Cetyl palmitate (BioDeep_00000009601)
Main id: BioDeep_00000630013
human metabolite blood metabolite natural product
代谢物信息卡片
化学式: C32H64O2 (480.4906044)
中文名称: C16-18 脂肪酸 C12-18 烷醇酯, 十六酸十六酯
谱图信息:
最多检出来源 Homo sapiens(blood) 95.24%
分子结构信息
SMILES: CCCCCCCCCCCCCCCC(OCCCCCCCCCCCCCCCC)=O
InChI: InChI=1S/C32H64O2/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-31-34-32(33)30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h3-31H2,1-2H3
描述信息
Ceryl palmitate, also known as hexadecanyl hexadecanoate or hexadecanoic acid, hexadecyl ester, is a member of the class of compounds known as wax monoesters. Wax monoesters are waxes bearing an ester group at exactly one position. Thus, ceryl palmitate is considered to be a fatty ester lipid molecule. Ceryl palmitate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ceryl palmitate can be found in loquat and opium poppy, which makes ceryl palmitate a potential biomarker for the consumption of these food products.
同义名列表
23 个代谢物同义名
Fatty acids, C16-18, C12-18-alkyl esters; Hexadecanoic acid, hexadecyl ester; Palmitic acid, hexadecyl ester; Hexadecanoate, hexadecyl ester; N-Hexadecyl hexadecanoic acid; Hexadecanyl hexadecanoic acid; Palmitic acid palmityl ester; N-Hexadecanyl palmitic acid; Palmitic acid, cetyl ester; N-Hexadecyl hexadecanoate; hexadecanyl hexadecanoate; 1-hexadecyl hexadecanoate; Palmitate palmityl ester; N-Hexadecanyl palmitate; hexadecyl hexadecanoate; Palmitate, cetyl ester; Cetyl palmitic acid; Ceryl palmitic acid; Palmityl palmitate; Cetyl palmitate; Ceryl palmitate; WE(16:0/16:0); WE 32:0
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:75584
- KEGG: C13821
- PubChem: 10889
- HMDB: HMDB0249838
- Metlin: METLIN36631
- ChEMBL: CHEMBL2106073
- Wikipedia: Cetyl_palmitate
- LipidMAPS: LMFA07010001
- MetaCyc: CPD-14317
- foodb: FDB005402
- chemspider: 10427
- CAS: 100231-74-1
- CAS: 95912-87-1
- CAS: 540-10-3
- PMhub: MS000023401
- PubChem: 854066
- 3DMET: B04591
- NIKKAJI: J65.556B
- LOTUS: LTS0267693
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(0)
代谢反应
62 个相关的代谢反应过程信息。
Reactome(62)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Wax biosynthesis:
H+ + PalmCoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Wax biosynthesis:
H+ + PalmCoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Wax and plasmalogen biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Wax and plasmalogen biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Wax and plasmalogen biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
HXOL + PALM-CoA ⟶ CoA-SH + PALM-PALM
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
- Wax biosynthesis:
H+ + PALM-CoA + TPNH ⟶ CoA-SH + HXOL + TPN
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
9 个相关的物种来源信息
- 40678 - Alcyoniidae: LTS0267693
- 6101 - Anthozoa: LTS0267693
- 6073 - Cnidaria: LTS0267693
- 2759 - Eukaryota: LTS0267693
- 9606 - Homo sapiens: -
- 205095 - Lobophytum: 10.1016/S0040-4020(01)92252-5
- 205095 - Lobophytum: LTS0267693
- 33208 - Metazoa: LTS0267693
- 51814 - Sinularia: LTS0267693
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Rita M Pinto, Claudia Monteiro, Sofia A Costa Lima, Susana Casal, Patrick Van Dijck, M Cristina L Martins, Cláudia Nunes, Salette Reis. N-Acetyl-l-cysteine-Loaded Nanosystems as a Promising Therapeutic Approach Toward the Eradication of Pseudomonas aeruginosa Biofilms.
ACS applied materials & interfaces.
2021 Sep; 13(36):42329-42343. doi:
10.1021/acsami.1c05124
. [PMID: 34464076] - Ilaria Arduino, Zehua Liu, Antti Rahikkala, Patrícia Figueiredo, Alexandra Correia, Annalisa Cutrignelli, Nunzio Denora, Hélder A Santos. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique.
