Gene Association: USP7

UniProt Search: USP7 (PROTEIN_CODING)
Function Description: ubiquitin specific peptidase 7

found 18 associated metabolites with current gene based on the text mining result from the pubmed database.

Santonin

InChI=1/C15H18O3/c1-8-10-4-6-15(3)7-5-11(16)9(2)12(15)13(10)18-14(8)17/h5,7-8,10,13H,4,6H2,1-3H3/t8-,10-,13-,15-/m0/s

C15H18O3 (246.1256)


Alpha-santonin is a santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. It has a role as a plant metabolite. It is a botanical anti-fungal agent and a santonin. Santonin is a natural product found in Artemisia spicigera, Artemisia diffusa, and other organisms with data available. Anthelmintic isolated from the dried unexpanded flower heads of Artemisia maritima and other species of Artemisia found principally in Russian and Chinese Turkestan and the Southern Ural region. (From Merck, 11th ed.) See also: ... View More ... A santonin that is 3a,5,5a,9b-tetrahydronaphtho[1,2-b]furan-2,8(3H,4H)-dione substituted by methyl groups at positions 3, 5a and 9. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent ADP-ribose 1"-2" cyclic phosphate is a cyclic phosphate nucleotide that arises from tRNA processing. In eukaryotic cells, pre-tRNAs spliced by a pathway that produces a 3,5-phosphodiester, 2-phosphomonoester linkage contain a 2-phosphate group adjacent to the tRNA anticodon. This 2-phosphate is transferred to NAD to give adenosine diphosphate (ADP)-ribose 1", 2"-cyclic phosphate (Appr>p), which is subsequently metabolized to ADP-ribose 1-phosphate (Appr-1p). The latter reaction is catalyzed by a cyclic phosphodiesterase (CPDase). (PMID: 9148938). One molecule of ADP-ribose 1",2"-cyclic phosphate (Appr>p) is formed during each of the approximately 500 000 tRNA splicing events. [HMDB] Constituent of Physalis peruviana (Cape gooseberry). Withaperuvin F is found in fruits. Alkaloid found on the leaf surfaces of Brassica oleracea cv. botrytis (cauliflower) [DFC]. Cabbage identification factor 1 is found in brassicas. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2267 INTERNAL_ID 2267; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.918 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.917 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.915 [Raw Data] CB081_Santonin_pos_30eV_CB000033.txt [Raw Data] CB081_Santonin_pos_10eV_CB000033.txt [Raw Data] CB081_Santonin_pos_40eV_CB000033.txt [Raw Data] CB081_Santonin_pos_20eV_CB000033.txt [Raw Data] CB081_Santonin_pos_50eV_CB000033.txt Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1]. Santonin is an active principle of the plant Artemisia cina, which is formely used to treat worms[1].

   

alpha-Methylene-gamma-butyrolactone

4-(3-FORMYL-2,5-DIMETHYL-1H-PYRROL-1-YL)BENZENECARBOXYLICACID

C5H6O2 (98.0368)


Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

Aconitate [cis or trans]

(1Z)-prop-1-ene-1,2,3-tricarboxylic acid

C6H6O6 (174.0164)


cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.

   

Succinimide

Dihydro-3-pyrroline-2,5-dione

C4H5NO2 (99.032)


Succinimide is an organic compound with the formula (CH2)2(CO)2NH. This white solid is used in a variety of organic syntheses, as well as in some industrial silver plating processes. The compound is classified as a cyclic imide. It may be prepared by thermal decomposition of ammonium succinate.[4] Succinimide, also known as butanimide, belongs to the class of organic compounds known as pyrrolidine-2-ones. These are pyrrolidines that bear a C=O group at position 2 of the pyrrolidine ring. Succinimide has been identified in urine (PMID: 22409530). Succinimides refers to compounds that contain the succinimide group. These compounds have some notable uses. Several succinimides are used as anticonvulsant drugs, including ethosuximide, phensuximide, and methsuximide.[5] Succinimides are also used to form covalent bonds between proteins or peptides and plastics, which is useful in a variety of assay techniques. Succinimide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-56-8 (retrieved 2024-06-29) (CAS RN: 123-56-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Fusaric acid

Acid, 5-butyl-2-pyridinedicarboxylic

C10H13NO2 (179.0946)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents Fusaric acid is a potent dopamine β-hydroxylase inhibitor.

   

Hygromycin B

Hygromycin B

C20H37N3O13 (527.2326)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.

   

Davidigenin

1- (2,4-Dihydroxyphenyl) -3- (4-hydroxyphenyl) -1-propanone

C15H14O4 (258.0892)


A member of the class of dihydrochalcones that is dihydrochalcone substituted by hydroxy groups at positions 4, 2, and 4 respectively.

