dehydrogenase, and it forms GMP via the action of GMP synthaseand is) also, XMP can be released from XTP by enzyme deoxyribonucleoside triphosphate pyrophosphohydrolase containing (d)XTPase activity . Xanthylic acid is an important metabolic intermediate in the Purine Metabolism, and is a product or substrate of the enzymes Inosine monophosphate dehydrogenase (EC 1.1.1.205), Hypoxanthine phosphoribosyltransferase (EC 2.4.2.8), Xanthine phosphoribosyltransferase (EC 2.4.2.22), 5-Ribonucleotide phosphohydrolase (EC 3.1.3.5), Ap4A hydrolase (EC 3.6.1.17), Nucleoside-triphosphate diphosphatase (EC 3.6.1.19), Phosphoribosylamine-glycine ligase (EC 6.3.4.1), and glutamine amidotransferase (EC 6.3.5.2). (KEGG) Xanthylic acid can also be used in quantitative measurements of the Inosine monophosphate dehydrogenase enzyme activities in purine metabolism. This measurement is important for optimal thiopurine therapy for children with acute lymphoblastic leukaemia (ALL). (PMID: 16725387). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Malvin

Malvidin-3, 5-di-O-glucoside chloride

[C29H35O17]+ (655.1874)


Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA99_Malvin_pos_10eV.txt [Raw Data] CBA99_Malvin_pos_30eV.txt [Raw Data] CBA99_Malvin_pos_20eV.txt [Raw Data] CBA99_Malvin_pos_40eV.txt [Raw Data] CBA99_Malvin_pos_50eV.txt

   

Masoprocol

4-[(2S,3R)-3-[(3,4-dihydroxyphenyl)methyl]-2-methylbutyl]benzene-1,2-diol

C18H22O4 (302.1518)


Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.

   

Tectochrysin

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-phenyl- (9CI)

C16H12O4 (268.0736)


7-methylchrysin, also known as 5-hydroxy-7-methoxyflavone or techtochrysin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 7-methylchrysin is considered to be a flavonoid lipid molecule. 7-methylchrysin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-methylchrysin can be found in pine nut, prunus (cherry, plum), sour cherry, and sweet cherry, which makes 7-methylchrysin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.330 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0477)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

Baccatin III

Baccatin III

C31H38O11 (586.2414)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 1.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.027 Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].

   

Santin

2- (4-Methoxyphenyl) -5,7-dihydroxy-3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 3, 6 and 4 and hydroxy groups at positions 5 and 7 respectively.

   

Prenol

3-Methyl-2-butenyl alcohol

C5H10O (86.0732)


Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Altersolanol A

1,2,3,4,8-pentahydroxy-6-methoxy-3-methyl-2,4-dihydro-1H-anthracene-9,10-dione

C16H16O8 (336.0845)


CONFIDENCE isolated standard

   

penitrem A

NCGC00163403-03_C37H44ClNO6_(2R,3S,3aR,4aS,4bS,6aR,7S,7dR,8S,9aR,14bS,14cR,16aS)-12-Chloro-2-isopropenyl-14b,14c,17,17-tetramethyl-10-methylene-3,3a,6,6a,7,8,9,9a,10,11,14,14b,14c,15,16,16a-hexadecahydro-2H,4bH-7,8-(epoxymethano)cyclobuta[5,6]benzo[1,2-e]oxireno[4,4a]chromeno[5,6:6,7]indeno[1,2-b]indole-3,4b,7d(5H)-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

Roridin A

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

C29H40O9 (532.2672)


CONFIDENCE isolated standard D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

12-HHTrE

12(S)-Hydroxy-(5Z,8Z,10E)-heptadeca-5,8,10-trienoic acid anion

C17H28O3 (280.2038)


12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH. [HMDB] 12(S)-HHTrE is an unusual product of the cyclooxygenase (COX) pathway and one of the primary arachidonic acid metabolites of the human platelet.1 It is biosynthesized by thromboxane (TX) synthesis from prostaglandin H2 (PGH2) concurrently with TXA2. The biological role of 12(S)-HHTrE is uncertain. It is avidly oxidized to 12-oxoHTrE by porcine 15-hydroxy PGDH.

   

PG(16:0/18:1(9Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C40H77O10P (748.5254)


PG(16:0/18:1(9Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(16:0/18:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(16:0/18:1(9Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(16:0/18:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

beta-tocotrienol

(2R)-2,5,8-Trimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

Cytidine triphosphate

({[({[(2R,3S,4R,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H16N3O14P3 (482.9845)


Cytidine triphosphate (CTP), also known as 5-CTP, is pyrimidine nucleoside triphosphate. Formally, CTP is an ester of cytidine and triphosphoric acid. It belongs to the class of organic compounds known as pentose phosphates. These are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. CTP, much like ATP, consists of a base (cytosine), a ribose sugar, and three phosphate groups. CTP is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. CTP exists in all living species, ranging from bacteria to plants to humans and is used in the synthesis of RNA via RNA polymerase. Another enzyme known as cytidine triphosphate synthetase (CTPS) mediates the conversion of uridine triphosphate (UTP) into cytidine triphosphate (CTP) which is the rate-limiting step of de novo CTP biosynthesis. CTPS catalyzes a complex set of reactions that include the ATP-dependent transfer of the amide nitrogen from glutamine (i.e., glutaminase reaction) to the C-4 position of UTP to generate CTP. GTP stimulates the glutaminase reaction by accelerating the formation of a covalent glutaminyl enzyme intermediate. CTPS activity regulates the intracellular rates of RNA synthesis, DNA synthesis, and phospholipid synthesis. CTPS is an established target for a number of antiviral, antineoplastic, and antiparasitic drugs. CTP also acts as an inhibitor of the enzyme known as aspartate carbamoyltransferase, which is used in pyrimidine biosynthesis. CTP also reacts with nitrogen-containing alcohols to form coenzymes that participate in the formation of phospholipids. In particular, CTP is the direct precursor of the activated, phospholipid pathway intermediates CDP-diacylglycerol, CDP-choline, and CDP-ethanolamine ((PMID: 18439916). CDP-diacylglycerol is the source of the phosphatidyl moiety for phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine (synthesized by way of the CDP-diacylglycerol pathway) as well as phosphatidylglycerol, cardiolipin, and phosphatidylinositol (PMID: 18439916). Cytidine triphosphate, also known as 5-ctp or cytidine 5-triphosphoric acid, is a member of the class of compounds known as pentose phosphates. Pentose phosphates are carbohydrate derivatives containing a pentose substituted by one or more phosphate groups. Cytidine triphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Cytidine triphosphate can be found in a number of food items such as lowbush blueberry, black radish, american pokeweed, and cherry tomato, which makes cytidine triphosphate a potential biomarker for the consumption of these food products. Cytidine triphosphate can be found primarily in cellular cytoplasm, as well as throughout all human tissues. Cytidine triphosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine triphosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-14:0/i-17:0/i-16:0/i-21:0), cardiolipin biosynthesis cl(a-13:0/a-21:0/i-22:0/i-17:0), phosphatidylethanolamine biosynthesis PE(18:2(9Z,12Z)/24:0), and cardiolipin biosynthesis cl(i-13:0/a-21:0/a-15:0/i-16:0). Cytidine triphosphate is also involved in several metabolic disorders, some of which include sialuria or french type sialuria, tay-sachs disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and g(m2)-gangliosidosis: variant B, tay-sachs disease. Cytidine triphosphate is a high-energy molecule similar to ATP, but its role as an energy coupler is limited to a much smaller subset of metabolic reactions. Cytidine triphosphate is a coenzyme in metabolic reactions like the synthesis of glycerophospholipids and glycosylation of proteins . Cytidine 5′-triphosphate (Cytidine triphosphate; 5'-CTP) is a nucleoside triphosphate and serves as a building block for nucleotides and nucleic acids, lipid biosynthesis. Cytidine triphosphate synthase can catalyze the formation of cytidine 5′-triphosphate from uridine 5′-triphosphate (UTP). Cytidine 5′-triphosphate is an essential biomolecule?in the de novo?pyrimidine biosynthetic pathway in?T. gondii[1].

   

Glutaryl-CoA

5-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-5-oxopentanoic acid

C26H42N7O19P3S (881.1469)


Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).

   

alpha-Copaene

TRICYCLO(4.4.0.02,7)DEC-3-ENE, 1,3-DIMETHYL-8-(1-METHYLETHYL)-, (1R,2S,6S,7S,8S)-

C15H24 (204.1878)


alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.

   

N1-Methyl-4-pyridone-3-carboxamide

1-methyl-4-oxo-1,4-dihydropyridine-3-carboxamide

C7H8N2O2 (152.0586)


N1-Methyl-4-pyridone-3-carboxamide is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). Its concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300). N1-Methyl-4-pyridone-3-carboxamide has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N1-Methyl-4-pyridone-5-carboxamide (4PY ) is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). 4PY concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300) [HMDB]

   

Sulcatone

6-Methylheptan-5-ene-2-one

C8H14O (126.1045)


Sulcatone, also known as methylheptenone or fema 2707, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Sulcatone is a very hydrophobic methylketone, practically insoluble in water, and relatively neutral. It exists as a clear, colorless liquid. Sulcatone can be found in all eukaryotes, ranging from yeast to plants to humans. Sulcatone has a musty, apple green-bean, and pear-like taste. and a citrus-like lemongrass odor. It is a volatile oil component of citronella oil, lemon-grass oil and palmarosa oil. Sulcatone is naturally found in bay leaf, blackberry fruit, sour cherries, cloves, ginger and lavender. In insects and animals, it has a role as an alarm or attractant pheromone. In fact, sulcatone is one of a number of mosquito attractants, especially for those species such as Aedes aegypti with the odor receptor gene Or4 (PMID:25391959 ). Sulcatone is secreted by humans in their sweat and is a compound frequently found in human body odors (but in few other mammals). Sulcoatone is used as a pheromone by ferrets, european badgers, red foxes, treefrogs, bedbugs, wasps and butterflies. Sulcatone is one of several ketones found in Cannabis sativa (PMID:6991645 ). Sulcatone, also known as 6-methylhept-5-en-2-one, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, sulcatone is considered to be an oxygenated hydrocarbon lipid molecule. Sulcatone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Sulcatone is an apple, bitter, and citrus tasting compound and can be found in a number of food items such as oil palm, winter savory, european plum, and swamp cabbage, which makes sulcatone a potential biomarker for the consumption of these food products. Sulcatone can be found primarily in feces and saliva. Sulcatone exists in all eukaryotes, ranging from yeast to humans. Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Lactaldehyde

alpha-Hydroxypropionaldehyde

C3H6O2 (74.0368)


L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21). [HMDB] L-lactaldehyde is an intermediate metabolite in the pyruvate metabolism pathway. L-lactaldehyde is irreversibly produced from pyruvaldehyde via the enzyme aldehyde reductase (EC:1.1.1.21) which is then irreversibly converted to propylene glycol via aldehyde reductase (EC:1.1.1.21).

   

CDP-ethanolamine

(2-aminoethoxy)[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C11H20N4O11P2 (446.0604)


CDP-ethanolamine, also known as cytidine 5’-diphosphoethanolamine, belongs to the class of organic compounds known as CDP-ethanolamines. These are phosphoethanolamines that consist of an ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen. CDP-ethanolamine is a very strong basic compound (based on its pKa). In humans, CDP-ethanolamine is involved in phosphatidylethanolamine biosynthesis. Outside of the human body, CDP-ethanolamine has been detected, but not quantified in, several different foods, such as Chinese water chestnuts, buffalo currants, red huckleberries, eggplants, and brazil nuts. This could make CDP-ethanolamine a potential biomarker for the consumption of these foods. Cytidine is a molecule (known as a nucleoside) that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a beta-N1-glycosidic bond. [HMDB]. CDP-Ethanolamine is found in many foods, some of which are allspice, hedge mustard, wasabi, and green vegetables.

   

Tosyllysine Chloromethyl Ketone

N-(7-amino-1-chloro-2-oxoheptan-3-yl)-4-methylbenzenesulfonamide

C14H21ClN2O3S (332.0961)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

3-Mercaptopyruvic acid

beta-3-Mercapto-2-oxo-propanoic acid

C3H4O3S (119.9881)


3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .

   

Phosphoglycolic acid

Glycolic acid dihydrogen phosphate

C2H5O6P (155.9824)


Phosphoglycolic acid, also known as 2-phosphoglycolate or (phosphonooxy)-acetate, is a member of the class of compounds known as monoalkyl phosphates. Monoalkyl phosphates are organic compounds containing a phosphate group that is linked to exactly one alkyl chain. Phosphoglycolic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoglycolic acid can be found in a number of food items such as arrowhead, rocket salad (sspecies), roselle, and natal plum, which makes phosphoglycolic acid a potential biomarker for the consumption of these food products. Phosphoglycolic acid can be found primarily throughout most human tissues. Phosphoglycolic acid exists in all living species, ranging from bacteria to humans. Phosphoglycolic acid is a substrate for triose-phosphate isomerase. This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group.

   

neamine

5-amino-2-(aminomethyl)-6-(4,6-diamino-2,3-dihydroxycyclohexyl)oxyoxane-3,4-diol

C12H26N4O6 (322.1852)


C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Hydrogen selenide

Hydrogen selenide, 75Se-labeled

H2Se (81.9322)


Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).