Acta biomaterialia.
2021 02; 121(?):566-578. doi:
10.1016/j.actbio.2020.12.024
. [PMID: 33326887] - Eliana B Souto, Slavomira Doktorovova, Aleksandra Zielinska, Amélia M Silva. Key production parameters for the development of solid lipid nanoparticles by high shear homogenization.
Pharmaceutical development and technology.
2019 Nov; 24(9):1181-1185. doi:
10.1080/10837450.2019.1647235
. [PMID: 31354002] - Luciana N Andrade, Daniele M L Oliveira, Marco V Chaud, Thais F R Alves, Marcelo Nery, Classius F da Silva, Joyce K C Gonsalves, Rogéria S Nunes, Cristiane B Corrêa, Ricardo G Amaral, Elena Sanchez-Lopez, Eliana B Souto, Patrícia Severino. Praziquantel-Solid Lipid Nanoparticles Produced by Supercritical Carbon Dioxide Extraction: Physicochemical Characterization, Release Profile, and Cytotoxicity.
Molecules (Basel, Switzerland).
2019 Oct; 24(21):. doi:
10.3390/molecules24213881
. [PMID: 31661906] - Warangkana Pornputtapitak, Jaturavit Pantakitcharoenkul, Veerawat Teeranachaideekul, Kitiphat Sinthiptharakoon, Chaweewan Sapcharoenkun, Benchaporn Meemuk. Effect of Oil Content on Physiochemical Characteristics of γ-Oryzanol-Loaded Nanostructured Lipid Carriers.
Journal of oleo science.
2019 Aug; 68(8):699-707. doi:
10.5650/jos.ess18127
. [PMID: 31292337] - Hery Mitsutake, Lígia N M Ribeiro, Gustavo H Rodrigues da Silva, Simone R Castro, Eneida de Paula, Ronei J Poppi, Márcia C Breitkreitz. Evaluation of miscibility and polymorphism of synthetic and natural lipids for nanostructured lipid carrier (NLC) formulations by Raman mapping and multivariate curve resolution (MCR).
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2019 Jul; 135(?):51-59. doi:
10.1016/j.ejps.2019.05.002
. [PMID: 31071439] - Mariana Domingues Bianchin, Sílvia Maria Borowicz, Gabriella da Rosa Monte Machado, Bruna Pippi, Sílvia Stanisçuaski Guterres, Adriana Raffin Pohlmann, Alexandre Meneghello Fuentefria, Irene Clemes Külkamp-Guerreiro. Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species.
Colloids and surfaces. B, Biointerfaces.
2019 Mar; 175(?):523-529. doi:
10.1016/j.colsurfb.2018.12.011
. [PMID: 30579053] - Hery Mitsutake, Simone R Castro, Eneida de Paula, Ronei J Poppi, Douglas N Rutledge, Márcia C Breitkreitz. Comparison of different chemometric methods to extract chemical and physical information from Raman images of homogeneous and heterogeneous semi-solid pharmaceutical formulations.
International journal of pharmaceutics.
2018 Dec; 552(1-2):119-129. doi:
10.1016/j.ijpharm.2018.09.058
. [PMID: 30266516] - Raquel M Barbosa, Bruna R Casadei, Evandro L Duarte, Patrícia Severino, Leandro R S Barbosa, Nelson Duran, Eneida de Paula. Electron Paramagnetic Resonance and Small-Angle X-ray Scattering Characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Dibucaine Encapsulation.
Langmuir : the ACS journal of surfaces and colloids.
2018 11; 34(44):13296-13304. doi:
10.1021/acs.langmuir.8b02559
. [PMID: 30299102] - Gustavo Henrique Rodrigues Da Silva, Ligia Nunes de Morais Ribeiro, Viviane Aparecida Guilherme, Simone Ramos de Castro, Marcia Cristina Breitkreitz, Eneida de Paula. Bupivacaine (S75:R25) Loaded in Nanostructured Lipid Carriers: Factorial Design, HPLC Quantification Method and Physicochemical Stability Study.
Current drug delivery.
2018; 15(3):388-396. doi:
10.2174/1567201814666170726101113
. [PMID: 28745230] - Thitirat Chantaburanan, Veerawat Teeranachaideekul, Doungdaw Chantasart, Anchalee Jintapattanakit, Varaporn Buraphacheep Junyaprasert. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery.
