Baccatin_III (BioDeep_00000230460)

 

Secondary id: BioDeep_00000003704

PANOMIX_OTCML-2023


代谢物信息卡片


7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha,11alpha,12alpha,12aalpha,12balpha))-

化学式: C31H38O11 (586.2414)
中文名称: 巴卡亭III, 巴卡亭 Ⅲ
谱图信息: 最多检出来源 Viridiplantae(plant) 21.85%

分子结构信息

SMILES: CC1=C2C(C(=O)C3(C(CC4C(C3C(C(C2(C)C)(CC1O)O)OC(=O)C5=CC=CC=C5)(CO4)OC(=O)C)O)C)OC(=O)C
InChI: InChI=1S/C31H38O11/c1-15-19(34)13-31(38)26(41-27(37)18-10-8-7-9-11-18)24-29(6,20(35)12-21-30(24,14-39-21)42-17(3)33)25(36)23(40-16(2)32)22(15)28(31,4)5/h7-11,19-21,23-24,26,34-35,38H,12-14H2,1-6H3/t19-,20-,21+,23+,24-,26-,29+,30-,31+/m0/s1

描述信息

Baccatin III is a tetracyclic diterpenoid isolated from plant species of the genus Taxus. It has a role as a plant metabolite. It is a tetracyclic diterpenoid, an acetate ester and a benzoate ester. It derives from a hydride of a taxane.
Baccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available.
Baccatin III is a compound obtained from the needles of the Taxus baccata tree that is used as a precursor of paclitaxel.
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent
A tetracyclic diterpenoid isolated from plant species of the genus Taxus.
Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].
Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].

同义名列表

24 个代谢物同义名

7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha,11alpha,12alpha,12aalpha,12balpha))-; [2aR-(2aalpha,4beta,4abeta,6beta,9alpha,11alpha,12alpha,12aalpha,12balpha)]-6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-7,11-methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one; 7,11-METHANO-5H-CYCLODECA(3,4)BENZ(1,2-B)OXET-5-ONE, 6,12B-BIS(ACETYLOXY)-12-(BENZOYLOXY)-1,2A,3,4,4A,6,9,10,11,12,12A,12B-DODECAHYDRO-4,9,11-TRIHYDROXY-4A,8,13,13-TETRAMETHYL-, (2AR,4S,4AS,6R,9S,11S,12S,12AR,12BS)-; 7,11-Methano-5H-cyclodeca[3,4]benz[1,2-b]oxet-5-one, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-6,12b-Bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-7,11-methano-5H-cyclodeca[3,4]benz[1,2-b]oxet-5-one; [(1~{S},2~{S},3~{R},4~{S},7~{R},9~{S},10~{S},12~{R},15~{S})-4,12-diacetyloxy-10,14,16,16-tetramethyl-1,9,15-tris(oxidanyl)-11-oxidanylidene-6-oxatetracyclo[11.3.1.0^{3,10}.0^{4,7}]heptadec-13-en-2-yl] benzoate; (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-12-(benzoyloxy)-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-5-oxo-3,4,4a,5,6,9,10,11,12,12a-decahydro-1H-7,11-methanocyclodeca[3,4]benzo[1,2-b]oxete-6,12b(2aH)-diyl diacetate; 4,10beta-bis(acetyloxy)-1,7beta,13alpha-trihydroxy-9-oxo-5beta,20-epoxytax-11-en-2alpha-yl benzoate (13-O-de[(2R,3S)-3-benzamido-2-hydroxy-3-phenylpropanoyl]paclitaxel; 5beta,20-epoxy-1,7beta,13alpha-trihydroxy-9-oxotax-11-ene-2alpha,4alpha,10beta-triyl 4,10-diacetate 2-benzoate; 13-O-De[(2R,3S)-3-(benzoylamino)-2-hydroxy-3-phenylpropanoyl]paclitaxel (Baccatin III); Baccatin III; O-De[(2R,3S)-3-(Benzoylamino)-2-hydroxy-3-phenylpropanoyl]paclitaxel; PACLITAXEL IMPURITY N [EP IMPURITY]; NITRONIUMHEXAFLUOROANTIMONATE; OVMSOCFBDVBLFW-VHLOTGQHSA-N; Baccatin III, >=95\\% (HPLC); BACCATIN III [WHO-DD]; UNII-40K5PZ0K67; Baccatin cento; BACCATINE III; Baccatin III; 40K5PZ0K67; Baccatin Ⅲ; R3Q; Baccatin III