   

Coformycin

Coformycin

C11H16N4O5 (284.1121)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

L-Dopachrome

(2S)-2,3,5,6-Tetrahydro-5,6-dioxo-1H-indole-2-carboxylic acid

C9H7NO4 (193.0375)


Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]

   

Chlordecone

1,3,4-Metheno-2H-cyclobuta[cd]pentalen-2-one,1,1a,3,3a,4,5,5,5a,5b,6-decachlorooctahydro-

C10Cl10O (485.6834)


Chlordecone is part of the Primary bile acid biosynthesis, and Steroid hormone biosynthesis pathways. It is a substrate for: Aldo-keto reductase family 1 member C4. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Ethanethioic acid

Thioacetic acid, potassium salt

C2H4OS (75.9983)


Ethanethioic acid is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

iodophenol

2-IODOPHENOL

C6H5IO (219.9385)


   

Xanthommatin

Xanthommatin

C20H13N3O8 (423.0703)


An ommochrome that consists of a pyrido[3,2-a]phenoxazine ring system bearing hydroxy, carboxy, oxo and 3-amino-3-carboxypropanoyl substituents at positions 1, 3, 5 and 11 respectively. The parent of the class of xanthommatins.

   

3-Oxalomalic acid

3-carboxy-3-deoxy-2-pentulosaric acid, trisodium salt

C6H6O8 (206.0063)


   

Phytanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S,7R,11R)-3,7,11,15-tetramethylhexadecanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H74N7O17P3S (1061.4075)


Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698). [HMDB] Phytanoyl CoA is a coenzyme A derivative of phytanic acid. Phytanic acid is present in human diet or in animal tissues where it may be derived from chlorophyll in plant extracts. Specifically it is an epimeric metabolite of the isoprenoid side chain of chlorophyll. Owing to the presence of its epimeric beta-methyl group, phytanic acid cannot be metabolized by beta-oxidation. Instead, it is metabolized in peroxisomes via alpha-oxidation to give pristanic acid, which is then oxidized by beta-oxidation. PhyH (phytanoyl-CoA 2-hydroxylase) catalyses hydroxylation of phytanoyl-CoA. Mutations of PhyH can lead to phytanic acid accumulation. High levels of phytanic acid are found in patients suffering from Refsums syndrome. This inherited neurological disorder is characterized by an accumulation of phytanic acid in blood and tissues. Clinically it is characterized by adult onset retinitis pigmentosa, anosmia, sensory neuropathy, and phytanic acidaemia. This disorder has been found to be related to deficiency in the α-oxidation pathway in the liver. (PMID: 17956235). Phytanoyl CoA and other branched-chain fatty acid CoA products are potent inducers of the peroxisome proliferator-activated receptor PPARalpha, a nuclear receptor that enhances transcription of peroxisomal enzymes mediating beta-oxidation of these potentially toxic fatty acids (PMID: 16768463). Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase are strongly inhibited by phytanoyl-CoA. Decreased activity of these important mitochondrial metabolism complexes might therefore contribute to neurological symptoms upon accumulation of phytanic acid in Refsum disease (PMID: 16737698).

   

Arachidonyl-CoA

{[(2R,3R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-3-{[2-({2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoylsulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C41H66N7O17P3S (1053.3449)


Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).

   

2-Cyclohexen-1-one

2-Cyclohexen-1-one, 18O-labeled

C6H8O (96.0575)


Flavouring compound [Flavornet]

   

N-D-Ribosylpyrimidine

Pyrimidine nucleoside; N-D-Ribosylpyrimidine

C9H13N2O4+ (213.0875)


   

Phosphohydroxypyruvic acid

2-oxo-3-(Phosphonooxy)-propanoic acid

C3H5O7P (183.9773)


Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). This compound belongs to the family of Organophosphate Esters. These are organic compounds containing phosphoric acid ester functional group. Phosphohydroxypyruvic acid is a prduct of both enzyme phosphoglycerate dehydrogenase [EC 1.1.1.95] and phosphoserine transaminase [EC 2.6.1.52] in glycine, serine and threonine metabolism pathway (KEGG). [HMDB]

   

NSC627046

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

Tetrachlorohydroquinone

2,3,5,6-Tetrachloro-1,4-benzenediol

C6H2Cl4O2 (245.8809)


   

Adenosine tetraphosphate

{[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}phosphonic acid

C10H17N5O16P4 (586.9621)


Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4). [HMDB] Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4).

   

2-Chloro-1,4-naphthoquinone

2-Chloro-1,4-naphthoquinone

C10H5ClO2 (191.9978)


   

5alpha-Cholest-8-en-3beta-ol

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H46O (386.3548)


5a-Cholest-8-en-3b-ol is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decrease and cholesterol precursor sterols such as zymostenol increase. (PMID: 15736111, 16709621, 16477216, 12756385) [HMDB]. 5a-Cholest-8-en-3b-ol is found in many foods, some of which are chinese water chestnut, garden tomato, calabash, and cassava. 5alpha-Cholest-8-en-3beta-ol, also known as zymostenol, is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in the serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decreased and cholesterol precursor sterols such as zymostenol increased (PMID: 15736111, 16709621, 16477216, 12756385).

   

3,4-Dihydroxyphenylacetaldehyde

Dopal (3,4-Dihydroxyphenyl)acetaldehyde)

C8H8O3 (152.0473)


3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664 [HMDB]. 3,4-Dihydroxyphenylacetaldehyde is found in many foods, some of which are asian pear, pak choy, papaya, and abiyuch. 3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a metabolite of the monoamine oxidase-catalyzed oxidative deamination of dopamine. Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. DOPAL generates a free radical and activates mitochondrial permeability transition, a mechanism implicated in neuron death. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of this biogenic aldehyde. It is possible to speculate that reduced detoxification of 3,4- dihydroxymandelaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases. Several pharmaceutical agents and environmental toxins (i.e.: 4-hydroxy-2-nonenal) are also known to disrupt or inhibit aldehyde dehydrogenase function. (PMID: 17379813, 14697885, 11164826, 16956664. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

1,2,6-Trigalloyl-beta-D-glucopyranose

4,5-dihydroxy-2-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


Isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). 1,2,6-Trigalloyl-beta-D-glucopyranose is found in many foods, some of which are fruits, pomegranate, garden rhubarb, and red raspberry. 1,2,6-Trigalloyl-beta-D-glucopyranose is found in fruits. 1,2,6-Trigalloyl-beta-D-glucopyranose is isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry).

   

D-myo-Inositol 1,3,4,6-tetrakisphosphate

{[(1R,2s,3S,4S,5r,6R)-2,5-dihydroxy-3,4,6-tris(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H16O18P4 (499.9287)


D-myo-Inositol 1,3,4,6-tetrakisphosphate, also known as Ins(1,3,4,6)P4, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,3,4,6-tetrakisphosphate is an extremely strong acidic compound (based on its pKa). D-myo-Inositol 1,3,4,6-tetrakisphosphate participates in a number of enzymatic reactions. In particular, D-myo-inositol 1,3,4,6-tetrakisphosphate can be converted into D-myo-inositol 1,3,4,5,6-pentakisphosphate through the action of the enzyme inositol polyphosphate multikinase. In addition, D-myo-inositol 1,3,4,6-tetrakisphosphate can be biosynthesized from inositol 1,3,4-trisphosphate; which is mediated by the enzyme inositol-tetrakisphosphate 1-kinase. In humans, D-myo-inositol 1,3,4,6-tetrakisphosphate is involved in inositol phosphate metabolism and is a substrate for the tyrosine-protein kinase BTK. 1D-Myo-inositol 1,3,4,6-tetrakisphosphate is a substrate for Tyrosine-protein kinase BTK and Inositol polyphosphate multikinase. [HMDB]

   

D-myo-Inositol 3,4,5,6-tetrakisphosphate

{[(1R,2S,3R,4S,5S,6R)-3,4-dihydroxy-2,5,6-tris(phosphonooxy)cyclohexyl]oxy}phosphonic acid

C6H16O18P4 (499.9287)


Inositol phosphates are a family of water-soluble intracellular signalling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-myo-Inositol 3,4,5,6-tetrakisphosphate, also known as Ins(3,4,5,6)P4, has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenges with Ca2+-dependent agonists (PMID: 12388102, 11408264). Inositol phosphates are a family of water-soluble intracellular signaling molecules derived from membrane inositol phospholipids. They undergo a variety of complex interconversion pathways, and their levels are dynamically regulated within the cytosol in response to a variety of agonists. D-Myo-inositol (3,4,5,6) tetrakisphosphate (Ins(3,4,5,6)P4) has a direct biphasic (activation/inhibition) effect on an epithelial Ca2+-activated chloride channel. The effect of Ins(3,4,5,6)P4 is not mimicked by other inositol tetrakisphosphate isomers, is dependent on the prevailing calcium concentration, and is influenced when channels are phosphorylated by calmodulin kinase II. The predominant effect of Ins(3,4,5,6)P4 on phosphorylated channels is inhibitory at levels of intracellular calcium observed in stimulated cells. Ins(3,4,5,6)P4 activity acts to inhibit calcium-dependent chloride secretion. The secretion of fluid and electrolytes across intestinal epithelial cells in response to Ca2+-dependent secretagogues is a tightly regulated process that is subject to both positive and negative influences. Agonists of Gq protein-coupled receptor (GqPCRs) appear to have the ability to evoke antisecretory mechanisms. One is mediated by the generation of Ins(3,4,5,6)P4 and serves to chronically downregulate epithelial responsiveness to subsequent challenge with Ca2+-dependent agonists. (PMID: 12388102, 11408264) [HMDB]

   

Diazene

Diimide

H2N2 (30.0218)


   

Cholesterol beta-epoxide

(3-beta,5-beta,6-beta)-5,6-Epoxycholestan-3-ol

C27H46O2 (402.3498)


   

11-Dehydrocorticosterone

(1S,2R,10S,11S,15S)-14-(2-hydroxyacetyl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-ene-5,17-dione

C21H28O4 (344.1987)


11-Dehydrocorticosterone is a mineral corticosteroid. The conversion of inactive 11-ketoglucocorticoids such as 11-dehydrocorticosterone) into active 11b-hydroxyglucocorticoids (such as corticosterone) is catalyzed by 11beta-hydroxysteroid dehydrogenase (11b-HSD1, EC 1.1.1.146), which is expressed in many tissues and plays an important role in metabolically relevant tissues such as the liver, adipose tissue, skeletal muscles and possibly kidney. Chronically elevated local glucocorticoid action as a result of increased 11beta-HSD1 activity rather than elevated systemic glucocorticoid levels has been associated with metabolic syndrome, which is characterized by obesity, insulin resistance, type 2 diabetes and cardiovascular complications. Recent studies indicate that compounds inhibiting 11beta-HSD1 activity ameliorate the adverse effects of excessive glucocorticoid concentrations on metabolic processes, providing promising opportunities for the development of therapeutic interventions. 11-dehydrocorticosterone and corticosterone display antinatriuretic activity, although 11-dehydrocorticosterone is generally a more potent sodium retainer than corticosterone. (PMID: 17584152, Endocr Metab Immune Disord Drug Targets. 2007 Jun;7(2):125-40.) [HMDB] 11-Dehydrocorticosterone is a mineral corticosteroid. The conversion of inactive 11-ketoglucocorticoids such as 11-dehydrocorticosterone) into active 11b-hydroxyglucocorticoids (such as corticosterone) is catalyzed by 11beta-hydroxysteroid dehydrogenase (11b-HSD1, EC 1.1.1.146), which is expressed in many tissues and plays an important role in metabolically relevant tissues such as the liver, adipose tissue, skeletal muscles and possibly kidney. Chronically elevated local glucocorticoid action as a result of increased 11beta-HSD1 activity rather than elevated systemic glucocorticoid levels has been associated with metabolic syndrome, which is characterized by obesity, insulin resistance, type 2 diabetes and cardiovascular complications. Recent studies indicate that compounds inhibiting 11beta-HSD1 activity ameliorate the adverse effects of excessive glucocorticoid concentrations on metabolic processes, providing promising opportunities for the development of therapeutic interventions. 11-dehydrocorticosterone and corticosterone display antinatriuretic activity, although 11-dehydrocorticosterone is generally a more potent sodium retainer than corticosterone. (PMID: 17584152, Endocr Metab Immune Disord Drug Targets. 2007 Jun;7(2):125-40.).

   

Dihydropteridine

6,7-dihydropteridine

C6H6N4 (134.0592)


Dihydropteridine is a generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166). A generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166) [HMDB]

   

3-Aminopropionaldehyde

beta-Aminopropion aldehyde

C3H7NO (73.0528)


3-aminopropionaldehyde is a member of the class of compounds known as alpha-hydrogen aldehydes. Alpha-hydrogen aldehydes are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. 3-aminopropionaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-aminopropionaldehyde can be found in a number of food items such as lemon, natal plum, common wheat, and leek, which makes 3-aminopropionaldehyde a potential biomarker for the consumption of these food products. 3-aminopropionaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, 3-aminopropionaldehyde is involved in the beta-alanine metabolism. 3-aminopropionaldehyde is also involved in few metabolic disorders, which include carnosinuria, carnosinemia, gaba-transaminase deficiency, and ureidopropionase deficiency. 3-Aminopropanal is a reactive aldehyde that mediates progressive neuronal necrosis and glial apoptosis. (PMID 11943872). Increased activity of polyamine oxidase catabolizes polyamines (such as spermine, spermidine and putrescine) to produce 3-aminopropanal. (PMID 15246852).

   

Nudifloramide

1-methyl-6-oxo-1,6-dihydropyridine-3-carboxamide

C7H8N2O2 (152.0586)


N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300). 2PY has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300) [HMDB] Nudifloramide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Nudifloramide significantly inhibits poly(ADP-ribose) polymerase (PARP-1) activity in vitro[1].