Journal of colloid and interface science.
2017 Oct; 504(?):247-256. doi:
10.1016/j.jcis.2017.05.038
. [PMID: 28551519] - Martha Heider, Gerd Hause, Karsten Mäder. Does the commonly used pH-stat method with back titration really quantify the enzymatic digestibility of lipid drug delivery systems? A case study on solid lipid nanoparticles (SLN).
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2016 Dec; 109(?):194-205. doi:
10.1016/j.ejpb.2016.10.007
. [PMID: 27789354] - Julita Kulbacka, Agata Pucek, Małgorzata Kotulska, Magda Dubińska-Magiera, Joanna Rossowska, Marie-Pierre Rols, Kazimiera Anna Wilk. Electroporation and lipid nanoparticles with cyanine IR-780 and flavonoids as efficient vectors to enhanced drug delivery in colon cancer.
Bioelectrochemistry (Amsterdam, Netherlands).
2016 Aug; 110(?):19-31. doi:
10.1016/j.bioelechem.2016.02.013
. [PMID: 26946158] - Maria Grazia Sarpietro, Maria Lorena Accolla, Giovanni Puglisi, Francesco Castelli, Lucia Montenegro. Idebenone loaded solid lipid nanoparticles: calorimetric studies on surfactant and drug loading effects.
International journal of pharmaceutics.
2014 Aug; 471(1-2):69-74. doi:
10.1016/j.ijpharm.2014.05.019
. [PMID: 24845103] - Lucia Montenegro, Chiara Sinico, Ines Castangia, Claudia Carbone, Giovanni Puglisi. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation.
International journal of pharmaceutics.
2012 Sep; 434(1-2):169-74. doi:
10.1016/j.ijpharm.2012.05.046
. [PMID: 22659127] - G Niculae, I Lacatusu, N Badea, A Meghea. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect.
Nanotechnology.
2012 Aug; 23(31):315704. doi:
10.1088/0957-4484/23/31/315704
. [PMID: 22797534] - S Martins, S Costa-Lima, T Carneiro, A Cordeiro-da-Silva, E B Souto, D C Ferreira. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway.
International journal of pharmaceutics.
2012 Jul; 430(1-2):216-27. doi:
10.1016/j.ijpharm.2012.03.032
. [PMID: 22465548] - Susana Martins, Ingunn Tho, Eliana Souto, Domingos Ferreira, Martin Brandl. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2012 Apr; 45(5):613-23. doi:
10.1016/j.ejps.2011.12.015
. [PMID: 22245538] - Maryam Ghadiri, Shohreh Fatemi, Alireza Vatanara, Delaram Doroud, Abdolhossein Rouholamini Najafabadi, Majid Darabi, Amir Abbas Rahimi. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size.
International journal of pharmaceutics.
2012 Mar; 424(1-2):128-37. doi:
10.1016/j.ijpharm.2011.12.037
. [PMID: 22227603] - Kuo-Sheng Liu, Chih-Jen Wen, Tzu-Chen Yen, K C Sung, Ming-Chuan Ku, Jhi-Joung Wang, Jia-You Fang. Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting.
Nanotechnology.
2012 Mar; 23(9):095103. doi:
10.1088/0957-4484/23/9/095103
. [PMID: 22327243] - C Carbone, B Tomasello, B Ruozi, M Renis, G Puglisi. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design.
European journal of medicinal chemistry.
2012 Mar; 49(?):110-7. doi:
10.1016/j.ejmech.2012.01.001
. [PMID: 22244589] - Akhayacatra Chinsriwongkul, Ponwanit Chareanputtakhun, Tanasait Ngawhirunpat, Theerasak Rojanarata, Warisada Sila-on, Uracha Ruktanonchai, Praneet Opanasopit. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug.
AAPS PharmSciTech.
2012 Mar; 13(1):150-8. doi:
10.1208/s12249-011-9733-8
. [PMID: 22167418] - R Witzleb, A Müllertz, V-R Kanikanti, H-J Hamann, P Kleinebudde. Dissolution of solid lipid extrudates in biorelevant media.
International journal of pharmaceutics.