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ABCB1, ANXA5, BCL2, CASP10, CASP9, CYP3A4, GGPS1, HPGDS, IL13, PHB2, PRPF19, PTK2, STAT6, TUBB4B
Peripheral membrane protein 3 ANXA5, CYP1B1, PTK2
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, CYP3A4, TBXAS1
Nucleus 8 BCL2, CASP9, DDX53, PHB2, PRPF19, PTK2, STAT6, TUBB4B
cytosol 12 ANXA5, BCL2, CASP10, CASP9, CD28, DDX53, GGPS1, HPGDS, PTK2, STAT6, TBXAS1, TUBB4B
centrosome 1 PTK2
nucleoplasm 5 DDX53, GGPS1, HPGDS, PRPF19, STAT6
RNA polymerase II transcription regulator complex 1 STAT6
Cell membrane 4 ABCB1, CD28, PHB2, PTK2
Cytoplasmic side 1 PTK2
Multi-pass membrane protein 3 ABCB1, CACNA1I, TBXAS1
cell cortex 1 PTK2
cell surface 3 ABCB1, CD28, PHB2
glutamatergic synapse 1 PHB2
mitochondrial inner membrane 1 PHB2
sarcolemma 1 ANXA5
plasma membrane 5 ABCB1, CACNA1I, CD28, PHB2, PTK2
presynaptic active zone 1 PHB2
Membrane 9 ABCB1, ANXA5, BCL2, CACNA1I, CYP1B1, CYP3A4, PHB2, PRPF19, TBXAS1
apical plasma membrane 1 ABCB1
axon 1 PHB2
extracellular exosome 3 ABCB1, ANXA5, TUBB4B
endoplasmic reticulum 2 BCL2, TBXAS1
extracellular space 2 IFNA1, IL13
perinuclear region of cytoplasm 2 GGPS1, PTK2
mitochondrion 4 BCL2, CASP9, CYP1B1, PHB2
protein-containing complex 3 BCL2, CASP9, PHB2
intracellular membrane-bounded organelle 5 CYP1B1, CYP3A4, DDX53, HPGDS, PTK2
Microsome membrane 2 CYP1B1, CYP3A4
postsynaptic density 1 PHB2
Secreted 2 IFNA1, IL13
extracellular region 3 ANXA5, IL13, TUBB4B
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, PHB2
anchoring junction 1 PTK2
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 PTK2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 3 ANXA5, CD28, IL13
Extracellular vesicle 1 TUBB4B
dendritic spine 1 PTK2
Z disc 1 GGPS1
microtubule cytoskeleton 1 TUBB4B
nucleolus 1 DDX53
Apical cell membrane 1 ABCB1
Cytoplasm, perinuclear region 2 GGPS1, PTK2
Mitochondrion inner membrane 1 PHB2
pore complex 1 BCL2
Cell junction, focal adhesion 1 PTK2
Cytoplasm, cytoskeleton 2 PTK2, TUBB4B
Cytoplasm, cytoskeleton, spindle 1 PRPF19
focal adhesion 2 ANXA5, PTK2
microtubule 1 TUBB4B
spindle 1 PRPF19
GABA-ergic synapse 1 PHB2
collagen-containing extracellular matrix 1 ANXA5
nuclear speck 1 PRPF19
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 PTK2
chromatin 1 STAT6
cell projection 1 PTK2
cell periphery 1 PHB2
mitotic spindle 1 TUBB4B
cytoskeleton 2 PTK2, TUBB4B
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
Cytoplasm, cell cortex 1 PTK2
spliceosomal complex 1 PRPF19
site of double-strand break 1 PRPF19
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
Lipid droplet 1 PRPF19
axonemal microtubule 1 TUBB4B
Nucleus, nucleoplasm 1 PRPF19
myelin sheath 1 BCL2
Cytoplasm, myofibril, sarcomere, Z line 1 GGPS1
stress fiber 1 PTK2
nuclear matrix 1 PHB2
voltage-gated calcium channel complex 1 CACNA1I
azurophil granule lumen 1 TUBB4B
immunological synapse 1 CD28
apoptosome 1 CASP9
vesicle membrane 1 ANXA5
U2-type catalytic step 1 spliceosome 1 PRPF19
external side of apical plasma membrane 1 ABCB1
CD95 death-inducing signaling complex 1 CASP10
ripoptosome 1 CASP10
catalytic step 2 spliceosome 1 PRPF19
Prp19 complex 1 PRPF19
U2-type catalytic step 2 spliceosome 1 PRPF19
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
[Isoform 3]: Cell surface 1 CD28
protein complex involved in cell adhesion 1 CD28
mitochondrial prohibitin complex 1 PHB2
[Isoform 2]: Mitochondrion inner membrane 1 PHB2
caspase complex 1 CASP9
[Isoform 1]: Mitochondrion inner membrane 1 PHB2