   

20-Carboxy-leukotriene B4

(5S,6Z,8E,10E,12R,14Z)-5,12-Dihydroxyicosa-6,8,10,14-tetraenedioic acid

C20H30O6 (366.2042)


20-Carboxyleukotriene B4 is an omega-oxidized metabolite of leukotriene B4 (LTB4). Neutrophil microsomes are known to oxidize 20-hydroxy-LTB4 (20-OH-LTB4) to its 20-oxo and 20-carboxy derivatives in the presence of NADPH. This activity has been ascribed to LTB4 omega-hydroxylase (cytochrome P-450LTB omega). Leukotriene B4 release from polymorphonuclear granulocytes of severely burned patients was reduced as compared to healthy donor cells. This decrease is due to an enhanced conversion of LTB4 into the 20-hydroxy- and 20-carboxy-metabolites and further to a decreased LTB4-synthesis. LTB4 is the major metabolite in neutrophil polymorphonuclear leukocytes. Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Biologically active LTB4 is metabolized by w-oxidation carried out by specific cytochrome P450s (CYP4F) followed by beta-oxidation from the w-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/ 15-oxo-prostaglandin-13-reductase that form a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a gamma-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before w-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease. (PMID 17623009, 7633595, 2155225, 3039534)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

Deoxyloganin

Deoxyloganin

C17H26O9 (374.1577)


   

ent-8(14),15-Pimaradiene

7-ethenyl-1,1,4a,7-tetramethyl-1,2,3,4,4a,4b,5,6,7,9,10,10a-dodecahydrophenanthrene

C20H32 (272.2504)


ent-8(14),15-Pimaradiene is found in fruits. ent-8(14),15-Pimaradiene is a constituent of Aralia racemosa (American spikenard). Constituent of Aralia racemosa (American spikenard). ent-8(14),15-Pimaradiene is found in fruits.

   

Metanilic acid

3-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


   

7-a,27-Dihydroxycholesterol

(1S,2R,5S,9S,10S,11S,14R,15R)-14-[(2R)-7-hydroxy-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-ene-5,9-diol

C27H46O3 (418.3447)


7-a,27-dihydroxycholesterol is an intermediate in bile acid biosynthesis. The enzyme 27-Hydroxycholesterol 7alpha-monooxygenase [EC:1.14.13.60] catalyzes the production of this metabolite from 27-hydroxycholesterol. This enzyme reaction is irreversible and occurs in the endoplasmic reticulum. [HMDB] 7-a,27-dihydroxycholesterol is an intermediate in bile acid biosynthesis. The enzyme 27-Hydroxycholesterol 7alpha-monooxygenase [EC:1.14.13.60] catalyzes the production of this metabolite from 27-hydroxycholesterol. This enzyme reaction is irreversible and occurs in the endoplasmic reticulum.

   

4-Chlorobiphenyl

1-Chloro-4-phenyl benzene

C12H9Cl (188.0393)


   

P-Dichlorobenzene

1,4-Dichlorobenzene (acd/name 4.0)

C6H4Cl2 (145.969)


1,4-Dichlorobenzene (p-DCB, para-dichlorobenzene) is an organic compound with the formula C6H4Cl2. This colorless solid has a strong odor. In terms of its structure, the molecule consists of two chlorine atoms substituted for hydrogen at opposing sites on a benzene ring. p-DCB is used a pesticide and a deodorant, most familiarly in mothballs in which it is a replacement for the more traditional naphthalene. p-DCB is also used as a precursor in the production of the polymer poly(p-phenylene sulfide). D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

Megestrol

(8R,9S,10R,13S,14S,17R)-17-acetyl-17-hydroxy-6,10,13-trimethyl-2,8,9,11,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthren-3-one

C22H30O3 (342.2195)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03A - Hormonal contraceptives for systemic use > G03AC - Progestogens G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03D - Progestogens > G03DB - Pregnadien derivatives L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AB - Progestogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000970 - Antineoplastic Agents

   

3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone

3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone

C11H14O4 (210.0892)


3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone is found in alcoholic beverages. 3-Methyl-1-(2,4,6-trihydroxyphenyl)-1-butanone is a constituent of Humulus lupulus (hops). Constituent of Humulus lupulus (hops). Phlorisovalerophenone is found in many foods, some of which are bitter gourd, breadfruit, devilfish, and pepper (c. chinense).

   

Proparacaine

Benzoic acid, 3-amino-4-propoxy-, 2-(diethylamino)ethyl ester, monohydrochloride*benzoic acid, 3-amino-4-propoxy-, 2-(diethylamino)ethyl ester, monohydrochloride

C16H26N2O3 (294.1943)


Proparacaine is only found in individuals that have used or taken this drug. It is a topical anesthetic drug of the amino ester group. It is available as its hydrochloride salt in ophthalmic solutions at a concentration of 0.5\\%. [Wikipedia]The exact mechanism whereby proparacaine and other local anesthetics influence the permeability of the cell membrane is unknown; however, several studies indicate that local anesthetics may limit sodium ion permeability through the lipid layer of the nerve cell membrane. Proparacaine may alter epithelial sodium channels through interaction with channel protein residues. This limitation prevents the fundamental change necessary for the generation of the action potential. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

Acetylisoniazid

N-(pyridine-4-carbonyl)ethanehydrazonic acid

C8H9N3O2 (179.0695)


Acetylisoniazid belongs to the family of Pyridinecarboxamides. These are compounds containing a pyridine ring bearing a carboxamide.

   

4-Hydroxycyclophosphamide

Tetrahydro-2-(bis(2-chloroethyl)amino)-2H-1,3,2-oxazaphosphorin-4-ol 2-oxide

C7H15Cl2N2O3P (276.0197)


4-Hydroxycyclophosphamide is a primary activation metabolite of cyclophosphamide and of mafosfamide (an experimental drug) after they partially metabolized by cytochrome P450 (PMID: 12021633). Cyclophosphamide is a chemotherapeutic used to suppress the immune system and to treat several cancers including lymphoma, multiple myeloma, leukemia, ovarian cancer, breast cancer and small cell lung cancer. After cyclphosphamide is converted to 4-hydroxycyclophosphamide it is then partially tautomerized into aldophosphamide, which easily enters live cells whereupon it is partially detoxified into inactive carboxycyclophosphamide by the enzyme ALDH. 4-Hydroxycyclophosphamide is also an intermediate metabolite in the formation of phosphoramide mustard, the active metabolite, and acrolein, the metabolite responsible for much of the toxicity associated with cyclophosphamides (PMID: 7059981). 4-Hydroxycyclophosphamide is not cytotoxic at physiologic pH, readily diffuses into cells and spontaneously decomposes into the active phosphoramide mustard. In human liver microsomes, 4-Hydroxycyclophosphamide formation correlates with known phenotypic markers of CYP2B6 activity, specifically formation of (S)-2-ethyl-1,5-dimethyl-3,3-diphenyl pyrrolidine and hydroxybupropion. In addition, it is reported that the CYP2B6 genotype is not consistently related to 4-Hydroxycyclophosphamide formation in vitro or in vivo (PMID: 21976622). 4-Hydroxycyclophosphamide is only found in individuals who have consumed the drug cyclophosphamide. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

Isosorbide Mononitrate

(3R,3aS,6S,6aR)-6-hydroxy-hexahydrofuro[3,2-b]furan-3-yl nitrate

C6H9NO6 (191.043)


Isosorbide mononitrate (ISMN), sold under the names Imdur and Monoket, among others, is an organic nitrate used principally in the prophylactic treatment of angina pectoris (ischemic chest pain). ISMN is an active metabolite of isosorbide dinitrate and exerts qualitatively similar effects. Like other organic nitrates, ISMN acts as a prodrug for its active metabolite, nitric oxide, which mediates the therapeutic action of ISMN. Nitric oxide works on both arteries and veins, but predominantly veins. Nitric oxide functions by relaxing veins and reducing the central venous pressure, thereby causing venous pooling and a decrease in the venous return to the heart, thus decreasing cardiac preload (PMID: 31643263). The net effect when administering ISMN is therefore a reduced workload for the heart and an improvement in the oxygen supply/demand balance of the myocardium. ISMN is not subject to first pass metabolism in the human liver. Detectable metabolites include isosorbide, sorbitol, and 2-glucuronide of mononitrate, which are pharmacologically inactive (PMID: 1449102). Research on ISMN as a cervical ripener to reduce time at hospital to birth is supportive (PMID: 23983763). Isosorbide mononitrate is only found in individuals who have consumed or used this drug. C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

magnesium hydroxide

magnesium hydroxide

H2MgO2 (57.9905)


C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids

   

Bacampicillin

1-[(Ethoxycarbonyl)oxy]ethyl (2S,5R,6R)-6-{[(2R)-2-amino-2-phenylacetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H27N3O7S (465.157)


Bacampicillin is a prodrug of ampicillin and is microbiologically inactive. It is absorbed following oral administration. During absorption from the gastrointestinal tract, bacampicillin is hydrolyzed by esterases present in the intestinal wall. It is microbiologically active as ampicillin, and exerts a bactericidal action through the inhibition of the biosynthesis of cell wall mucopeptides. It is used to cure infection of upper and lower respiratory tract; skin and soft tissue; urinary tract and acute uncomplicated gonococcal urethritis etc. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Methylprednisolone acetate

6α-METHYLPREDNISOLONE ACETATE

C24H32O6 (416.2199)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents

   

tingenone

(6aR,6bR,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-quinone

C28H36O3 (420.2664)


D000970 - Antineoplastic Agents

   

Perforatin A

5-O-Methylalloptaeroxylin

C16H16O4 (272.1049)


   

Candletoxin A

Candletoxin A

C35H44O9 (608.2985)


   

Multistatin

Multistatin

C20H22O6 (358.1416)


   

Xanthinin

[1-[(3aR,7S,8aS)-7-methyl-3-methylidene-2-oxo-4,7,8,8a-tetrahydro-3aH-cyclohepta[b]furan-6-yl]-3-oxobutyl] acetate

C17H22O5 (306.1467)


   

Davidigenin

1- (2,4-Dihydroxyphenyl) -3- (4-hydroxyphenyl) -1-propanone

C15H14O4 (258.0892)


A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, and 4 respectively.

   

Juvenile hormone III

methyl (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoate

C16H26O3 (266.1882)


Juvenile hormone III is a member of the juvenile hormone family of compounds that is the methyl ester of (2E,6E)-9-[(2R)-3,3-dimethyloxiran-2-yl]-3,7-dimethylnona-2,6-dienoic acid. Juvenile hormone III is found in most insect species. It is an epoxide, an enoate ester, a fatty acid methyl ester and a juvenile hormone.

   

Thujopsene

(-)-thujopsene

C15H24 (204.1878)


A thujopsene that has (S,S,S)-configuration.

   

(±)-Menthyl acetate

(1S,2R,5S)-5-Methyl-2-(propan-2-yl)cyclohexyl acetic acid

C12H22O2 (198.162)


(±)-menthyl acetate, also known as dl-P-menth-3-yl acetate, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes (±)-menthyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (±)-menthyl acetate can be found in cornmint, which makes (±)-menthyl acetate a potential biomarker for the consumption of this food product. (±)-Menthyl acetate is found in cornmint. (±)-Menthyl acetate is a component of peppermint oil. ?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1]. ?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1].

   

Gentiacaulein

2,8-dihydroxy-1,6-dimethoxy-9H-xanthen-9-one

C15H12O6 (288.0634)


   

1,3,5-Trihydroxyxanthone

1,3,5-Trihydroxyxanthone

C13H8O5 (244.0372)


A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 3 and 5. It has been isolated from Anaxagorea luzonensis.

   

Patuletin

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one, 9ci

C16H12O8 (332.0532)


Pigment from flowers of French marigold Tagetes patula. Patuletin is found in german camomile, herbs and spices, and spinach. Patuletin is found in german camomile. Patuletin is a pigment from flowers of French marigold Tagetes patul D004791 - Enzyme Inhibitors

   

Cajanin

4H-1-Benzopyran-4-one, 3-(2,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-

C16H12O6 (300.0634)


Cajanin is a member of 7-methoxyisoflavones. It has a role as a metabolite. Cajanin is a natural product found in Crotalaria lachnophora, Dalbergia parviflora, and other organisms with data available. Isolated from Cajanus cajan (pigeon pea), Canavalia ensiformis (jack bean). Cajanin is found in pigeon pea, coffee and coffee products, and pulses. Cajanin is found in coffee and coffee products. Cajanin is isolated from Cajanus cajan (pigeon pea), Canavalia ensiformis (jack bean A natural product found in Crotalaria lachnophora.

   

Cajanol

5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one

C17H16O6 (316.0947)


Isolated from fungus-infected stems of Cajanus cajan (pigeon pea). Cajanol is found in pigeon pea and pulses. Cajanol is found in pigeon pea. Cajanol is isolated from fungus-infected stems of Cajanus cajan (pigeon pea

   

(E)-Arachidin II

5-[(Z)-2-(4-hydroxyphenyl)ethenyl]-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol

C19H20O3 (296.1412)


(Z)-Arachidin II is found in nuts. (Z)-Arachidin II is a constituent of peanuts (Arachis hypogaea). Constituent of peanuts (Arachis hypogaea). (E)-Arachidin II is found in peanut and nuts.

   

Physcion 8-glucoside

1-Hydroxy-3-methoxy-6-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1213)


Physcion 8-glucoside is an anthraquinone. Physcion 8-glucoside is a natural product found in Rheum palmatum, Rheum australe, and Senna obtusifolia with data available.