   

Endoxifen

4-[(1Z)-1-{4-[2-(methylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl]phenol

C25H27NO2 (373.2042)


Endoxifen (EDX) is a key active metabolite of tamoxifen (TAM) with higher affinity and specificity to estrogen receptors that also inhibits aromatase activity. (PMID: 23274567) Tamoxifen is an antagonist of the estrogen receptor in breast tissue via its active metabolite, hydroxytamoxifen. In other tissues such as the endometrium, it behaves as an agonist, and thus may be characterized as a mixed agonist/antagonist. Tamoxifen is the usual endocrine therapy for hormone receptor-positive breast cancer in pre-menopausal women, and is also a standard in post-menopausal women although aromatase inhibitors are also frequently used in that setting. (Wikipedia) The pharmacological activity of Tamoxifen is dependent on its conversion to its active metabolite, endoxifen, by CYP2D6. (PMID: 23711794) Tamoxifen is a largely inactive pro-drug, requiring metabolism into its most important metabolite endoxifen. Since the cytochrome P450 (CYP) 2D6 enzyme is primarily involved in this metabolism, genetic polymorphisms of this enzyme, but also drug-induced CYP2D6 inhibition can result in considerably reduced endoxifen formation and as a consequence may affect the efficacy of tamoxifen treatment. (PMID: 23760858)

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

Hygromycin B

(3R,3aS,4S,4S,5R,6R,6R,7S,7aS)-4-[(1R,2S,3R,5S,6R)-3-amino-2,6-dihydroxy-5-(methylamino)cyclohexyl]oxy-6-[(1S)-1-amino-2-hydroxyethyl]-6-(hydroxymethyl)spiro[4,6,7,7a-tetrahydro-3aH-[1,3]dioxolo[4,5-c]pyran-2,2-oxane]-3,4,5,7-tetrol

C20H37N3O13 (527.2326)


Hygromycin B is a fda approved antibiotic food additive for swine and poultry Hygromycin B is an antibiotic produced by the bacterium Streptomyces hygroscopicus. It is an aminoglycoside that kills bacteria, fungi and higher eukaryotic cells by inhibiting protein synthesis. In the laboratory it is used for the selection and maintenance of prokaryotic and eukaryotic cells that contain the hygromycin resistance gene. The resistance gene is a kinase that inactivates hygromycin B through phosphorylation. Since the discovery of hygromycin-resistance genes, hygromycin B has become a standard selection antibiotic in gene transfer experiments in many prokaryotic and eukaryotic cells D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents FDA approved antibiotic food additive for swine and poultry Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.

   

Indirubin-3'-monoxime

3-nitroso-1H,1H-[2,3-biindole]-2-ol

C16H11N3O2 (277.0851)


Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.

   

INDIRUBIN-3-MONOXIME

3-[1,3-dihydro-3-(hydroxyimino)-2H-indol-2-ylidene]-1,3-dihydro-2H-indol-2-one

C16H11N3O2 (277.0851)


A member of the class of biindoles that is indirubin in which the keto group at position 3 has undergone condensation with hydroxylamine to form the corresponding oxime. Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.

   

fusaric acid

fusaric acid

C10H13NO2 (179.0946)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE Fusarium verticilloides relative retention time with respect to 9-anthracene Carboxylic Acid is 0.535 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.533 Fusaric acid is a potent dopamine β-hydroxylase inhibitor.

   

Tulipane

.alpha.-Methylene-.gamma.-butyrolactone

C5H6O2 (98.0368)


D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

Tulipalin_A

4-(3-FORMYL-2,5-DIMETHYL-1H-PYRROL-1-YL)BENZENECARBOXYLICACID

C5H6O2 (98.0368)


Alpha-methylene gamma-butyrolactone is a butan-4-olide having a methylene group at the 3-position. It has a role as a gastrointestinal drug and an anti-ulcer drug. alpha-Methylene-gamma-butyrolactone is a natural product found in Tulipa agenensis, Tulipa humilis, and other organisms with data available. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2]. Tulipalin A (α-Methylene butyrolactone) is a glycoside. Tulipalin A is a causative allergen that induces Allergic contact dermatitides[1]. Tulipalin A (α-Methylene butyrolactone) at low dose affects the functionality of immune cells, such as Jurkat T cells[2].

   

SUCCINIMIDE

SUCCINIMIDE

C4H5NO2 (99.032)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals

   

Destomysin

Hygromycin B

C20H37N3O13 (527.2326)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Hygromycin B is an aminoglycoside antibiotic active against prokaryotic and eukaryotic cells.

   

Endoxifen

4-Hydroxy-N-desmethyltamoxifen

C25H27NO2 (373.2042)