2012 Jan; 422(1-2):116-24. doi:
10.1016/j.ijpharm.2011.10.037
. [PMID: 22044538] - Susana M Martins, Thierry Wendling, Virgínia M F Gonçalves, Bruno Sarmento, Domingos C Ferreira. Development and validation of a simple reversed-phase HPLC method for the determination of camptothecin in animal organs following administration in solid lipid nanoparticles.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Jan; 880(1):100-7. doi:
10.1016/j.jchromb.2011.11.023
. [PMID: 22153332] - L Montenegro, A Trapani, A Latrofa, G Puglisi. In vitro evaluation on a model of blood brain barrier of idebenone-loaded solid lipid nanoparticles.
Journal of nanoscience and nanotechnology.
2012 Jan; 12(1):330-7. doi:
10.1166/jnn.2012.5174
. [PMID: 22523983] - Patrícia Severino, Tatiana Andreani, Ana Sofia Macedo, Joana F Fangueiro, Maria Helena A Santana, Amélia M Silva, Eliana B Souto. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery.
Journal of drug delivery.
2012; 2012(?):750891. doi:
10.1155/2012/750891
. [PMID: 22175030] - Jessica Carilli, Simon D Donner, Aaron C Hartmann. Historical temperature variability affects coral response to heat stress.
PloS one.
2012; 7(3):e34418. doi:
10.1371/journal.pone.0034418
. [PMID: 22479626] - Chih-Jen Wen, Tzu-Chen Yen, Saleh A Al-Suwayeh, Hui-Wen Chang, Jia-You Fang. In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios.
Nanomedicine (London, England).
2011 Nov; 6(9):1545-59. doi:
10.2217/nnm.11.46
. [PMID: 22077462] - Paolo Blasi, Stefano Giovagnoli, Aurélie Schoubben, Carmelo Puglia, Francesco Bonina, Carlo Rossi, Maurizio Ricci. Lipid nanoparticles for brain targeting I. Formulation optimization.
International journal of pharmaceutics.
2011 Oct; 419(1-2):287-95. doi:
10.1016/j.ijpharm.2011.07.035
. [PMID: 21827844] - Delaram Doroud, Farnaz Zahedifard, Alireza Vatanara, Yasaman Taslimi, Rouholah Vahabpour, Fatemeh Torkashvand, Behrooz Vaziri, Abdolhossein Rouholamini Najafabadi, Sima Rafati. C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice.
PLoS neglected tropical diseases.
2011 Jul; 5(7):e1236. doi:
10.1371/journal.pntd.0001236
. [PMID: 21765963] - Mohamed Sellami, Imen Aissa, Fakher Frikha, Youssef Gargouri, Nabil Miled. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: optimization by response surface methodology.
BMC biotechnology.
2011 Jun; 11(?):68. doi:
10.1186/1472-6750-11-68
. [PMID: 21682865] - D Doroud, F Zahedifard, A Vatanara, A R Najafabadi, S Rafati. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice.
Parasite immunology.
2011 Jun; 33(6):335-48. doi:
10.1111/j.1365-3024.2011.01289.x
. [PMID: 21410716] - Lucia Montenegro, Agata Campisi, Maria Grazia Sarpietro, Claudia Carbone, Rosaria Acquaviva, Giuseppina Raciti, Giovanni Puglisi. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain.
Drug development and industrial pharmacy.
2011 Jun; 37(6):737-46. doi:
10.3109/03639045.2010.539231
. [PMID: 21204752] - A Kovacevic, S Savic, G Vuleta, R H Müller, C M Keck. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure.
International journal of pharmaceutics.
2011 Mar; 406(1-2):163-72. doi:
10.1016/j.ijpharm.2010.12.036
. [PMID: 21219990] - Rui Yang, Renchao Gao, Fang Li, Haibing He, Xing Tang. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process.
Drug development and industrial pharmacy.
2011 Feb; 37(2):139-48. doi:
10.3109/03639045.2010.497151
. [PMID: 20578879] - Sin Man Lam, Louis Tong, Siew Sian Yong, Bowen Li, Shyam S Chaurasia, Guanghou Shui, Markus R Wenk. Meibum lipid composition in Asians with dry eye disease.
PloS one.
2011; 6(10):e24339. doi:
10.1371/journal.pone.0024339
. [PMID: 22043274] - Yosra S R Elnaggar, Magda A El-Massik, Ossama Y Abdallah. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles.