   

Candicine

[2-(4-hydroxyphenyl)ethyl]trimethylazanium

C11H18NO+ (180.1388)


Candicine is a member of the class of compounds known as phenethylamines. Phenethylamines are compounds containing a phenethylamine moiety, which consists of a phenyl group substituted at the second position by an ethan-1-amine. Candicine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Candicine can be found in barley, which makes candicine a potential biomarker for the consumption of this food product. Candicine is a naturally occurring organic compound that is a quaternary ammonium salt with a phenethylamine skeleton. It is the N,N,N-trimethyl derivative of the well-known biogenic amine tyramine, and, being a natural product with a positively charged nitrogen atom in its molecular structure, it is classed as an alkaloid. Although it is found in a variety of plants, including barley, its properties have not been extensively studied with modern techniques. Candicine is toxic after parenteral administration, producing symptoms of neuromuscular blockade; further details are given in the "Pharmacology" section below . Candicine is a member of the class of compounds known as phenethylamines. Phenethylamines are compounds containing a phenethylamine moiety, which consists of a phenyl group substituted at the second position by an ethan-1-amine. Candicine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Candicine can be found in barley, which makes candicine a potential biomarker for the consumption of this food product. Candicine is a naturally occurring organic compound that is a quaternary ammonium salt with a phenethylamine skeleton. It is the N,N,N-trimethyl derivative of the well-known biogenic amine tyramine, and, being a natural product with a positively charged nitrogen atom in its molecular structure, it is classed as an alkaloid. Although it is found in a variety of plants, including barley, its properties have not been extensively studied with modern techniques. Candicine is toxic after parenteral administration, producing symptoms of neuromuscular blockade; further details are given in the "Pharmacology" section below.

   

Celabenzine

Celabenzine

C23H29N3O2 (379.226)


A cyclic spermidine alkaloid that is 2-phenyl-1,5,9-triazacyclotridecan-4-one in which the amino hydrogen at position 9 has been replaced by a benzoyl group.

   

Caulophylline

(-)-N-methylcytisine

C12H16N2O (204.1263)


N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2]. N-Methylcytisine (Caulophylline), a tricyclic quinolizidine alkaloid, exerts hypoglycaemic, analgesic and anti-inflammatory activities. N-methylcytisine is a selective ligand of nicotinic receptors of acetylcholine in the central nervous system and has a high affinity (Kd = 50 nM) to nicotinic acetylcholine receptors (nAChR) from squid optical ganglia[1][2].

   

Solamargine

(2S,3R,4R,5R,6S)-2-[(2R,3S,4S,5R,6R)-4-hydroxy-2-(hydroxymethyl)-6-[(1S,2S,4S,5R,6R,7S,8R,9S,12S,13R,16S)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-ene-6,2-piperidine]-16-yl]oxy-5-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C45H73NO15 (867.498)


Solamargine is an azaspiro compound, a steroid and an oxaspiro compound. Solamargine has been used in trials studying the treatment of Actinic Keratosis. Solamargine is a natural product found in Solanum pittosporifolium, Solanum americanum, and other organisms with data available. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2]. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2].

   

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-

C10H15NO (165.1154)


   

Isofenphos

2-[[Ethoxy[(1-methylethyl)amino]phosphinothioyl]oxy]benzoic acid 1-methylethyl ester

C15H24NO4PS (345.1164)


Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N-Methylformamide

N-Monomethylformamide

C2H5NO (59.0371)


N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959) [HMDB] N-Methylformamide (NMF) is one of the two major urinary biomarkers of exposure to N,N-Dimethylformamide (DMF), a compound widely used in industries because of its extensive miscibility with water and solvents. Metabolism of NMF results in the formation of N-methylcarbamoyl adducts at the N-terminal valine and lysine in blood protein globin. (PMID: 17254560, 17254560, 16289959). C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole

5-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazole

C17H12F4N2O2S (384.0556)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

Lucanthone

1-{[2-(diethylamino)ethyl]amino}-4-methyl-9H-thioxanthen-9-one

C20H24N2OS (340.1609)


Lucanthone is only found in individuals that have used or taken this drug. It is one of the schistosomicides, it has been replaced largely by hycanthone and more recently praziquantel. (From Martindale The Extrapharmacopoeia, 30th ed., p46). It is currently being tested as a radiation sensitizer.Recent data suggests that lucanthone inhibits post-radiation DNA repair in tumor cells. The ability of lucanthone to inhibit AP endonuclease and topoisomerase II probably account for the specific DNA repair inhibition in irradiated cells. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   
   

Thiaburimamide

Thiaburimamide

C8H14N4S2 (230.066)


   

5-Hydroxyisourate

5-hydroxy-5,7-dihydro-1H-purine-2,6,8(9H)-trione

C5H4N4O4 (184.0233)


5-Hydroxyisourate (CAS: 6960-30-1) belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 5-Hydroxyisourate is an extremely weak basic (essentially neutral) compound (based on its pKa). 5-Hydroxyisourate exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 5-hydroxyisourate has been detected, but not quantified in, several different foods, such as soybeans, common thymes, poppies, blackcurrants, black elderberries, and rapes. This could make 5-hydroxyisourate a potential biomarker for the consumption of these foods. 5-Hydroxyisourate is the product of the oxidation of uric acid by urate oxidase. 5-Hydroxyisourate is a molecule with a formula of C5H4N4O4 and molecular weight of 184.110 g/mol. It is the product of the oxidation of uric acid by urate oxidase. 5-Hydroxyisourate is found in many foods, some of which are nance, cupuaçu, horned melon, and mentha (mint).

   

2-Heptyl-3-hydroxy-quinolone

2-Heptyl-3-hydroxy-4(1H)-quinolone

C16H21NO2 (259.1572)


   

Gibberellin A14

Gibberellin A14

C20H28O5 (348.1937)


   

FA 18:1

7-(2-octylcyclopropyl)heptanoic acid

C18H34O2 (282.2559)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

stigmatellin

Stigmatellin A

C30H42O7 (514.293)


A member of the class of chromones that is isolated from Stigmatella aurantiaca Sg a15. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Pyrrolnitrin

Pyrrolnitrin;3-Chloro-4-(3-chloro-2-nitrophenyl)pyrrole_HCD50

C10H6Cl2N2O2 (255.9806)


A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094

   

Dipotassium phosphate

Potassium dibasic phosphoric acid trihydric acid

HK2O4P (173.8887)


It is used in foods as a sequestrant, a pH control agent, and a nutrient in fermentation processes. Dipotassium phosphate (K2HPO4) - also phosphoric acid, dipotassium salt; dipotassium hydrogen orthophosphate; potassium phosphate, dibasic - is a highly water-soluble salt which is often used as a fertilizer, food additive and buffering agent. It is a common source of phosphorus and potassium. It is used in foods as a sequestrant, a pH control agent, and a nutrient in fermentation processes C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D020011 - Protective Agents > D002327 - Cariostatic Agents D019995 - Laboratory Chemicals > D002021 - Buffers D001697 - Biomedical and Dental Materials Same as: D02403

   

Disodium phosphate

Phosphoric acid, trisodium salt , dodecahydrate

Na2HPO4 (141.9408)


It is used in foods as a sequestrant, emulsifier, buffering agent, absorbent, pH control agent, protein modifier, source of alkalinity, stabiliser and nutrient supplement. Disodium hydrogen phosphate (Na2HPO4) is a sodium salt of phosphoric acid. It is a white powder that is highly hygroscopic and water soluble. It is therefore used commercially as an anti-caking additive in powdered products. It is also known as disodium hydrogen orthophosphate, sodium hydrogen phosphate or sodium phosphate dibasic. It is commercially available in both the hydrated and anhydrous forms. It is used in foods as a sequestrant, emulsifier, buffering agent, absorbent, pH control agent, protein modifier, source of alkalinity, stabiliser and nutrient supplement C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

5-Fluorowillardiine

2-Amino-3-(5-fluoro-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-YL)-propionic acid

C7H8FN3O4 (217.0499)


An alanine derivative that is L-alanine bearing a 5-fluorouracil-1-yl substituent at position 3. A more potent and selective AMPA receptor agonist (at hGluR1 and hGluR2) than AMPA itself (Ki = 14.7, 25.1, and 1820 nM for hGluR1, hGluR2 and hGluR5 respectively).

   

Naspm

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

Methyl 4-(2-benzylbenzoyl)-2,5-dimethyl-1H-pyrrole-3-carboxylate

Methyl-2,5-dimethyl-4-(2-(phenylmethyl)benzoyl)-1H-pyrrole-3-carboxylic acid

C22H21NO3 (347.1521)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

Cetyl palmitate

Fatty acids, C16-18, C12-18-alkyl esters

C32H64O2 (480.4906)


Ceryl palmitate, also known as hexadecanyl hexadecanoate or hexadecanoic acid, hexadecyl ester, is a member of the class of compounds known as wax monoesters. Wax monoesters are waxes bearing an ester group at exactly one position. Thus, ceryl palmitate is considered to be a fatty ester lipid molecule. Ceryl palmitate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ceryl palmitate can be found in loquat and opium poppy, which makes ceryl palmitate a potential biomarker for the consumption of these food products.

   

MG(12:0/0:0/0:0)

(2R)-2,3-dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


MG(12:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(12:0/0:0/0:0) is made up of one dodecanoyl(R1).

   

Heptachlor

1,5,7,8,9,10,10-heptachlorotricyclo[5.2.1.02,6]deca-3,8-diene

C10H5Cl7 (369.8211)


Heptachlor is a manufactured chemical and doesn't occur naturally. Pure heptachlor is a white powder that smells like camphor (mothballs). The less pure grade is tan. Trade names include Heptagran®, Basaklor®, Drinox®, Soleptax®, Termide®, and Velsicol 104®. Heptachlor was used extensively in the past for killing insects in homes, buildings, and on food crops, especially corn. These uses stopped in 1988. Currently it can only be used for fire ant control in power transformers. Heptachlor epoxide is also a white powder. Bacteria and animals break down heptachlor to form heptachlor epoxide. The epoxide is more likely to be found in the environment than heptachlor. D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Heptachlor. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76-44-8 (retrieved 2024-10-28) (CAS RN: 76-44-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dimethylstilbestrol

(E)-4,4-(1,2-Dimethyl-1,2-ethenediyl)bisphenol

C16H16O2 (240.115)


   

2-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .

   

N,N'-Diphenyl-p-phenylenediamine

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

Tetrachlorobisphenol A

2,6-dichloro-4-[2-(3,5-dichloro-4-hydroxyphenyl)propan-2-yl]phenol

C15H12Cl4O2 (363.9591)


CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5355; ORIGINAL_PRECURSOR_SCAN_NO 5350 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5349; ORIGINAL_PRECURSOR_SCAN_NO 5347 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5353; ORIGINAL_PRECURSOR_SCAN_NO 5351 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5359; ORIGINAL_PRECURSOR_SCAN_NO 5357 CONFIDENCE standard compound; INTERNAL_ID 547; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5328; ORIGINAL_PRECURSOR_SCAN_NO 5327

   

4-t-Butylbenzoic acid

p-tert-Butylbenzoic acid

C11H14O2 (178.0994)


CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4630; ORIGINAL_PRECURSOR_SCAN_NO 4625 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4617; ORIGINAL_PRECURSOR_SCAN_NO 4616 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4640; ORIGINAL_PRECURSOR_SCAN_NO 4636 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4710; ORIGINAL_PRECURSOR_SCAN_NO 4706 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4650; ORIGINAL_PRECURSOR_SCAN_NO 4645 CONFIDENCE standard compound; INTERNAL_ID 218; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4623; ORIGINAL_PRECURSOR_SCAN_NO 4620

   

ICI 164384

ICI 164384; N-n-Butyl-N-methyl-11-[3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl]undecanamide

C34H55NO3 (525.4182)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

trans,trans-1,4-Diphenyl-1,3-butadiene

Benzene,1,1-(1E,3E)-1,3-butadiene-1,4-diylbis-

C16H14 (206.1095)


   

4-Bromocatechol

4-bromobenzene-1,2-diol

C6H5BrO2 (187.9473)


4-Bromocatechol is classified as a member of the Catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 4-Bromocatechol is considered to be soluble (in water) and acidic

   

CITCO

6-(4-Chlorophenyl)imidazo[2,1-B][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime

C19H12Cl3N3OS (434.9767)


   

Isophosphamide mustard

N,N-di-(2-chloroethyl)phosphorodiamidic acid

C4H11Cl2N2O2P (219.9935)


Isophosphamide mustard is a metabolite of ifosfamide. Ifosfamide (also marketed as Mitoxana and Ifex) is a nitrogen mustard alkylating agent used in the treatment of cancer. It is sometimes abbreviated IFO. (Wikipedia) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents Same as: D09364

   

all-trans-5,6-Epoxyretinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-{2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}nona-2,4,6,8-tetraenoic acid

C20H28O3 (316.2038)


all-trans-5,6-Epoxyretinoic acid, also known as 5,6-epoxy-atRA, is classified as a member of the retinoids. Retinoids are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof. all-trans-5,6-Epoxyretinoic acid is considered to be a practically insoluble (in water) and a weak acidic compound. all-trans-5,6-Epoxyretinoic acid is an isoprenoid lipid molecule. all-trans-5,6-Epoxyretinoic acid can be found primarily in human kidney and liver tissues; and in blood and urine. Within a cell, all-trans-5,6-epoxyretinoic acid is primarily located in the cytoplasm, in the extracellular space, or near the membrane. A human metabolite taken as a putative food compound of mammalian origin [HMDB] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Spergualin

Spergualin

C17H37N7O4 (403.2907)


D000970 - Antineoplastic Agents

   

Dendrolasin

3-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]furan

C15H22O (218.1671)


Dendrolasin is found in root vegetables. Dendrolasin is a constituent of sweet potato Constituent of sweet potato. Dendrolasin is found in root vegetables.

   

Strophanthin

K-Strophanthin-beta

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   
   

Platycodin C

3O-acetylplatycodin D

C59H94O29 (1266.588)


   

Arcapillin

4H-1-Benzopyran-4-one, 2-(2,4-dihydroxy-5-methoxyphenyl)-5-hydroxy-6,7-dimethoxy-

C18H16O8 (360.0845)


A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 2, 4 and 5 and methoxy groups at positions 5, 6 and 7 respectively.

