N1-Methyl-4-pyridone-3-carboxamide (BioDeep_00000004197)

 

Secondary id: BioDeep_00001868338

human metabolite Endogenous blood metabolite Toxin


代谢物信息卡片


1-methyl-4-oxo-1,4-dihydropyridine-3-carboxamide

化学式: C7H8N2O2 (152.0586)
中文名称: N1-甲基-4-吡啶酮-3-甲酰胺
谱图信息: 最多检出来源 Homo sapiens(blood) 30.21%

Reviewed

Last reviewed on 2024-09-14.

Cite this Page

N1-Methyl-4-pyridone-3-carboxamide. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/n1-methyl-4-pyridone-3-carboxamide (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000004197). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CN1C=CC(=O)C(=C1)C(=O)N
InChI: InChI=1S/C7H8N2O2/c1-9-3-2-6(10)5(4-9)7(8)11/h2-4H,1H3,(H2,8,11)

描述信息

N1-Methyl-4-pyridone-3-carboxamide is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). Its concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300). N1-Methyl-4-pyridone-3-carboxamide has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).
N1-Methyl-4-pyridone-5-carboxamide (4PY ) is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). 4PY concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300) [HMDB]

同义名列表

15 个代谢物同义名

1-methyl-4-oxo-1,4-dihydropyridine-3-carboxamide; 1,4-Dihydro-1-methyl-4-oxo-3-pyridinecarboxamide; 1-Methyl-4-oxo-1,4-dihydro-3-pyridinecarboxamide; 3-(Aminocarbonyl)-1-methyl-4(1H)-pyridone; 5-Aminocarbonyl-1-methyl-4(1H)-pyridone; 1-methyl-4-oxopyridine-3-carboxamide; N1-Methyl-4-pyridone-5-carboxamide; N1-Methyl-4-pyridone-3-carboxamide; N-Methyl-4-pyridone-3-carboxamide; N-Methyl-4-pyridone-5-carboxamide; N-methyl-4-pyridone-5-carboxamide; 1-Methyl-4-pyridone-3-carboximide; 1-Methyl-4-pyridone-5-carboxamide; 1-Methyl-4-pyridone-3-carboxamide; N1-Methyl-4-pyridone-5-carboxamide