International journal of nanomedicine.
2011; 6(?):3195-205. doi:
10.2147/ijn.s25825
. [PMID: 22238508] - Sharareh Eskandari, Jaleh Varshosaz, Mohsen Minaiyan, Majid Tabbakhian. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model.
International journal of nanomedicine.
2011; 6(?):363-71. doi:
10.2147/ijn.s15881
. [PMID: 21499426] - Effat Sadat Farboud, Saman Ahmad Nasrollahi, Zahra Tabbakhi. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies.
International journal of nanomedicine.
2011; 6(?):611-7. doi:
10.2147/ijn.s16815
. [PMID: 21674018] - Shu-Hui Hsu, Chih-Jen Wen, S A Al-Suwayeh, Hui-Wen Chang, Tzu-Chen Yen, Jia-You Fang. Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug.
Nanotechnology.
2010 Oct; 21(40):405101. doi:
10.1088/0957-4484/21/40/405101
. [PMID: 20823498] - Nispa Seetapan, Piyawan Bejrapha, Wanwisa Srinuanchai, Satit Puttipipatkhachorn, Uracha Ruktanonchai. Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: effects of lipid types and concentrations on dispersion consistency.
Drug development and industrial pharmacy.
2010 Sep; 36(9):1005-15. doi:
10.3109/03639040903586273
. [PMID: 20184417] - Rama Mallipeddi, Lisa Cencia Rohan. Progress in antiretroviral drug delivery using nanotechnology.
International journal of nanomedicine.
2010 Aug; 5(?):533-47. doi:
10.2147/ijn.s7681
. [PMID: 20957115] - Louise B Jensen, Emily Magnussson, Linda Gunnarsson, Charlotte Vermehren, Hanne M Nielsen, Karsten Petersson. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles.
International journal of pharmaceutics.
2010 May; 390(1):53-60. doi:
10.1016/j.ijpharm.2009.10.022
. [PMID: 19836439] - Chun-Rong Yang, Xiu-Li Zhao, Hai-Yang Hu, Ke-Xin Li, Xin Sun, Lei Li, Da-Wei Chen. Preparation, optimization and characteristic of huperzine a loaded nanostructured lipid carriers.
Chemical & pharmaceutical bulletin.
2010 May; 58(5):656-61. doi:
10.1248/cpb.58.656
. [PMID: 20460792] - Suranan Anantachaisilp, Siwaporn Meejoo Smith, Alongkot Treetong, Sirapat Pratontep, Satit Puttipipatkhachorn, Uracha Rungsardthong Ruktanonchai. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution.
Nanotechnology.
2010 Mar; 21(12):125102. doi:
10.1088/0957-4484/21/12/125102
. [PMID: 20182010] - Delaram Doroud, Alireza Vatanara, Farnaz Zahedifard, Elham Gholami, Rouhollah Vahabpour, Abdolhossein Rouholamini Najafabadi, Sima Rafati. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations.
Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.
2010; 13(3):320-35. doi:
10.18433/j3r30t
. [PMID: 21092706] - Jhi-Joung Wang, Kuo-Sheng Liu, K C Sung, Chia-Yin Tsai, Jia-You Fang. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection.
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.
2009 Sep; 38(2):138-46. doi:
10.1016/j.ejps.2009.06.008
. [PMID: 19591929] - S Mukherjee, S Ray, R S Thakur. Solid lipid nanoparticles: a modern formulation approach in drug delivery system.
Indian journal of pharmaceutical sciences.
2009 Jul; 71(4):349-58. doi:
10.4103/0250-474x.57282
. [PMID: 20502539] - Uracha Ruktanonchai, Surachai Limpakdee, Siwaporn Meejoo, Usawadee Sakulkhu, Nuntavan Bunyapraphatsara, Varaporn Junyaprasert, Satit Puttipipatkhachorn. The effect of cetyl palmitate crystallinity on physical properties of gamma-oryzanol encapsulated in solid lipid nanoparticles.
Nanotechnology.