文献列表

  • Ren Xiang Tan, Xiao-Ya Chen. Uncovering the baccatin III biosynthetic pathway for sustainable taxoid supply. Science bulletin. 2024 May; 69(9):1182-1184. doi: 10.1016/j.scib.2024.03.027. [PMID: 38514298]
  • Bin Jiang, Lei Gao, Haijun Wang, Yaping Sun, Xiaolin Zhang, Han Ke, Shengchao Liu, Pengchen Ma, Qinggang Liao, Yue Wang, Huan Wang, Yugeng Liu, Ran Du, Torben Rogge, Wei Li, Yi Shang, K N Houk, Xingyao Xiong, Daoxin Xie, Sanwen Huang, Xiaoguang Lei, Jianbin Yan. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science (New York, N.Y.). 2024 Jan; ?(?):eadj3484. doi: 10.1126/science.adj3484. [PMID: 38271490]
  • Youjun Zhang, Lorenz Wiese, Hao Fang, Saleh Alseekh, Leonardo Perez de Souza, Federico Scossa, John Molloy, Mathias Christmann, Alisdair R Fernie. Synthetic biology identifies the minimal gene set required for Paclitaxel biosynthesis in a plant chassis. Molecular plant. 2023 Oct; ?(?):. doi: 10.1016/j.molp.2023.10.016. [PMID: 37897038]
  • Md Nurullah, Zakiya Usmani, Sheeraz Ahmad, Bibhu Prasad Panda, Saima Amin, Showkat Rasool Mir. Purification and characterization of Taxol and 10-Deacetyl baccatin III from the bark, needles, and endophytes of Taxus baccata by preparative high-performance liquid chromatography, ultra-high-performance liquid chromatography-mass spectrometry, and nuclear magnetic resonance. Journal of separation science. 2023 Jan; ?(?):e2200841. doi: 10.1002/jssc.202200841. [PMID: 36695632]
  • Balendra Sah, Kamalraj Subban, Chelliah Jayabaskaran. Biochemical insights into the recombinant 10-deacetylbaccatin III-10-β-O-acetyltransferase enzyme from the Taxol-producing endophytic fungus Lasiodiplodia theobromae. FEMS microbiology letters. 2019 04; 366(7):. doi: 10.1093/femsle/fnz072. [PMID: 31062024]
  • Nael Abutaha, Fahd A Nasr, Mohammed Al-Zharani, Ali S Alqahtani, Omar M Noman, Mohammed Mubarak, Semlali Abdelhabib, Muhammad A Wadaan. Effects of Hexane Root Extract of Ferula hermonis Boiss. on Human Breast and Colon Cancer Cells: An In Vitro and In Vivo Study. BioMed research international. 2019; 2019(?):3079895. doi: 10.1155/2019/3079895. [PMID: 31380416]
  • Lin-Feng You, Tao Wei, Qian-Wang Zheng, Jun-Fang Lin, Li-Qiong Guo, Bing-Hua Jiang, Jia-Jun Huang. Activity Essential Residue Analysis of Taxoid 10β-O-Acetyl Transferase for Enzymatic Synthesis of Baccatin. Applied biochemistry and biotechnology. 2018 Dec; 186(4):949-959. doi: 10.1007/s12010-018-2789-0. [PMID: 29797298]
  • Elina Karhu, Janne Isojärvi, Pia Vuorela, Leena Hanski, Adyary Fallarero. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy. Journal of natural products. 2017 10; 80(10):2602-2608. doi: 10.1021/acs.jnatprod.6b01052. [PMID: 29043803]
  • Abdollah Kasaei, Mohsen Mobini-Dehkordi, Foruzandeh Mahjoubi, Behnaz Saffar. Isolation of Taxol-Producing Endophytic Fungi from Iranian Yew Through Novel Molecular Approach and Their Effects on Human Breast Cancer Cell Line. Current microbiology. 2017 Jun; 74(6):702-709. doi: 10.1007/s00284-017-1231-0. [PMID: 28332162]
  • Ruth Muchiri, Kevin D Walker. Paclitaxel Biosynthesis: Adenylation and Thiolation Domains of an NRPS TycA PheAT Module Produce Various Arylisoserine CoA Thioesters. Biochemistry. 2017 03; 56(10):1415-1425. doi: 10.1021/acs.biochem.6b01188. [PMID: 28230972]