   

Gomisin D

(11S,12R,15S,24S,25S)-12,25-Dihydroxy-18,19,20-trimethoxy-11,12,24,25-tetramethyl-4,6,9,14-tetraoxapentacyclo[13.7.3.03,7.08,22.016,21]pentacosa-1,3(7),8(22),16,18,20-hexaen-13-one

C28H34O10 (530.2152)


Gomisin D is a natural product found in Schisandra chinensis with data available. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1]. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1].

   

7a-Hydroxydehydroepiandrosterone

(1S,2R,5S,9S,10R,11S,15S)-5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-one

C19H28O3 (304.2038)


7a-Hydroxydehydroepiandrosterone is a major metabolite of dehydroepiandrosterone (DHEA), which is is 7alpha-hydroxylated by the cytochrome P450 7B1 (EC 1.14.13.100, 25-hydroxycholesterol 7alpha-hydroxylase, CYP7B1) in the human brain and liver microsomes. Exposure to the proinflammatory cytokines TNFalpha, IL-1alpha, IL-1beta, and IL-17 increases CYP7B activity in synovial tissue. Increased CYP7B activity leads to higher levels of the DHEA metabolite 7alpha-OH-DHEA in synovial fluid, which may contribute to the maintenance of the chronic inflammation observed in rheumatoid arthritis patients. The glucocorticoid dhydrocorticosterone inhibits the conversion of DHEA to 7a-Hydroxydehydroepiandrosterone. The total levels of 7a-Hydroxydehydroepiandrosterone are increased in serum of patients with Alzheimers disease. (PMID: 17467270, 15751070, 12667489, 9520908) [HMDB] 7a-Hydroxydehydroepiandrosterone is a major metabolite of dehydroepiandrosterone (DHEA), which is is 7alpha-hydroxylated by the cytochrome P450 7B1 (EC 1.14.13.100, 25-hydroxycholesterol 7alpha-hydroxylase, CYP7B1) in the human brain and liver microsomes. Exposure to the proinflammatory cytokines TNFalpha, IL-1alpha, IL-1beta, and IL-17 increases CYP7B activity in synovial tissue. Increased CYP7B activity leads to higher levels of the DHEA metabolite 7alpha-OH-DHEA in synovial fluid, which may contribute to the maintenance of the chronic inflammation observed in rheumatoid arthritis patients. The glucocorticoid dhydrocorticosterone inhibits the conversion of DHEA to 7a-Hydroxydehydroepiandrosterone. The total levels of 7a-Hydroxydehydroepiandrosterone are increased in serum of patients with Alzheimers disease. (PMID: 17467270, 15751070, 12667489, 9520908). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Cytarabine

4-amino-1-[(2R,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2-dihydropyrimidin-2-one

C9H13N3O5 (243.0855)


Cytarabine, or cytosine arabinoside, a pyrimidine nucleoside analog, is found in mushrooms. Cytarabine is isolated from the mushroom Xerocomus nigromaculatus of unknown palatability. Cytarabine is an antineoplastic anti-metabolite used in the treatment of several forms of leukemia including acute myelogenous leukemia and meningeal leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle to stop normal cell development and division. Cytarabine is metabolized intracellularly into its active triphosphate form (cytosine arabinoside triphosphate). This metabolite then damages DNA by multiple mechanisms, including the inhibition of alpha-DNA polymerase, inhibition of DNA repair through an effect on beta-DNA polymerase, and incorporation into DNA. The latter mechanism is probably the most important. Cytotoxicity is highly specific for the S phase of the cell cycle. Cytarabine is a chemotherapy agent used mainly in the treatment of hematological malignancies such as acute myeloid leukemia (AML) and non-Hodgkin lymphoma. It is also known as ara C. Cytosine arabinoside is an antimetabolic agent with the chemical name of 1 -arabinofuranosylcytosine. Its mode of action is due to its rapid conversion into cytosine arabinoside triphosphate, which damages DNA when the cell cycle holds in the S phase (synthesis of DNA). Rapidly dividing cells, which require DNA replication for mitosis, are therefore most affected. Cytosine arabinoside also inhibits both DNA and RNA polymerases and nucleotide reductase enzymes needed for DNA synthesis L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents KEIO_ID C119; [MS2] KO008896 KEIO_ID C119 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity. Cytarabine, a nucleoside analog, causes S phase cell cycle arrest and inhibits DNA polymerase. Cytarabine inhibits DNA synthesis with an IC50 of 16 nM. Cytarabine has antiviral effects against HSV. Cytarabine shows anti-orthopoxvirus activity.

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

DL-2-Aminopropionic acid

2-aminopropanoic acid

C3H7NO2 (89.0477)


(alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein), also known as ALA or 2-Aminopropanoic acid, is classified as an alanine or an Alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is considered to be soluble (in water) and acidic. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized from propionic acid. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized into alanine derivative. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is an odorless tasting compound found in Green bell peppers, Green zucchinis, Italian sweet red peppers, and Red bell peppers Dietary supplement, nutrient, sweetening flavour enhancer in pickling spice mixts. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

D-Histidine

2-amino-3-(1H-imidazol-5-yl)propanoic acid

C6H9N3O2 (155.0695)


   

lactaldehyde

lactaldehyde

C3H6O2 (74.0368)


A member of the class of propanals obtained by the reduction of the carboxylic group of lactic acid (2-hydroxypropanoic acid).

   

Thermopsine

(-)-Thermopsine

C15H20N2O (244.1576)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.155 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.144 Thermopsine is a quinolizidine alkaloid isolated from the fruits and pods and stem bark of Sophora velutina subsp. Thermopsine has antibacterial activity[1].

   

Canadine

(1S)-16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.0^{2,10.0^{4,8.0^{15,20]henicosa-2,4(8),9,15(20),16,18-hexaene

C20H21NO4 (339.1471)


Canadine is a berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. It is a berberine alkaloid, an organic heteropentacyclic compound, an aromatic ether and an oxacycle. Canadine is a natural product found in Glaucium squamigerum, Hydrastis canadensis, and other organisms with data available. A berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.

   

5,7,3'-Trihydroxy-4'-methoxyflavanone

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-chromanone, 3,5,7-Trihydroxy-4-methoxyflavanone

C16H14O6 (302.079)


5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is an ether and a member of flavonoids. 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural product found in Allium caeruleum, Allium caesium, and other organisms with data available. The S-form is It is isolated from Brickellia vernicosa, Persica vulgaris (preferred genus name Prunus), Citrus and Mentha species [CCD (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Rheochrysin

1-Hydroxy-6-methoxy-3-methyl-8-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)anthracene-9,10-dione

C22H22O10 (446.1213)


Rheochrysin is an anthraquinone. Rheochrysin is a natural product found in Selaginella delicatula, Rheum australe, and other organisms with data available. Rheochrysin is found in green vegetables. Rheochrysin occurs in root of Rheum sp Occurs in root of Rheum subspecies Rheochrysin is found in green vegetables. Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

Hydroxyanthraquinone

InChI=1/C14H8O3/c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16/h1-7,15

C14H8O3 (224.0473)


1-hydroxyanthraquinone is a monohydroxyanthraquinone. 1-Hydroxyanthraquinone is a natural product found in Rheum palmatum, Handroanthus impetiginosus, and Morinda citrifolia with data available. D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

16b-Hydroxyestrone

(1S,10R,11S,13S,15S)-5,13-dihydroxy-15-methyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-2(7),3,5-trien-14-one

C18H22O3 (286.1569)


16b-Hydroxyestrone is an aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from androstenedione directly, or from testosterone via estradiol. In humans, it is produced primarily by the cyclic ovaries, placenta, and the adipose tissue of men and postmenopausal women. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

(R)-Salsolinol

1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline

C10H13NO2 (179.0946)


Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894). Alkaloid from Annona reticulata (custard apple), Musa paradisiaca (banana) and Theobroma cacao (cocoa). xi-Salsolinol is found in cocoa and cocoa products and fruits.

   

4-Hydroxystachydrine

(2R)-4-Hydroxy-1,1-dimethylpyrrolidin-1-ium-2-carboxylic acid

C7H13NO3 (159.0895)


4-hydroxystachydrine is a biomarker of citrus consumption found in urine.

   

epsilon-Tocopherol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


Isolated from wheat bran oil. epsilon-Tocopherol is found in many foods, some of which are rye, coconut, rosemary, and fennel. epsilon-Tocopherol is found in american cranberry. epsilon-Tocopherol is isolated from wheat bran oi

   

(S)-p-Menth-1-en-4-ol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1358)


(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

Linolenelaidic acid

(9E,12E,15E)-9,12,15-Octadecatrienoic acid

C18H30O2 (278.2246)


Linolenelaidic acid is found in fats and oils. Linolenelaidic acid is isolated from seed oil of safflower (Carthamus tinctorius Isolated from seed oil of safflower (Carthamus tinctorius). Linolenelaidic acid is found in fats and oils.

   

13-HPODE(1-)

(S)-13-Hydroperoxy-9,11-octadecadienoate

C18H32O4 (312.23)


13-HPODE(1-) is also known as 13-Hydroperoxy-(9Z,11E)-octadecadienoate. 13-HPODE(1-) is considered to be practically insoluble (in water) and acidic

   

Octadec-9-enoic Acid

Delta(9)-Octadecenoic acid

C18H34O2 (282.2559)


Octadec-9-enoic Acid, also known as 18:1, N-9 or Delta(9)-Octadecenoic acid, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Octadec-9-enoic Acid is considered to be practically insoluble (in water) and acidic. Octadec-9-enoic Acid can be synthesized from octadec-9-ene. It is also a parent compound for other transformation products, including but not limited to, 1-octadec-9-enoylglycero-3-phosphate, N-(2-hydroxy-1-methylethyl)-9-octadecenamide, and sterculic acid

   

penitrem A

21-chloro-15,16,33,33-tetramethyl-24-methylidene-10-(prop-1-en-2-yl)-7,11,32-trioxa-18-azadecacyclo[25.4.2.0²,¹⁶.0⁵,¹⁵.0⁶,⁸.0⁶,¹².0¹⁷,³¹.0¹⁹,³⁰.0²²,²⁹.0²⁵,²⁸]tritriaconta-17(31),19,21,29-tetraene-5,9,28-triol

C37H44ClNO6 (633.2857)


D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].

   

Strophanthin

7,11-dihydroxy-5-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-15-methyl-14-(5-oxo-2,5-dihydrofuran-3-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecane-2-carbaldehyde

C36H54O14 (710.3513)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

pimaricin

22-[(4-amino-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-1,3,26-trihydroxy-12-methyl-10-oxo-6,11,28-trioxatricyclo[22.3.1.0⁵,⁷]octacosa-8,14,16,18,20-pentaene-25-carboxylic acid

C33H47NO13 (665.3047)


   

11,14-Eicosadienoic acid

Eicosa-11,14-dienoic acid, (Z,Z)-isomer

C20H36O2 (308.2715)


   

2,3-Dihydroxypropyl dodecanoate

Dodecanoic acid, 2,3-dihydroxypropyl ester

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

13-Oxo-9,11-octadecadienoic acid

13-keto-9,11,-octadecadienoic acid

C18H30O3 (294.2195)


13-oxoODE is produced from 13-HODE by a NAD+-dependent dehydrogenase present in rat colonic mucosa. 13-OxoODE has been shown to stimulate cell proliferation when instilled intrarectally in rats. 13-OxoODE has also been detected in preparations of rabbit reticulocyte plasma and mitochondrial membranes, mostly esterified to phospholipids. Production of 13-oxoODE is putatively linked to the maturation of reticulocytes to erythrocytes through the activity of 15-LO. [HMDB]

   

Epitetracycline

4-(Dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-3,4,4a,5,5a,6,12,12a-octahydrotetracene-2-carboximidate

C22H24N2O8 (444.1533)


Sanclomycine, also known as achromycin or 4 epitetracycline, belongs to the class of organic compounds known as tetracyclines. These are polyketides having an octahydrotetracene-2-carboxamide skeleton, substituted with many hydroxy and other groups. Based on a literature review very few articles have been published on Sanclomycine. This compound has been identified in human blood as reported by (PMID: 31557052 ). Epitetracycline is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Epitetracycline is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Epitetracycline hydrochloride. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23313-80-6 (retrieved 2024-10-30) (CAS RN: 23313-80-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Acetamiprid

(1E)-N-((6-Chloro-3-pyridinyl)methyl)-n-cyano-N-methylethanimidamide

C10H11ClN4 (222.0672)


D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].

   

Bufogenin

5-{14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O4 (384.23)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents

   

C-Quens

14-acetyl-8-chloro-2,15-dimethyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-6,8-dien-14-yl acetate

C23H29ClO4 (404.1754)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

DL-Norleucine

Norleucine, L-isomer

C6H13NO2 (131.0946)


   

Fenpyroximate

tert-butyl 4-[({[(1,3-dimethyl-5-phenoxy-1H-pyrazol-4-yl)methylidene]amino}oxy)methyl]benzoate

C24H27N3O4 (421.2001)


   

Histidinol

2-amino-3-(3H-imidazol-4-yl)propan-1-ol

C6H11N3O (141.0902)


   

6-Octadecenoic acid

petroselinic acid, sodium salt, (Z)-isomer

C18H34O2 (282.2559)


Isolated from volatiles of Coriandrum sativum (coriander), Anethum sowa (Indian dill), Cuminum cyminum (cumin), Daucus carota (carrot), Nigella sativa (black cumin), Apium graveolens (celery), Pimpinella anisum (anise) and Petroselinum sativum (parsley) [CCD]. 6-Octadecenoic acid is found in dill. Minor constituent of plant oils. Constituent of milk fat and from porcine parasites Oesophagostomum dentatum and Oesophagostomum quadrispinulatum [CCD]. Petroselaidic acid is found in fats and oils.