2008 Mar; 19(9):095701. doi:
10.1088/0957-4484/19/9/095701
. [PMID: 21817683] - Veerawat Teeranachaideekul, Eliana B Souto, Varaporn B Junyaprasert, Rainer H Müller. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2007 Aug; 67(1):141-8. doi:
10.1016/j.ejpb.2007.01.015
. [PMID: 17346953] - Venishetty Vinay Kumar, Durairaj Chandrasekar, Sistla Ramakrishna, Veerabrahma Kishan, Yamsani Madhusudan Rao, Prakash Vamanrao Diwan. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.
International journal of pharmaceutics.
2007 Apr; 335(1-2):167-175. doi:
10.1016/j.ijpharm.2006.11.004
. [PMID: 17161566] - Bruno Sarmento, Susana Martins, Domingos Ferreira, Eliana B Souto. Oral insulin delivery by means of solid lipid nanoparticles.
International journal of nanomedicine.
2007; 2(4):743-9. doi:
. [PMID: 18203440]
- Susana Martins, Bruno Sarmento, Domingos C Ferreira, Eliana B Souto. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles.
International journal of nanomedicine.
2007; 2(4):595-607. doi:
"
. [PMID: 18203427] - H Weyhers, S Ehlers, H Hahn, E B Souto, R H Müller. Solid lipid nanoparticles (SLN)--effects of lipid composition on in vitro degradation and in vivo toxicity.
Die Pharmazie.
2006 Jun; 61(6):539-44. doi:
. [PMID: 16826974]
- E B Souto, C Anselmi, M Centini, R H Müller. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN).
International journal of pharmaceutics.
2005 May; 295(1-2):261-8. doi:
10.1016/j.ijpharm.2005.02.005
. [PMID: 15848010] - M Trotta, R Cavalli, M E Carlotti, L Battaglia, F Debernardi. Solid lipid micro-particles carrying insulin formed by solvent-in-water emulsion-diffusion technique.
International journal of pharmaceutics.
2005 Jan; 288(2):281-8. doi:
10.1016/j.ijpharm.2004.10.014
. [PMID: 15620868] - A Lippacher, R H Müller, K Mäder. Semisolid SLN dispersions for topical application: influence of formulation and production parameters on viscoelastic properties.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2002 Mar; 53(2):155-60. doi:
10.1016/s0939-6411(01)00233-8
. [PMID: 11879997] - S A Wissing, R H Müller. Solid lipid nanoparticles (SLN)--a novel carrier for UV blockers.
Die Pharmazie.
2001 Oct; 56(10):783-6. doi:
"
. [PMID: 11683123] - M Sznitowska, M Gajewska, S Janicki, A Radwanska, G Lukowski. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2001 Sep; 52(2):159-63. doi:
10.1016/s0939-6411(01)00157-6
. [PMID: 11522481] - V Jenning, S H Gohla. Encapsulation of retinoids in solid lipid nanoparticles (SLN).
Journal of microencapsulation.
2001 Mar; 18(2):149-58. doi:
10.1080/02652040010000361
. [PMID: 11253932] - G Lukowski, J Kasbohm, P Pflegel, A Illing, H Wulff. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles.
International journal of pharmaceutics.
2000 Mar; 196(2):201-5. doi:
10.1016/s0378-5173(99)00421-4
. [PMID: 10699718] - N Schöler, E Zimmermann, U Katzfey, H Hahn, R H Müller, O Liesenfeld. Preserved solid lipid nanoparticles (SLN) at low concentrations do cause neither direct nor indirect cytotoxic effects in peritoneal macrophages.
International journal of pharmaceutics.
2000 Mar; 196(2):235-9. doi:
10.1016/s0378-5173(99)00430-5
. [PMID: 10699726] - V Jenning, S Gohla. Comparison of wax and glyceride solid lipid nanoparticles (SLN).
International journal of pharmaceutics.
2000 Mar; 196(2):219-22. doi:
10.1016/s0378-5173(99)00426-3
. [PMID: 10699722] - A Dingler, R P Blum, H Niehus, R H Müller, S Gohla. Solid lipid nanoparticles (SLN/Lipopearls)--a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products.
Journal of microencapsulation.
1999 Nov; 16(6):751-67. doi:
10.1080/026520499288690
. [PMID: 10575627] - C Freitas, R H Müllerä. Spray-drying of solid lipid nanoparticles (SLN TM).
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
1998 Sep; 46(2):145-51. doi:
10.1016/s0939-6411(97)00172-0
. [PMID: 9795036]