  • Bin Liu, Xiaoli Gou, Xupeng Bai, Xiangyu Hou, Dongshun Li, Guoping Zhong, Jing Jin, Min Huang. Simultaneous determination of seven taxoids in rat plasma by UPLC-MS/MS and pharmacokinetic study after oral administration of Taxus yunnanensis extracts. Journal of pharmaceutical and biomedical analysis. 2015 Mar; 107(?):346-54. doi: 10.1016/j.jpba.2015.01.001. [PMID: 25645339]
  • Zhang-Hua Sun, Yu Chen, Yan-Qiong Guo, Jie Qiu, Cui-Ge Zhu, Jing Jin, Gui-Hua Tang, Xian-Zhang Bu, Sheng Yin. Isolation and cytotoxicity evaluation of taxanes from the barks of Taxus wallichiana var. mairei. Bioorganic & medicinal chemistry letters. 2015 Mar; 25(6):1240-3. doi: 10.1016/j.bmcl.2015.01.056. [PMID: 25682561]
  • Ana Gallego, Nicole Imseng, Mercedes Bonfill, Rosa M Cusido, Javier Palazon, Regine Eibl, Elisabeth Moyano. Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. Journal of biotechnology. 2015 Feb; 195(?):93-102. doi: 10.1016/j.jbiotec.2014.12.023. [PMID: 25558804]
  • Zhi-Kun Liang, Ruo-Gu Huang, Zhi-Sheng Xie, Xin-Jun Xu. Preparative isolation of paclitaxel and related taxanes from cell cultures of Taxus chinensis using reversed-phase flash chromatography. Natural product research. 2015; 29(4):327-30. doi: 10.1080/14786419.2014.945169. [PMID: 25109635]
  • Fei Han, Lin-Zhi Kang, Xian-Lu Zeng, Zhi-Wei Ye, Li-Qiong Guo, Jun-Fang Lin. Bioproduction of baccatin III, an advanced precursor of paclitaxol, with transgenic Flammulina velutipes expressing the 10-deacetylbaccatin III-10-O-acetyl transferase gene. Journal of the science of food and agriculture. 2014 Sep; 94(12):2376-83. doi: 10.1002/jsfa.6562. [PMID: 24403190]
  • Masoumeh Safari, Faezeh Ghanati, Abazar Hajnoruzi, Ayatollah Rezaei, Parviz Abdolmaleki, Manigeh Mokhtari-Dizaji. Maintenance of membrane integrity and increase of taxanes production in hazel (Corylus avellana L.) cells induced by low-intensity ultrasound. Biotechnology letters. 2012 Jun; 34(6):1137-41. doi: 10.1007/s10529-012-0865-z. [PMID: 22315099]
  • T Grobosch, B Schwarze, D Stoecklein, T Binscheck. Fatal poisoning with Taxus baccata: quantification of paclitaxel (taxol A), 10-deacetyltaxol, baccatin III, 10-deacetylbaccatin III, cephalomannine (taxol B), and 3,5-dimethoxyphenol in body fluids by liquid chromatography-tandem mass spectrometry. Journal of analytical toxicology. 2012 Jan; 36(1):36-43. doi: 10.1093/jat/bkr012. [PMID: 22290751]
  • M Onrubia, E Moyano, M Bonfill, J Palazón, A Goossens, R M Cusidó. The relationship between TXS, DBAT, BAPT and DBTNBT gene expression and taxane production during the development of Taxus baccata plantlets. Plant science : an international journal of experimental plant biology. 2011 Sep; 181(3):282-7. doi: 10.1016/j.plantsci.2011.06.006. [PMID: 21763539]
  • Xin Che, Li Shen, Hui Xu, Ke Liu. Isolation and characterization of process-related impurities and degradation products in larotaxel. Journal of pharmaceutical and biomedical analysis. 2011 Jul; 55(5):1190-6. doi: 10.1016/j.jpba.2011.03.036. [PMID: 21530132]
  • Katarzyna Syklowska-Baranek, Agnieszka Pietrosiuk, Anna Kokoszka, Miroslawa Furmanowa. Enhancement of taxane production in hairy root culture of Taxus x media var. Hicksii. Journal of plant physiology. 2009 Nov; 166(17):1950-4. doi: 10.1016/j.jplph.2009.05.001. [PMID: 19573947]