   

Citramalic acid

Citramalic acid

C5H8O5 (148.0372)


   

Techtochrysin

5-Hydroxy-7-methylflavone; 7-O-Methylchrysin; Tectochrysine

C16H12O4 (268.0736)


Tectochrysin is a monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. It has a role as a plant metabolite, an antidiarrhoeal drug and an antineoplastic agent. It is a monohydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Tectochrysin is a natural product found in Hedychium spicatum, Populus laurifolia, and other organisms with data available. A monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Febrifugine

3-(3-(3-Hydroxypiperidin-2-yl)-2-oxopropyl)quinazolin-4(3H)-one

C16H19N3O3 (301.1426)


Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].

   

Irisolidone

5,7-Dihydroxy-6-methoxy-3-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O6 (314.079)


Irisolidone is a member of 4-methoxyisoflavones. Irisolidone is a natural product found in Dalbergia sissoo, Wisteria brachybotrys, and other organisms with data available. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].

   

10-Deacetylbaccatin

7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 12b-(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,6,9,11-tetrahydroxy-4a,8,13,13-tetramethyl-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-

C29H36O10 (544.2308)


10-deacetylbaccatin III is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It is functionally related to a baccatin III. 10-Deacetylbaccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate.

   

Baccatin_III

7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha,11alpha,12alpha,12aalpha,12balpha))-

C31H38O11 (586.2414)


Baccatin III is a tetracyclic diterpenoid isolated from plant species of the genus Taxus. It has a role as a plant metabolite. It is a tetracyclic diterpenoid, an acetate ester and a benzoate ester. It derives from a hydride of a taxane. Baccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. Baccatin III is a compound obtained from the needles of the Taxus baccata tree that is used as a precursor of paclitaxel. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent A tetracyclic diterpenoid isolated from plant species of the genus Taxus. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].

   

Gomisin

(11S,12R,15S,24S,25S)-12,25-Dihydroxy-18,19,20-trimethoxy-11,12,24,25-tetramethyl-4,6,9,14-tetraoxapentacyclo[13.7.3.03,7.08,22.016,21]pentacosa-1,3(7),8(22),16,18,20-hexaen-13-one

C28H34O10 (530.2152)


Gomisin D is a natural product found in Schisandra chinensis with data available. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1]. Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Gomisin D inhibits UDP-Glucuronosyltransferases activity and scavenges ABTS(+) radicals. Gomisin D is used as a quality marker of Shengmai San and shenqi Jiangtang Granule[1].

   

6-METHYL-5-HEPTEN-2-ONE

6-METHYL-5-HEPTEN-2-ONE

C8H14O (126.1045)


Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Cajanol

2,3-Dihydro-5-hydroxy-3- (4-hydroxy-2-methoxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C17H16O6 (316.0947)


A hydroxyisoflavanone that is (3S)-isoflavanone substituted by hydroxy groups at positions 5 and 4 and methoxy groups at positions 7 and 2 respectively. It has been isolated from Crotalaria lachnophora.

   

Lespedin

5-hydroxy-2-(4-hydroxyphenyl)-3,7-bis[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy]chromen-4-one

C27H30O14 (578.1635)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Norwogonin

4H-1-Benzopyran-4-one, 2-phenyl-5,7,8-trihydroxy- (9CI)

C15H10O5 (270.0528)


Norwogonin is a trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. It has a role as an antioxidant and a metabolite. Norwogonin is a natural product found in Scutellaria discolor, Scutellaria strigillosa, and other organisms with data available. A trihydroxyflavone with the hydroxy groups at positions C-5, -7 and -8. Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1] Norwogonin, isolated from Scutellaria baicalensis Georgi, possesses antiviral activity against Enterovirus 71 (EV71) with an IC50 of 31.83 μg/ml[1]

   

Patuletin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-6-methoxy-4H-1-benzopyran-4-one

C16H12O8 (332.0532)


A trimethoxyflavone that is quercetagetin methylated at position 6. D004791 - Enzyme Inhibitors

   

Thujone

Bicyclo[3.1.0]hexan-3-one,4-methyl-1-(1-methylethyl)-

C10H16O (152.1201)


α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].

   

Capsanthin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-4,8,13,17-tetramethyl-19-[(4R)-2,6,6-trimethyl-4-oxidanyl-cyclohexen-1-yl]-1-[(1R,4S)-1,2,2-trimethyl-4-oxidanyl-cyclopentyl]nonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O3 (584.4229)


Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Menthyl_acetate

Cyclohexanol, 5-methyl-2-(1-methylethyl)-, acetate, (1.alpha.,2.beta.,5.alpha.)-(.+/-.)-

C12H22O2 (198.162)


(+/-)-Menthyl acetate is a p-menthane monoterpenoid. Menthyl acetate is a natural product found in Mentha canadensis with data available. ?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1]. ?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1].

   

nitrazepam

nitrazepam

C15H11N3O3 (281.08)


A 1,4-benzodiazepinone that is 1,3-dihydro-2H-1,4-benzodiazepin-2-one which is substituted at positions 5 and 7 by phenyl and nitro groups, respectively. It is used as a hypnotic for the short-term management of insomnia and for the treatment of epileptic spasms in infants (Wests syndrome). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 1535

   

2-AMINOBENZIMIDAZOLE

1-METHYLBENZOTRIAZOLE

C7H7N3 (133.064)


A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003

   

Olopatadine

Olopatadine

C21H23NO3 (337.1678)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents D018926 - Anti-Allergic Agents CONFIDENCE standard compound; INTERNAL_ID 2210 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3323

   

MONURON

MONURON

C9H11ClN2O (198.056)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 161

   

Clothianidin

Pesticide5_Clothianidin_C6H8ClN5O2S_[C(E)]-N-[(2-Chloro-5-thiazolyl)methyl]-N?-methyl-N?-nitroguanidine

C6H8ClN5O2S (249.0087)


An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933

   

Salsolinol

6,7-Isoquinolinediol, 1,2,3,4-tetrahydro-1-methyl-, (S)-

C10H13NO2 (179.0946)


Salsolinol is an endogenous catechol isoquinoline detected in humans. Salsolinol was detected in urine of parkinsonian patients administered with L-DOPA. This finding stimulated the studies on Salsolinol derivatives in the brain, and gave new aspects of the endogenous alkaloids, which had been considered to occur only in plants. In normal non-alcoholic subjects and alcoholics, Salsolinol and O-methylated Salsolinol were found in urine, cerebrospinal fluid and brains. Salsolinol has an asymmetric center at first position and exists as (R)- and (S)enantiomer. The (R)enantiomer of Salsolinol is predominant in urine from healthy volunteers. Only the (R)enantiomers of Salsolinol and N-methylated Salsolinol occur in the human brain, cerebrospinal fluid (CSF) and intraventricular fluid (IVF), and the (S)enantiomers were not detected. (R)salsolinol synthase catalyzes the enantio-selective synthesis of (R)Salsolinol and 1-carboxyl(R)Salsolinol from dopamine with acetaldehyde or pyruvic acid. The N-methylation of (R)salsolinol into N-methylsalsolinol (NMSal) is catalyzed by two N-methyltransferases with different optimum pH, at pH 7.0 and 8.4. NM(R)Salsolinol is enzymatically oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion (DMDHIQ+) by an oxidase sensitive to semicarbaside and also non-enzymatically by autoxidation. NM(R)Salsolinol and its precursor, dopamine, were found to occur selectively in the nigro-striatum, whereas (R)Salsolinol distributes uniformly among the brain regions. (PMID 14697894) [HMDB]. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1521; CONFIDENCE confident structure

   

4-Methylumbelliferylglucuronide

4-Methylumbelliferone glucuronide

C16H16O9 (352.0794)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes relative retention time with respect to 9-anthracene Carboxylic Acid is 0.488 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2121; CONFIDENCE confident structure

   

Morin

4H-1-Benzopyran-4-one, 2-2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].

   

Linolenic Acid

α-Linolenic acid

C18H30O2 (278.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.567 α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Histidinol

Histidinol

C6H11N3O (141.0902)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040

   

Ergocornine

Ergocorninine

C31H39N5O5 (561.2951)


Ergotaman bearing a hydroxy group at the 12 position, isopropyl groups at the 2 and 5alpha positions, and oxo groups at positions 3, 6, and 18. It is a natural ergot alkaloid. CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.024 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.017

   

cefaclor

Cefaclor Impurity C

C15H14ClN3O4S (367.0394)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin bearing chloro and (R)-2-amino-2-phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].

   

fleroxacin

Fleroxacin (Quinodis)

C17H18F3N3O3 (369.13)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Cycloleucine

1-Amino-1-cyclopentanecarboxylic acid

C6H11NO2 (129.079)


C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   

GLYCERIC ACID

D-(+)-Glyceric acid hemicalcium salt

C3H6O4 (106.0266)


A trionic acid that consists of propionic acid substituted at positions 2 and 3 by hydroxy groups.

   

Rumenic acid

9Z, 11E-Linoleic acid

C18H32O2 (280.2402)


Bovinic acid is a conjugated linoleic acid, present in human adipose tissue; the amount of bovinic acid in humans is significantly related to milk fat intake. Conjugated linoleic acids (CLAs) are a group of naturally occurring fatty acids present mainly in fats from ruminants. Milk contains over 20 isomers of CLA but the predominant one is cis-9,trans-11-CLA (bovinic acid). Biomedical studies with animal models have shown that this isomer has anticarcinogenic and anti-atherogenic activities. Bovinic acid is produced as an intermediate in the rumen biohydrogenation of linoleic acid but not of linolenic acid. However, it is only a transient intermediate, and the major source of milk fat CLA is from endogenous synthesis. (PMID 10393134, 15736916) [HMDB]

   

2-Methoxyestrone

2-Methoxy estrone

C19H24O3 (300.1725)


A 17-oxo steroid that is estrone in which the hydrogen at position 2 has been replaced by a methoxy group. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 2-Methoxyestrone is a methoxylated catechol estrogen and metabolite of estrone, with a pKa of 10.81.

   

dihydrobiopterin

7,8-Dihydro-L-biopterin

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

3,4-Dihydroxyphenylglycol

3,4-Dihydroxyphenylethyleneglycol

C8H10O4 (170.0579)


A tetrol composed of ethyleneglycol having a 3,4-dihydroxyphenyl group at the 1-position. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.

   

2-FUROIC ACID

2-FUROIC ACID

C5H4O3 (112.016)


A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

3-mercaptopyruvic acid

3-mercaptopyruvic acid

C3H4O3S (119.9881)


A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.

   

BROMPHENIRAMINE

BROMPHENIRAMINE

C16H19BrN2 (318.0732)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   
   

propanil

propanil

C9H9Cl2NO (217.0061)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

Zaleplon

Zaleplon

C17H15N5O (305.1277)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CF - Benzodiazepine related drugs D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

pemoline

pemoline

C9H8N2O2 (176.0586)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant

   

isomaltulose

2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

C12H22O11 (342.1162)


   

bis(3-aminopropyl)amine

bis(3-aminopropyl)amine

C6H17N3 (131.1422)


   

Prenol

4-01-00-02129 (Beilstein Handbook Reference)

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

estazolam

estazolam

C16H11ClN4 (294.0672)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CD - Benzodiazepine derivatives D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants

   

fenoprofen

calcium(-1) anion; 2-(3-phenoxyphenyl)propanoate

C15H14O3 (242.0943)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

biperiden

biperiden

C21H29NO (311.2249)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent Biperiden (KL 373) is a non-selective muscarinic receptor antagonist that competitively binds to M1 muscarinic receptors, thereby inhibiting acetylcholine and enhancing dopamine signaling in the central nervous system. Biperiden has the potential for the research of Parkinson's disease and other related psychiatric disorders[1][2].

   

Crotonoside

6-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-tetrahydrofuranyl]-1H-purin-2-one

C10H13N5O5 (283.0917)


Purines Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1]. Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1]. Crotonoside is isolated from Chinese medicinal herb, Croton. Crotonoside inhibits FLT3 and HDAC3/6, exhibits selective inhibition in acute myeloid leukemia (AML) cells. Crotonoside could be a promising new lead compound for the research of AML[1].

   

CDP-ethanolamine

CDP-ethanolamine

C11H20N4O11P2 (446.0604)


A phosphoethanolamine consisting of ethanolamine having a cytidine 5-diphosphate moiety attached to the oxygen.

   

2,6-DIHYDROXYBENZOIC ACID

2,6-DIHYDROXYBENZOIC ACID

C7H6O4 (154.0266)


A dihydroxybenzoic acid having the two hydroxy groups at the C-2 and C-6 positions. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

THIOACETIC ACID

THIOACETIC ACID

C2H4OS (75.9983)


   

Petroselaidic acid

trans-6-octadecenoic acid

C18H34O2 (282.2559)


The trans-isomer of octadec-6-enoic acid, a long-chain fatty acid.

   

Acetylleucine

Acetyl-DL-leucine

C8H15NO3 (173.1052)


N - Nervous system > N07 - Other nervous system drugs > N07C - Antivertigo preparations > N07CA - Antivertigo preparations

   

Cetyl palmitate

Fatty acids, C16-18, C12-18-alkyl esters

C32H64O2 (480.4906)


   

benzoate

3,5-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses.