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

5 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(5)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ACMSD, AOX1, FGF23, NAMPT, NMRK2, QPRT, SIRT1, SMAD3, SRF
Nucleus 7 LIG4, NAMPT, PARP1, PPARA, SIRT1, SMAD3, SRF
cytosol 9 ACMSD, AOX1, LEP, NAMPT, NMRK2, PARP1, QPRT, SIRT1, SMAD3
nuclear body 1 PARP1
nucleoplasm 7 LIG4, NMRK2, PARP1, PPARA, SIRT1, SMAD3, SRF
Multi-pass membrane protein 2 PRLHR, UCP1
cell junction 1 NAMPT
Golgi membrane 1 INS
mitochondrial inner membrane 1 UCP1
Cytoplasm, cytosol 1 PARP1
plasma membrane 3 NMRK2, PRLHR, SMAD3
Membrane 3 ACMSD, PARP1, PRLHR
extracellular exosome 4 AOX1, NAMPT, QPRT, RNASE1
extracellular space 5 FGF23, INS, LEP, NAMPT, PTH
mitochondrion 3 PARP1, SIRT1, UCP1
protein-containing complex 1 PARP1
intracellular membrane-bounded organelle 2 LIG4, NMRK2
chromatin silencing complex 1 SIRT1
Secreted 5 FGF23, INS, LEP, NAMPT, RNASE1
extracellular region 5 FGF23, INS, LEP, PTH, RNASE1
transcription regulator complex 2 PARP1, SMAD3
nucleolus 2 PARP1, SIRT1
Mitochondrion inner membrane 1 UCP1
heterochromatin 1 SIRT1
Nucleus, PML body 1 SIRT1
PML body 1 SIRT1
nuclear speck 1 NAMPT
nuclear inner membrane 2 SIRT1, SMAD3
receptor complex 1 SMAD3
neuron projection 1 PRLHR
cilium 1 PRLHR
chromatin 5 PARP1, PPARA, SIRT1, SMAD3, SRF
Chromosome 1 PARP1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 2 LIG4, PARP1
site of double-strand break 1 PARP1
fibrillar center 1 SIRT1
nuclear envelope 2 PARP1, SIRT1
endosome lumen 1 INS
euchromatin 1 SIRT1
secretory granule lumen 1 INS
Golgi lumen 2 FGF23, INS
endoplasmic reticulum lumen 2 FGF23, INS
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
heteromeric SMAD protein complex 1 SMAD3
SMAD protein complex 1 SMAD3
protein-DNA complex 1 PARP1
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
condensed chromosome 1 LIG4
site of DNA damage 1 PARP1
catalytic complex 1 QPRT
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
DNA-dependent protein kinase-DNA ligase 4 complex 1 LIG4
nonhomologous end joining complex 1 LIG4
DNA ligase IV complex 1 LIG4
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Malgorzata Szafarz, Magdalena Lomnicka, Magdalena Sternak, Stefan Chlopicki, Joanna Szymura-Oleksiak. Simultaneous determination of nicotinic acid and its four metabolites in rat plasma using high performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS). Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2010 Apr; 878(11-12):895-902. doi: 10.1016/j.jchromb.2010.02.009. [PMID: 20223714]
  • Kei Takahashi, Alato Okuno, Tsutomu Fukuwatari, Katsumi Shibata. Comparison of the nicotinamide catabolism among rat strains. Bioscience, biotechnology, and biochemistry. 2009 Feb; 73(2):274-9. doi: 10.1271/bbb.80372. [PMID: 19202300]
  • Shigeyuki Kitamura, Kayoko Nitta, Yoshitaka Tayama, Chiaki Tanoue, Kazumi Sugihara, Tae Inoue, Toru Horie, Shigeru Ohta. Aldehyde oxidase-catalyzed metabolism of N1-methylnicotinamide in vivo and in vitro in chimeric mice with humanized liver. Drug metabolism and disposition: the biological fate of chemicals. 2008 Jul; 36(7):1202-5. doi: 10.1124/dmd.107.019075. [PMID: 18332084]
  • Przemysław Rutkowski, Ewa M Slominska, Wojciech Wołyniec, Ryszard T Smoleński, Marek Szolkiewicz, Julian Swierczyński, Bolesław Rutkowski. Nicotinamide metabolites accumulate in the tissues of uremic rats. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2008 Jan; 18(1):56-9. doi: 10.1053/j.jrn.2007.10.012. [PMID: 18089445]
  • R M Menon, M H Adams, M A González, D S Tolbert, J H Leu, E A Cefali. Plasma and urine pharmacokinetics of niacin and its metabolites from an extended-release niacin formulation. International journal of clinical pharmacology and therapeutics. 2007 Aug; 45(8):448-54. doi: 10.5414/cpp45448. [PMID: 17725178]
  • Przemyslaw Rutkowski, Ewa Maria Słominska, Marek Szołkiewicz, Ewa Aleksandrowicz, Ryszard Tomasz Smolenski, Wojciech Wołyniec, Marcin Renke, Krystyna Wisterowicz, Julian Swierczynski, Boleslaw Rutkowski. Relationship between uremic toxins and oxidative stress in patients with chronic renal failure. Scandinavian journal of urology and nephrology. 2007; 41(3):243-8. doi: 10.1080/00365590601017170. [PMID: 17469035]
  • Ewa M Slominska, Katarzyna Kowalik, Ryszard T Smolenski, Marek Szolkiewicz, Przemyslaw Rutkowski, Boleslaw Rutkowski, Julian Swierczynski. Accumulation of poly(ADP-ribose) polymerase inhibitors in children with chronic renal failure. Pediatric nephrology (Berlin, Germany). 2006 Jun; 21(6):800-6. doi: 10.1007/s00467-006-0072-z. [PMID: 16604373]
  • Naoko Kimura, Tsutomu Fukuwatari, Ryuzo Sasaki, Katsumi Shibata. Comparison of metabolic fates of nicotinamide, NAD+ and NADH administered orally and intraperitoneally; characterization of oral NADH. Journal of nutritional science and vitaminology. 2006 Apr; 52(2):142-8. doi: 10.3177/jnsv.52.142. [PMID: 16802695]
  • Kazumi Sugihara, Yoshitaka Tayama, Kazuhiro Shimomiya, Daisuke Yoshimoto, Shigeru Ohta, Shigeyuki Kitamura. Estimation of aldehyde oxidase activity in vivo from conversion ratio of N1-methylnicotinamide to pyridones, and intraspecies variation of the enzyme activity in rats. Drug metabolism and disposition: the biological fate of chemicals. 2006 Feb; 34(2):208-12. doi: 10.1124/dmd.105.006544. [PMID: 16299165]
  • Tsutomu Fukuwatari, Mari Ohta, Naoko Kimtjra, Ryuzo Sasaki, Katsumi Shibata. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes. Journal of nutritional science and vitaminology. 2004 Dec; 50(6):385-91. doi: 10.3177/jnsv.50.385. [PMID: 15895512]
  • Stephanie Ringeissen, Susan C Connor, H Roger Brown, Brian C Sweatman, Mark P Hodson, Steve P Kenny, Richard I Haworth, Paul McGill, Mark A Price, Mike C Aylott, Derek J Nunez, John N Haselden, Catherine J Waterfield. Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2003 May; 8(3-4):240-71. doi: 10.1080/1354750031000149124. [PMID: 12944176]
  • Katsumi Shibata, Tsutomu Fukuwatari, Mayumi Murakami, Ryuzo Sasaki. Increase in conversion of tryptophan to niacin in pregnant rats. Advances in experimental medicine and biology. 2003; 527(?):435-41. doi: 10.1007/978-1-4615-0135-0_51. [PMID: 15206761]
  • Pierre Wong, Abderrazak Bachki, Kris Banerjee, Brian Leyland-Jones. Identification of N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-5-carboxamide as components in urine extracts of individuals consuming coffee. Journal of pharmaceutical and biomedical analysis. 2002 Oct; 30(3):773-80. doi: 10.1016/s0731-7085(02)00384-9. [PMID: 12367703]
  • Tsutomu Fukuwatari, Yuko Morikawa, Etsuro Sugimoto, Katsumi Shibata. Effects of fatty liver induced by niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats. Bioscience, biotechnology, and biochemistry. 2002 Jun; 66(6):1196-204. doi: 10.1271/bbb.66.1196. [PMID: 12162538]
  • T Fukuwatari, E Sugimoto, K Shibata. [Effect of feeding with a poisonous mushroom Clitocybe acromelalga on the metabolism of tryptophan-niacin in rats]. Shokuhin eiseigaku zasshi. Journal of the Food Hygienic Society of Japan. 2001 Jun; 42(3):190-6. doi: 10.3358/shokueishi.42.190. [PMID: 11577392]
  • K Shibata, T Fukuwatari, E Sugimoto. Effects of dietary pyrazinamide, an antituberculosis agent, on the metabolism of tryptophan to niacin and of tryptophan to serotonin in rats. Bioscience, biotechnology, and biochemistry. 2001 Jun; 65(6):1339-46. doi: 10.1271/bbb.65.1339. [PMID: 11471733]