  • Feng-jian Yang, Hai-he Pang, Xue-ke Zhang, Jia-yin Sun, Yuan-gang Zu. [Quantitative changes of anti-cancer active components in Taxus chinensis var. mairei branches and leaves]. Ying yong sheng tai xue bao = The journal of applied ecology. 2008 Apr; 19(4):911-4. doi: ". [PMID: 18593057]
  • Jianhua Li, Jungui Dai, Xiaoguang Chen, Ping Zhu. Microbial transformation of cephalomannine by Luteibacter sp. Journal of natural products. 2007 Dec; 70(12):1846-9. doi: 10.1021/np0701531. [PMID: 18001087]
  • Yuangang Zu, Yujie Fu, Shuangming Li, Rui Sun, Qingyong Li, Günter Schwarz. Rapid separation of four main taxoids in Taxus species by a combined LLP-SPE-HPLC (PAD) procedure. Journal of separation science. 2006 Jun; 29(9):1237-44. doi: 10.1002/jssc.200500483. [PMID: 16833081]
  • C-F Zhao, L-J Yu, Z Liu, Y-P Sun. The dynamic variation of several important taxane content in post-harvest Taxus chinensis clippings. Journal of Asian natural products research. 2006 Apr; 8(3):229-39. doi: 10.1080/1028602042000324934. [PMID: 16864429]
  • JingHong M Dejong, Yule Liu, Arthur P Bollon, Robert M Long, Stefan Jennewein, David Williams, Rodney B Croteau. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnology and bioengineering. 2006 Feb; 93(2):212-24. doi: 10.1002/bit.20694. [PMID: 16161138]
  • Chun-fang Zhao, Long-jiang Yu. [LC-ESI-MS metabolic profiling analysis of taxanes from the extracts of Taxus chinensis cell cultures]. Yao xue xue bao = Acta pharmaceutica Sinica. 2005 Aug; 40(8):734-9. doi: . [PMID: 16268509]
  • Hongwei Cui, Fahuan Ge. [Studies on constituents from Taxus mairei Bark]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2004 Aug; 27(8):566-8. doi: ". [PMID: 15658815]
  • M Ballero, M C Loi, E L M van Rozendaal, T A van Beek, Cees van de Haar, F Poli, G Appendino. Analysis of pharmaceutically relevant taxoids in wild yew trees from Sardinia. Fitoterapia. 2003 Feb; 74(1-2):34-9. doi: 10.1016/s0367-326x(02)00301-5. [PMID: 12628392]
  • Maurice Vanhaelen, Jean Duchateau, Renée Vanhaelen-Fastré, Mondher Jaziri. Taxanes in Taxus baccata pollen: cardiotoxicity and/or allergenicity?. Planta medica. 2002 Jan; 68(1):36-40. doi: 10.1055/s-2002-19865. [PMID: 11842324]
  • F S Gibson, J Wei, P Vemishetti, Q Gao, J L Dillon. Synthesis, utility, and X-ray crystal structure of novel complexes of baccatin III with imidazole and 2-propanol. Organic letters. 2000 Oct; 2(21):3269-71. doi: 10.1021/ol006332q. [PMID: 11029187]
  • S H Sheikh, B A Abela, A Mulchandani. Development of a fluorescence immunoassay for measurement of paclitaxel in human plasma. Analytical biochemistry. 2000 Jul; 283(1):33-8. doi: 10.1006/abio.2000.4630. [PMID: 10929805]
  • K Glowniak, T Mroczek, A M Zobel. Seasonal changes in the concentrations of four taxoids in Taxus baccata L. during the autumn-spring period. Phytomedicine : international journal of phytotherapy and phytopharmacology. 1999 May; 6(2):135-40. doi: 10.1016/s0944-7113(99)80049-x. [PMID: 10374254]
  • K Walker, R E Ketchum, M Hezari, D Gatfield, M Goleniowski, A Barthol, R Croteau. Partial purification and characterization of acetyl coenzyme A: taxa-4(20),11(12)-dien-5alpha-ol O-acetyl transferase that catalyzes the first acylation step of taxol biosynthesis. Archives of biochemistry and biophysics. 1999 Apr; 364(2):273-9. doi: 10.1006/abbi.1999.1125. [PMID: 10190984]