   

Arachidin II

5-[(Z)-2-(4-hydroxyphenyl)ethenyl]-2-(3-methylbut-2-en-1-yl)benzene-1,3-diol

C19H20O3 (296.1412)


   

FA 18:2

(S)-13-(cyclopent-2-en-1-yl)tridecanoic acid

C18H32O2 (280.2402)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

FA 20:5;O4

(5R,6Z,8E,10E,14Z)-5,20,20-trihydroxy-12-oxoicosa-6,8,10,14-tetraenoic acid

C20H30O6 (366.2042)


   

FOH 5:1

3-METHYL-3-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

CoA 20:4

(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-CoA;(5Z,8Z,11Z,14Z)-5,8,11,14-eicosatetraenoyl-coenzyme A;(5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoyl-coenzyme A;C20:4-CoA;all-cis-5,8,11,14-eicosatetraenoyl-CoA;all-cis-5,8,11,14-eicosatetraenoyl-coenzyme A;arachidonoyl-coenzyme A;arachidonyl-coenzyme A;cis-Delta(5,8,11,14)-eicosatetraenoyl-CoA;cis-Delta(5,8,11,14)-eicosatetraenoyl-coenzyme A

C41H66N7O17P3S (1053.3449)


   

Glutaryl-CoA

3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(4-carboxybutanoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C26H42N7O19P3S (881.1469)


An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.

   

Zymostenol

5alpha-cholest-8(9)-en-3beta-ol

C27H46O (386.3548)


   

ST 18:4;O3

3,16alpha-dihydroxy-1,3,5(10)-estratrien-17-one

C18H22O3 (286.1569)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].

   

ST 19:4;O3

2-methoxy,3-hydroxy-estra-1,3,5(10)-trien-17-one

C19H24O3 (300.1725)


An androstanoid that is androst-4-en-19-al substituted by oxo groups at positions 3 and 17. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen 2-Methoxyestrone is a methoxylated catechol estrogen and metabolite of estrone, with a pKa of 10.81.

   

Terpinolen

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


   

Azepane

Hexamethyleneimine

C6H13N (99.1048)


   

4-CHLOROANILINE

1-Amino-4-chlorobenzene

C6H6ClN (127.0189)


   

1-Methyladenine

1-Methyladenine

C6H7N5 (149.0701)


Adenine substituted with a methyl group at position N-1.

   

1-[4-Hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione

2,4(1H,3H)-Pyrimidinedione,1-(2-deoxy-b-D-threo-pentofuranosyl)-5-methyl-

C10H14N2O5 (242.0903)


1-(2-Deoxy-β-D-threo-pentofuranosyl)thymine is a thymidine analog. Analogs of this series have insertional activity towards replicated DNA. They can be used to label cells and track DNA synthesis[1].

   

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

1-Palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol))

C40H77O10P (748.5254)


   

(S)-(-)-5-Fluorowillardiine

2-Amino-3-(5-fluoro-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-YL)-propionic acid

C7H8FN3O4 (217.0499)


   

N-n-Butyl-N-methyl-11-(3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl)undecanamide

N-n-Butyl-N-methyl-11-(3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl)undecanamide

C34H55NO3 (525.4182)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

Masoprocol

Masoprocol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

Tetrachlorobisphenol A

Phenol,4,4-(1-methylethylidene)bis[2,6-dichloro-

C15H12Cl4O2 (363.9591)


   

Dipotassium hydrogen phosphate

Di-potassium monohydrogen phosphate

HK2O4P (173.8887)


C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D020011 - Protective Agents > D002327 - Cariostatic Agents D019995 - Laboratory Chemicals > D002021 - Buffers D001697 - Biomedical and Dental Materials

   

4-tert-Butylbenzoic acid

4-tert-Butylbenzoic acid

C11H14O2 (178.0994)


   

Palifosfamide

Isophosphoramide mustard

C4H11Cl2N2O2P (219.9935)


D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents Same as: D09364

   

AIDS-224739

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Tereben

Dipentene Fluka specially purified fraction of terpene hydrocarbons

C10H16 (136.1252)


   

Cajinin

3-(2,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-chromen-4-one

C16H12O6 (300.0634)


   

Nonox D

InChI=1\C16H13N\c1-2-8-15(9-3-1)17-16-11-10-13-6-4-5-7-14(13)12-16\h1-12,17

C16H13N (219.1048)


   

Uniphat A60

Palmitic acid, methyl ester (8CI)

C17H34O2 (270.2559)


Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Isoguanine

2H-Purin-2-one, 6-amino-1,3-dihydro- (9CI)

C5H5N5O (151.0494)


   

Xanthotoxol

2-Propenoic acid, 3-(6,7-dihydroxy-5-benzofuranyl)-, .delta.-lactone

C11H6O4 (202.0266)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects. Xanthotoxol (8-Hydroxypsoralen) It is a kind of fragrant bean substance, and it is a CYP450 inhibitor. Xanthotoxol has anti-inflammatory, anti-inflammatory, and 5-HT antagonistic and protective effects. Xanthotoxol inhibited CYP3A4 sum CYP1A2 IC50s separation 7.43 μM sum 27.82 μM. Xanthotoxol can pass through MAPK and NF-κB, inhibiting inflammation[1][2][3][4]. Xanthotoxol (8-Hydroxypsoralen) is a biologically active linear furocoumarin, shows strong pharmacological activities as anti-inflammatory, antioxidant, 5-HT antagonistic, and neuroprotective effects.

   

I6783_SIGMA

(1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid

C20H30O2 (302.2246)


D049990 - Membrane Transport Modulators D007476 - Ionophores Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels. Isopimaric acid is a potent opener of large conductance calcium activated K+ (BK) channels.

   

Rheochrysin

1-hydroxy-6-methoxy-3-methyl-8-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]anthracene-9,10-dione

C22H22O10 (446.1213)


Physcion 8-O-β-D-glucopyranosideis an anthraquinone compound isolated from Rumex japonicus Houtt. Physcion 8-O-β-D-glucopyranoside exerts anti-inflammatory and anti-cancer properties, can be for common malignancy cancer research[1].

   

Sulcatone

4-01-00-03493 (Beilstein Handbook Reference)

C8H14O (126.1045)


A heptenone that is hept-5-en-2-one substituted by a methyl group at position 6. It is a volatile oil component of citronella oil, lemon-grass oil and palmarosa oil. Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

(R)-(−)-Propylene glycerol

(R)-(−)-Propylene glycerol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Phlorol

InChI=1\C8H10O\c1-2-7-5-3-4-6-8(7)9\h3-6,9H,2H2,1H

C8H10O (122.0732)


   

c0588

Benzenemethanol, 4-hydroxy-3-methoxy-

C8H10O3 (154.063)


Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

AI3-00667

InChI=1\C11H12O2\c1-2-13-11(12)9-8-10-6-4-3-5-7-10\h3-9H,2H2,1H3\b9-8

C11H12O2 (176.0837)


Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].

   

furoic acid

InChI=1\C5H4O3\c6-5(7)4-2-1-3-8-4\h1-3H,(H,6,7

C5H4O3 (112.016)


2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].

   

Gentiacaulein

2,8-dihydroxy-1,6-dimethoxy-9H-xanthen-9-one

C15H12O6 (288.0634)


A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 2 and 8 and methoxy groups at positions 1 and 6.

   

AIDS-011160

1,3,5-trihydroxy-9-xanthenone

C13H8O5 (244.0372)


   

303-07-1

InChI=1\C7H6O4\c8-4-2-1-3-5(9)6(4)7(10)11\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Bellidofolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy- (9CI)

C14H10O6 (274.0477)


Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

Actinex

4-[(2S,3R)-4-(3,4-dihydroxyphenyl)-2,3-dimethyl-butyl]benzene-1,2-diol

C18H22O4 (302.1518)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3].

   

AI3-32395

InChI=1\C9H10O3\c10-8-3-1-2-7(6-8)4-5-9(11)12\h1-3,6,10H,4-5H2,(H,11,12

C9H10O3 (166.063)


3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

129-43-1

InChI=1\C14H8O3\c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16\h1-7,15

C14H8O3 (224.0473)


D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

   

cyclohexenone

4-07-00-00124 (Beilstein Handbook Reference)

C6H8O (96.0575)


   

Candicine

Ammonium, (p-hydroxyphenethyl)trimethyl-

C11H18NO+ (180.1388)


   

603-56-5

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

LS-473

4-12-00-00008 (Beilstein Handbook Reference)

C6H13N (99.1048)


   

Tulipane

.alpha.-Methylene-.gamma.-butyrolactone

C5H6O2 (98.0368)


D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

CH3COSH

Thioacetic acid [UN2436] [Flammable liquid]

C2H4OS (75.9983)


   

DL-Alanine

3-Methylellagic acid 8-(2-acetylrhamnoside)

C3H7NO2 (89.0477)


Constituent of Eucalyptus globulus (Tasmanian blue gum) Constituent of some red wines. Acetylvitisin A is found in alcoholic beverages. Constituent of Eriobotrya japonica (loquat). (R)-Naringenin 8-C-(2-rhamnosylglucoside) is found in fruits. 1,2-anhydrido-4,5-dihydroniveusin a is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 1,2-anhydrido-4,5-dihydroniveusin a can be found in sunflower, which makes 1,2-anhydrido-4,5-dihydroniveusin a a potential biomarker for the consumption of this food product. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

Stigmatellin A

Stigmatellin A

C30H42O7 (514.293)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Protogracillin

(3beta,22alpha,25R)-26-(beta-D-Glucopyranosyloxy)-22-hydroxyfurost-5-en-3-yl O-6-deoxy-alpha-L-mannopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->3)]-beta-D-glucopyranoside

C51H84O23 (1064.5403)


Protogracillin is a steroid saponin. Protogracillin is a natural product found in Tribulus terrestris, Paris polyphylla var. chinensis, and other organisms with data available. Protogracillin is a steroidal saponin isolated from Dioscorea zingiberensis Wright (DZW). Steroidal saponins from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action[1]. Protogracillin is a steroidal saponin isolated from Dioscorea zingiberensis Wright (DZW). Steroidal saponins from DZW rhizomes have the potential to reduce the risk of cardiovascular diseases by anti-thrombotic action[1].

   

Bellidifolin

9H-Xanthen-9-one, 1,5,8-trihydroxy-3-methoxy-

C14H10O6 (274.0477)


Bellidifolin is a member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, a hypoglycemic agent and a metabolite. It is a member of xanthones and a polyphenol. It is functionally related to a bellidin. Bellidifolin is a natural product found in Gentiana orbicularis, Gentianella amarella, and other organisms with data available. A member of the xanthone family that is bellidin substituted with a methyl group at O-3. A natural product found particularly in Swertia chirata and Gentianella campestris. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4]. Bellidifolin is a xanthone isolated from the stems of Swertia punicea, with hepatoprotective, hypoglycemic, anti-oxidation, anti-inflammatory and antitumor activities[1][2][3]. Bellidifolin also acts as a viral protein R (Vpr) inhibitor[4].

   

Isochamaejasmin

(2S,3R)-3-[(2R,3S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydrochromen-3-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one

C30H22O10 (542.1213)


Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available. A biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3.

   

Picrocrocin

(R)-2,6,6-trimethyl-4-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-1-ene-1-carbaldehyde

C16H26O7 (330.1678)


Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].

   

Tulipalin_A

4-(3-FORMYL-2,5-DIMETHYL-1H-PYRROL-1-YL)BENZENECARBOXYLICACID

C5H6O2 (98.0368)


Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

cellotetrose

beta-D-glucopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-beta-D-glucoopyranosyl-(1->4)-D-glucoopyranose

C24H42O21 (666.2218)


Cellotetraose is a glucotetrose comprised of four D-glucose residues connected by beta(1->4) linkages.

   

Ethyl_cinnamate

Cinnamic acid, ethyl ester (6CI,7CI,8CI); 3-Phenyl-2-propenoic acid ethyl ester

C11H12O2 (176.0837)


Ethyl cinnamate is an alkyl cinnamate and an ethyl ester. Ethyl cinnamate is a natural product found in Hedychium spicatum, Cinnamomum verum, and other organisms with data available. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2]. Ethyl cinnamate is a fragrance ingredient used in many fragrance compounds. Ethyl cinnamate is a food flavor and additive for cosmetic products. Ethyl cinnamate is also an excellent clearing reagent for mammalian tissues[1][2].

   

1,4-DICHLOROBENZENE

1,4-DICHLOROBENZENE

C6H4Cl2 (145.969)


D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D002273 - Carcinogens D016573 - Agrochemicals

   

CYCLOHEXYLAMINE

CYCLOHEXYLAMINE

C6H13N (99.1048)


A primary aliphatic amine consisting of cyclohexane carrying an amino substituent.

   

SULFANILIC ACID

4-Aminobenzenesulfonic acid

C6H7NO3S (173.0147)


An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.

   

TERPINOLENE

TERPINOLENE

C10H16 (136.1252)


A p-menthadiene with double bonds at positions 1 and 4(8).

   

Penicillin V

Penicillin V

C16H18N2O5S (350.0936)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CE - Beta-lactamase sensitive penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

chlordecone

1,3,4-Metheno-2H-cyclobuta[cd]pentalen-2-one,1,1a,3,3a,4,5,5,5a,5b,6-decachlorooctahydro-

C10Cl10O (485.6834)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Isosorbide Mononitrate

Isosorbide 5-mononitrate

C6H9NO6 (191.043)


C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases > C01DA - Organic nitrates C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D020030 - Nitric Oxide Donors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Propulsid

Propulsid

C23H29ClFN3O4 (465.1831)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03F - Propulsives > A03FA - Propulsives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Cisapride (R 51619) is an orally active 5-HT4 receptor agonist with an EC50 value of 140 nM. Cisapride is a hERG blocker with an IC50 value of 9.4 nM. Cisapride is a gastroprokinetic agent that stimulates gastrointestinal motor activity[1][2][3][4].

   

nilutamide

nilutamide

C12H10F3N3O4 (317.0623)


L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02B - Hormone antagonists and related agents > L02BB - Anti-androgens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C146993 - Androgen Receptor Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C242 - Anti-Androgen D000970 - Antineoplastic Agents

   

PHENOXYACETIC ACID

PHENOXYACETIC ACID

C8H8O3 (152.0473)


A monocarboxylic acid that is the O-phenyl derivative of glycolic acid. A metabolite of 2-phenoxyethanol, it is used in the manufacture of pharmaceuticals, pesticides, fungicides and dyes. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.

