1-Hydroxyanthraquinone (BioDeep_00000001079)

 

Secondary id: BioDeep_00000017674, BioDeep_00000867614

human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


1-hydroxy-9,10-dihydroanthracene-9,10-dione

化学式: C14H8O3 (224.0473418)
中文名称: 1-羟基蒽醌
谱图信息: 最多检出来源 Homo sapiens(blood) 0.13%

分子结构信息

SMILES: c12c(C(=O)c3c(C1=O)cccc3)cccc2O
InChI: InChI=1S/C14H8O3/c15-11-7-3-6-10-12(11)14(17)9-5-2-1-4-8(9)13(10)16/h1-7,15H

描述信息

CONFIDENCE standard compound; INTERNAL_ID 8284
CONFIDENCE standard compound; INTERNAL_ID 25
D009676 - Noxae > D002273 - Carcinogens
1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].

同义名列表

9 个代谢物同义名

1-hydroxy-9,10-dihydroanthracene-9,10-dione; 1-Hydroxyanthra-9,10-quinone; 1-hydroxy-9,10-anthraquinone; alpha-Hydroxyanthraquinone; Α-hydroxyanthraquinone; a-Hydroxyanthraquinone; 1-Hydroxyanthraquinone; 1-Hydroxyanthrachinon; Hydroxyanthraquinone



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jinpeng Wang, Qianwei Qu, Xin Liu, Wenqiang Cui, Fei Yu, Xingru Chen, Xiaoxu Xing, Yonghui Zhou, Yanbei Yang, God'spower Bello-Onaghise, Xueying Chen, Xiubo Li, Yanhua Li. 1-Hydroxyanthraquinone exhibited antibacterial activity by regulating glutamine synthetase of Staphylococcus xylosus as a virulence factor. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Mar; 123(?):109779. doi: 10.1016/j.biopha.2019.109779. [PMID: 31918211]
  • Dorota Wianowska. Hydrolytical instability of hydroxyanthraquinone glycosides in pressurized liquid extraction. Analytical and bioanalytical chemistry. 2014 May; 406(13):3219-27. doi: 10.1007/s00216-014-7744-5. [PMID: 24652155]
  • P Daisy, K Saipriya. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. International journal of nanomedicine. 2012; 7(?):1189-202. doi: 10.2147/ijn.s26650. [PMID: 22419867]
  • Anna Frackowiak, Przemysław Skibiński, Wiesław Gaweł, Ewa Zaczyńska, Anna Czarny, Roman Gancarz. Synthesis of glycoside derivatives of hydroxyanthraquinone with ability to dissolve and inhibit formation of crystals of calcium oxalate. Potential compounds in kidney stone therapy. European journal of medicinal chemistry. 2010 Mar; 45(3):1001-7. doi: 10.1016/j.ejmech.2009.11.042. [PMID: 20005021]
  • Sujata Maiti Choudhury, Malaya Gupta, Upal Kanti Majumder. Antineoplastic activities of MT81 and its structural analogue in Ehrlich ascites carcinoma-bearing Swiss Albino mice. Oxidative medicine and cellular longevity. 2010 Jan; 3(1):61-70. doi: 10.4161/oxim.3.1.10495. [PMID: 20716929]
  • G C L Ee, Y P Wen, M A Sukari, R Go, H L Lee. A new anthraquinone from Morinda citrifolia roots. Natural product research. 2009; 23(14):1322-9. doi: 10.1080/14786410902753138. [PMID: 19735047]
  • Xia Zhou, Baoan Song, Linhong Jin, Deyu Hu, Chunling Diao, Guangfang Xu, Zhihui Zou, Song Yang. Isolation and inhibitory activity against ERK phosphorylation of hydroxyanthraquinones from rhubarb. Bioorganic & medicinal chemistry letters. 2006 Feb; 16(3):563-8. doi: 10.1016/j.bmcl.2005.10.047. [PMID: 16275083]
  • Subash C Verma, Narendra P Singh, Arun K Sinha. Determination and locational variations in the quantity of hydroxyanthraquinones and their glycosides in rhizomes of Rheum emodi using high-performance liquid chromatography. Journal of chromatography. A. 2005 Dec; 1097(1-2):59-65. doi: 10.1016/j.chroma.2005.08.018. [PMID: 16236295]
  • Edward Wild, John Dent, Gareth O Thomas, Kevin C Jones. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environmental science & technology. 2005 May; 39(10):3695-702. doi: 10.1021/es048136a. [PMID: 15952374]
  • Yizhong Cai, Mei Sun, Jie Xing, Harold Corke. Antioxidant phenolic constituents in roots of Rheum officinale and Rubia cordifolia: structure-radical scavenging activity relationships. Journal of agricultural and food chemistry. 2004 Dec; 52(26):7884-90. doi: 10.1021/jf0489116. [PMID: 15612771]
  • Byron E Butterworth, Owen B Mathre, Kenneth E Ballinger, Orn Adalsteinsson. Contamination is a frequent confounding factor in toxicology studies with anthraquinone and related compounds. International journal of toxicology. 2004; 23(5):335-44. doi: 10.1080/10915810490517072. [PMID: 15513832]
  • Goverdina C H Derksen, Harm A G Niederländer, Teris A van Beek. Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection. Journal of chromatography. A. 2002 Nov; 978(1-2):119-27. doi: 10.1016/s0021-9673(02)01412-7. [PMID: 12458949]
  • B Blömeke, B Poginsky, C Schmutte, H Marquardt, J Westendorf. Formation of genotoxic metabolites from anthraquinone glycosides, present in Rubia tinctorum L. Mutation research. 1992 Feb; 265(2):263-72. doi: 10.1016/0027-5107(92)90055-7. [PMID: 1370725]