  • R E Ketchum, D M Gibson, R B Croteau, M L Shuler. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnology and bioengineering. 1999 Jan; 62(1):97-105. doi: 10.1002/(sici)1097-0290(19990105)62:1<97::aid-bit11>3.0.co;2-c. [PMID: 10099517]
  • D D Woo, A P Tabancay, C J Wang. Microtubule active taxanes inhibit polycystic kidney disease progression in cpk mice. Kidney international. 1997 May; 51(5):1613-8. doi: 10.1038/ki.1997.222. [PMID: 9150481]
  • R Zocher, W Weckwerth, C Hacker, B Kammer, T Hornbogen, D Ewald. Biosynthesis of taxol: enzymatic acetylation of 10-deacetylbaccatin-III to baccatin-III in crude extracts from roots of Taxus baccata. Biochemical and biophysical research communications. 1996 Dec; 229(1):16-20. doi: 10.1006/bbrc.1996.1751. [PMID: 8954077]
  • Y Yukimune, H Tabata, Y Higashi, Y Hara. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature biotechnology. 1996 Sep; 14(9):1129-32. doi: 10.1038/nbt0996-1129. [PMID: 9631065]
  • V Srinivasan, V Ciddi, V Bringi, M L Shuler. Metabolic inhibitors, elicitors, and precursors as tools for probing yield limitation in taxane production by Taxus chinensis cell cultures. Biotechnology progress. 1996 Jul; 12(4):457-65. doi: 10.1021/bp9600344. [PMID: 8987474]
  • P G Grothaus, G S Bignami, S O'Malley, K E Harada, J B Byrnes, D F Waller, T J Raybould, M T McGuire, B Alvarado. Taxane-specific monoclonal antibodies: measurement of taxol, baccatin III, and "total taxanes" in Taxus brevifolia extracts by enzyme immunoassay. Journal of natural products. 1995 Jul; 58(7):1003-14. doi: 10.1021/np50121a004. [PMID: 7561893]
  • S H Hoke, R G Cooks, C J Chang, R C Kelly, S J Qualls, B Alvarado, M T McGuire, K M Snader. Determination of taxanes in Taxus brevifolia extracts by tandem mass spectrometry and high-performance liquid chromatography. Journal of natural products. 1994 Feb; 57(2):277-86. doi: 10.1021/np50104a013. [PMID: 7909835]
  • P G Grothaus, T J Raybould, G S Bignami, C B Lazo, J B Byrnes. An enzyme immunoassay for the determination of taxol and taxanes in Taxus sp. tissues and human plasma. Journal of immunological methods. 1993 Jan; 158(1):5-15. doi: 10.1016/0022-1759(93)90253-4. [PMID: 8094087]
  • S H Hoke, J M Wood, R G Cooks, X H Li, C J Chang. Rapid screening for taxanes by tandem mass spectrometry. Analytical chemistry. 1992 Oct; 64(20):2313-5. doi: 10.1021/ac00044a002. [PMID: 1361307]
  • N C Wheeler, K Jech, S Masters, S W Brobst, A B Alvarado, A J Hoover, K M Snader. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. Journal of natural products. 1992 Apr; 55(4):432-40. doi: 10.1021/np50082a005. [PMID: 1355111]
  • C Rao, X Liu, P L Zhang, W M Chen, Q C Fang. [Application of high speed countercurrent chromatography for the isolation of natural products--preparative isolation of taxane-diterpenoids and diterpene alkaloids]. Yao xue xue bao = Acta pharmaceutica Sinica. 1991; 26(7):510-4. doi: ". [PMID: 1687187]
  • S Husted, T Hjort. Sperm antibodies in serum and seminal plasma. International journal of fertility. 1975; 20(2):97-105. doi: NULL. [PMID: 3485]