   

DIBUTYL SUCCINATE

DIBUTYL SUCCINATE

C12H22O4 (230.1518)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents

   

3-METHYL-2-BUTEN-1-OL

3-METHYL-2-BUTEN-1-OL

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   
   

1-Methyl-6-oxo-1,6-dihydropyridine-3-carboxamide

1-Methyl-6-oxo-1,6-dihydropyridine-3-carboxamide

C7H8N2O2 (152.0586)


Nudifloramide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Nudifloramide significantly inhibits poly(ADP-ribose) polymerase (PARP-1) activity in vitro[1].

   

proparacaine

proxymetacaine

C16H26N2O3 (294.1943)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent

   

R-1,2-PROPANEDIOL

(R)-(-)-1,2-Propanediol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

16α-Hydroxyestrone

16alpha-hydroxyestrone

C18H22O3 (286.1569)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones The 16alpha-hydroxy derivative of estrone; a minor estrogen metabolite.

   

1,4-Dihydro-1-methyl-4-oxo-3-pyridinecarboxamide

1,4-Dihydro-1-methyl-4-oxo-3-pyridinecarboxamide

C7H8N2O2 (152.0586)


   
   

O-Acetylcarnitine

O-acetylcarnitinium

C9H18NO4+ (204.1236)


   

4-NITROBENZOIC ACID

4-NITROBENZOIC ACID

C7H5NO4 (167.0219)


   

2-Deoxyinosine

2-Deoxyinosine

C10H12N4O4 (252.0859)


A purine 2-deoxyribonucleoside that is inosine in which the hydroxy group at position 2 is replaced by a hydrogen. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.

   

4-CHLOROBIPHENYL

4-CHLOROBIPHENYL

C12H9Cl (188.0393)


   

Bacampicillin

Bacampicillin

C21H27N3O7S (465.157)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A penicillanic acid ester that is the 1-ethoxycarbonyloxyethyl ester of ampicillin. It is a semi-synthetic, microbiologically inactive prodrug of ampicillin. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Tetrachlorohydroquinone

Tetrachlorohydroquinone

C6H2Cl4O2 (245.8809)


   

ipratropium

ipratropium

C20H30NO3+ (332.2226)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

20-carboxy-Leukotriene B4

20-hydroxy-20-oxoleukotriene B4

C20H30O6 (366.2042)


   

12S-HHTrE

12-Hydroxyheptadecatrienoic acid

C17H28O3 (280.2038)


A trienoic fatty acid that consists of (5Z,8E,10E)-heptadeca-5,8,10-trienoic acid bearing an additional 12S-hydroxy substituent.

   

Pimafucin

Pimafucin

C33H47NO13 (665.3047)


A macrolide antibiotic that has formula C33H47NO13, produced by several Streptomyces species including Streptomyces natalensis. It exhibits broad spectrum antifungal activity and used in eye drops, and as a food preservative, and also as a postharvest biofungicide for citrus and other fruit crops. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Natamycin (Pimaricin) is a macrolide antibiotic agent produced by several Streptomyces strains. Natamycin inhibits the growth of fungi via inhibition of amino acid and glucose transport across the plasma membrane. Natamycin is a food preservative, an antifungal agent in agriculture, and is widely used for fungal keratitis research[1][2].

   

betonicine

trans-4-Hydroxy-L-proline betaine

C7H13NO3 (159.0895)


An amino-acid betaine that is trans-4-hydroxy-L-proline zwitterion in which both of the hydrogens attached to the nitrogen have been replaced by methyl groups.

   

Acetylisoniazid

Acetylisoniazid

C8H9N3O2 (179.0695)


   

3,4-Dihydroxyphenylacetaldehyde

3,4-Dihydroxyphenylacetaldehyde

C8H8O3 (152.0473)


A phenylacetaldehyde in which the 3 and 4 positions of the phenyl group are substituted by hydroxy groups. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

13(S)-HPODE

13(S)-HPODE

C18H32O4 (312.23)


D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides The (S)-enantiomer of 13-HPODE

   

2-Phosphoglycolic Acid

2-Phosphoglycolic Acid

C2H5O6P (155.9824)


The O-phospho derivative of glycolic acid.

   

Deoxycytidine diphosphate

Deoxycytidine diphosphate

C9H15N3O10P2 (387.0233)


A 2-deoxycytidine phosphate that is the 2- deoxy derivative of cytidine 5-diphosphate (CDP).

   

5-xanthylic acid

Xanthosine-5-monophosphate

C10H13N4O9P (364.042)


A purine ribonucleoside 5-monophosphate having xanthine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one

3-Methyl-1-(2,4,6-trihydroxyphenyl)butan-1-one

C11H14O4 (210.0892)


   

7alpha,27-dihydroxycholesterol

7alpha,27-dihydroxycholesterol

C27H46O3 (418.3447)


   

(METHYLTHIO)ACETICACID

(Methylthio)acetic acid

C3H6O2S (106.0088)


A sulfur-containing carboxylic consisting of thioglycolic acid carrying an S-methyl substituent.

   

Methyl sulfate

Methyl sulfate

CH4O4S (111.983)


An alkyl sulfate that is the monomethyl ester of sulfuric acid.

   

4-Hydroxycyclophosphamide

(R,S)-4-Hydroxy Cyclophosphamide

C7H15Cl2N2O3P (276.0197)


A phosphorodiamide that consists of 2-amino-1,3,2-oxazaphosphinan-4-ol 2-oxide having two 2-chloroethyl groups attached to the exocyclic nitrogen. D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

   

Diazene

Diazene

H2N2 (30.0218)


   

3-Dehydroquinic acid

3-Dehydroquinic acid

C7H10O6 (190.0477)


A 4-oxo monocarboxylic acid derived from quinic acid by oxidation of the hydroxy group at position 3 to the corresponding keto group.

   
   

Adenosine tetraphosphate

Adenosine tetraphosphate

C10H17N5O16P4 (586.9621)


   

7alpha-Hydroxydehydroepiandrosterone

7-alpha-Hydroxydehydroepiandrosterone

C19H28O3 (304.2038)


An androstanoid that is dehydroepiandrosterone carrying an additional hydroxy substituent at the 7alpha-position. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones

   

1,2,6-Trigalloylglucose

1,2,6-Trigalloylglucose

C27H24O18 (636.0963)


   

1D-myo-Inositol 3,4,5,6-tetrakisphosphate

1D-myo-Inositol 3,4,5,6-tetrakisphosphate

C6H16O18P4 (499.9287)


A myo-inositol tetrakisphosphate having the four phosphate groups placed at the 3-, 4-, 5- and 6-positions.

   

Nicotinate mononucleotide

Nicotinate mononucleotide

C11H15NO9P+ (336.0484)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Aminopropanal

3-Aminopropanal

C3H7NO (73.0528)


A propanal having an amino substituent at the 3-position

   

N,N-Dimethyladenosine

N6,N6-Dimethyladenosine

C12H17N5O4 (295.128)


N6,N6-Dimethyladenosine is a modified ribonucleoside previously found in rRNA, and also exhibits in mycobacterium bovis Bacille Calmette-Guérin tRNA[1].

   

Phosphohydroxypyruvic acid

Phosphohydroxypyruvic acid

C3H5O7P (183.9773)


   

(S)-1-Pyrroline-5-carboxylate

(S)-1-Pyrroline-5-carboxylate

C5H7NO2 (113.0477)


   

6,7-dihydropteridine

6,7-dihydropteridine

C6H6N4 (134.0592)


   

Pimara-8(14),15-diene

Pimara-8(14),15-diene

C20H32 (272.2504)


   

Malvin

Malvin

C29H35O17+ (655.1874)


An anthocyanin cation that is malvidin carrying two beta-D-glucosyl residues at positions 3 and 5.

   

3-Oxalomalic acid

3-Oxalomalic acid

C6H6O8 (206.0063)


   

3O-acetylplatycodin D

3O-acetylplatycodin D

C59H94O29 (1266.588)


A natural product found in Platycodon grandiflorum.

   

Myo-inositol 1,3,4,6-tetrakisphosphate

Myo-inositol 1,3,4,6-tetrakisphosphate

C6H16O18P4 (499.9287)


A myo-inositol tetrakisphosphate having the phosphate groups placed at the 1-, 3-, 4- and 6-positions.

   

(6aR,6bR,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

(6aR,6bR,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

C28H36O3 (420.2664)


D000970 - Antineoplastic Agents

   

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

C29H40O9 (532.2672)


D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Disodium phosphate

Disodium hydrogenorthophosphate

Na2HPO4 (141.9408)


C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent

   

13(S)-HODE

(9Z,11E)-(13S)-13-Hydroxyoctadeca-9,11-dienoic acid

C18H32O3 (296.2351)


An HODE (hydroxyoctadecadienoic acid) in which the double bonds are at positions 9 and 11 (E and Z geometry, respectively) and the hydroxy group is at position 13 (with S-configuration).

   

LUCANTHONE

LUCANTHONE

C20H24N2OS (340.1609)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Tetrachlorodian

Phenol,4,4-(1-methylethylidene)bis[2,6-dichloro-

C15H12Cl4O2 (363.9591)


   

O-Ethylphenol

O-Ethylphenol

C8H10O (122.0732)


   

3-Hydroxyphenylpropanoate

3-(3-hydroxyphenyl)propanoic acid

C9H10O3 (166.063)


A monocarboxylic acid that is propionic acid carrying a 3-hydroxyphenyl substituent at C-3. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1]. 3-(3-Hydroxyphenyl)propionic acid is a flavonoid metabolite formed by human microflora. 3-(3-Hydroxyphenyl)propionic acid shows vasodilatory activity[1].

   

Butyrylcarnitine

Butyrylcarnitine

C11H21NO4 (231.1471)


Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.

   

22:4n6

(7Z,10Z,13Z,16Z)-Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)


The all-cis-isomer of a C22 polyunsaturated fatty acid having four double bonds in the 7-, 10-, 13- and 16-positions. One of the most abundant fatty acids in the early human brain.

   

Icosadienoic acid

(11Z,14Z)-Eicosa-11,14-dienoic acid

C20H36O2 (308.2715)


   

e-Tokoferol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 5 and 8 and a farnesyl chain at position 2. It has been isolated from various cultivars of wheat.

   

Icosatrienoic acid

(11Z,14Z,17Z)-Eicosa-11,14,17-trienoic acid

C20H34O2 (306.2559)


   

12,13-DHOA

(9Z)-12,13-Dihydroxyoctadec-9-enoic acid

C18H34O4 (314.2457)


A DiHOME obtained by formal dihydroxylation of the 12,13-double bond of octadeca-9,12-dienoic acid (the 9Z-geoisomer).

   

4-BROMOCATECHOL

4-BROMOCATECHOL

C6H5BrO2 (187.9473)


   

heptachlor

Heptachlorane

C10H5Cl7 (369.8211)


D004785 - Environmental Pollutants > D012989 - Soil Pollutants D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

N-METHYLFORMAMIDE

N-METHYLFORMAMIDE

C2H5NO (59.0371)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents

   

Ethlenethiourea

2-Mercaptoimidazoline

C3H6N2S (102.0252)


   

Neozone

2-Phenylaminonaphthalene

C16H13N (219.1048)


   

UNII:0514MAW53A

UNII:0514MAW53A

C15H24NO4PS (345.1164)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

1,4-Dianilinobenzene

N,N-DIPHENYL-1,4-PHENYLENEDIAMINE

C18H16N2 (260.1313)


D020011 - Protective Agents > D000975 - Antioxidants

   

Tris(2-chloroethyl) phosphate

Tris(2-chloroethyl) phosphate

C6H12Cl3O4P (283.9539)


D005411 - Flame Retardants

   

Zoxazolamine

Zoxazolamine

C7H5ClN2O (168.009)


D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant C26170 - Protective Agent > C921 - Uricosuric Agent D002491 - Central Nervous System Agents

   

Monolaurin

2,3-Dihydroxypropyl dodecanoate

C15H30O4 (274.2144)


D020011 - Protective Agents > D002327 - Cariostatic Agents D001697 - Biomedical and Dental Materials D013501 - Surface-Active Agents

   

SC-58125

1-((4-Methylsulfonyl)phenyl)-3-trifluoromethyl-5-(4-fluorophenyl)pyrazole

C17H12F4N2O2S (384.0556)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

5,6-Epoxyretinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-{2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}nona-2,4,6,8-tetraenoic acid

C20H28O3 (316.2038)


A retinoid obtained by epoxidation across the 5,6-double bond of retinoic acid. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Dendrolasin

Dendrolasin

C15H22O (218.1671)


   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)


   

2-Epi Docetaxel

2-Epi Docetaxel

C43H53NO14 (807.3466)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

FPL64176

Methyl-2,5-dimethyl-4-(2-(phenylmethyl)benzoyl)-1H-pyrrole-3-carboxylate

C22H21NO3 (347.1521)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

1-Naphthylacetylspermine

1-Naphthylacetylspermine

C22H34N4O (370.2732)


Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.

   

Dopachrome

Dopachrome

C9H7NO4 (193.0375)


   

5-Hydroxyisourate

5-Hydroxyisouric acid

C5H4N4O4 (184.0233)


An oxopurine that is 5,7-dihydro-1H-purine-2,6,8(9H)-trione in which the hydrogen at position 5 is substituted by a hydroxy group.

   

6-acetamido-2-aminohexanoic acid

6-acetamido-2-aminohexanoic acid

C8H16N2O3 (188.1161)


   

13-oxooctadeca-9,11-dienoic acid

13-oxooctadeca-9,11-dienoic acid

C18H30O3 (294.2195)


   

adrenic acid

Docosa-7,10,13,16-tetraenoic acid

C22H36O2 (332.2715)