isomaltulose (BioDeep_00000406330)

   

natural product


代谢物信息卡片


2-(Hydroxymethyl)-6-[[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]methoxy]oxane-3,4,5-triol

化学式: C12H22O11 (342.1162)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(natural_products) 87.69%

分子结构信息

SMILES: C(C1C(C(C(C(O1)OCC2C(C(C(O2)(CO)O)O)O)O)O)O)O
InChI: InChI=1S/C12H22O11/c13-1-4-6(15)8(17)9(18)11(22-4)21-2-5-7(16)10(19)12(20,3-14)23-5/h4-11,13-20H,1-3H2



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

23 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 CASP3, GCK, PPARG, SOCS2
Peripheral membrane protein 1 GCK
Endoplasmic reticulum membrane 3 CD4, CYP7A1, HMGCR
Nucleus 4 CASP3, CHD7, GCK, PPARG
cytosol 5 CASP3, GCK, LEP, PPARG, SOCS2
nucleoplasm 4 CASP3, CHD7, GCK, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 2 CD4, GIPR
Multi-pass membrane protein 4 GIPR, HMGCR, MAL2, UCP2
Golgi apparatus membrane 1 GCK
cell surface 1 ADIPOQ
glutamatergic synapse 2 CASP3, MAL2
Golgi apparatus 1 SI
Golgi membrane 2 GCK, INS
mitochondrial inner membrane 1 UCP2
neuronal cell body 2 CASP3, GIP
plasma membrane 5 CD4, GCG, GIPR, LCT, SI
synaptic vesicle membrane 1 MAL2
Membrane 4 GIPR, HMGCR, MAL2, SI
apical plasma membrane 2 MAL2, SI
basolateral plasma membrane 1 GCK
brush border 1 SI
extracellular exosome 4 A2ML1, MAL2, SI, TTR
endoplasmic reticulum 2 ADIPOQ, HMGCR
extracellular space 7 A2ML1, ADIPOQ, GCG, GIP, INS, LEP, TTR
perinuclear region of cytoplasm 2 MAL2, PPARG
mitochondrion 2 GCK, UCP2
intracellular membrane-bounded organelle 2 CYP7A1, PPARG
Microsome membrane 1 CYP7A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 CD4, LCT
Secreted 6 A2ML1, ADIPOQ, GCG, INS, LEP, TTR
extracellular region 7 A2ML1, ADIPOQ, GCG, GIP, INS, LEP, TTR
Single-pass membrane protein 1 CYP7A1
hippocampal mossy fiber to CA3 synapse 1 MAL2
external side of plasma membrane 1 CD4
nucleolus 1 CHD7
Early endosome 1 CD4
Apical cell membrane 1 LCT
Mitochondrion inner membrane 1 UCP2
Membrane raft 2 CD4, MAL2
collagen trimer 1 ADIPOQ
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 1 ADIPOQ
receptor complex 1 PPARG
chromatin 2 CHD7, PPARG
Basolateral cell membrane 1 GCK
endosome lumen 1 INS
Peroxisome membrane 1 HMGCR
secretory granule lumen 3 GCG, GIP, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 CD4, GCG, GIP, INS
phosphatidylinositol 3-kinase complex 1 SOCS2
transport vesicle 1 INS
azurophil granule lumen 1 TTR
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Cul5-RING ubiquitin ligase complex 1 SOCS2
clathrin-coated endocytic vesicle membrane 1 CD4
[Isoform 1]: Nucleus 1 CHD7
external side of apical plasma membrane 1 LCT
death-inducing signaling complex 1 CASP3
[Glucagon-like peptide 1]: Secreted 1 GCG
T cell receptor complex 1 CD4
[Isoform 3]: Nucleus, nucleolus 1 CHD7


文献列表

  • Sue Jung Lee, Won Kyu Yu, Hye-Ryung Park, Hoon Kim, Jae Hwan Kim, Jiyong Park, Kwang-Soon Shin. Improved effect of palatinose syrup bioconverted from sucrose on hyperglycemia and regulation of hepatic lipogenesis in male C57BL/6J mice. Journal of food biochemistry. 2020 05; 44(5):e13201. doi: 10.1111/jfbc.13201. [PMID: 32391610]
  • Zhi-Peng Wang, Qin-Qing Wang, Song Liu, Xiao-Fang Liu, Xin-Jun Yu, Yun-Lin Jiang. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation. Molecules (Basel, Switzerland). 2019 Mar; 24(7):. doi: 10.3390/molecules24071228. [PMID: 30925836]
  • Takumi Kawaguchi, Dan Nakano, Tetsuharu Oriishi, Takuji Torimura. Effects of isomaltulose on insulin resistance and metabolites in patients with non‑alcoholic fatty liver disease: A metabolomic analysis. Molecular medicine reports. 2018 Aug; 18(2):2033-2042. doi: 10.3892/mmr.2018.9223. [PMID: 29956790]
  • Daniel König, Denise Zdzieblik, Anja Holz, Stephan Theis, Albert Gollhofer. Substrate Utilization and Cycling Performance Following Palatinose™ Ingestion: A Randomized, Double-Blind, Controlled Trial. Nutrients. 2016 Jun; 8(7):. doi: 10.3390/nu8070390. [PMID: 27347996]
  • Cheon-Hyeon Nam, Dong-Ho Seo, Jong-Hyun Jung, Young-Jin Koh, Jae-Sung Jung, Sunggi Heu, Chang-Sik Oh, Cheon-Seok Park. Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species. Enzyme and microbial technology. 2014 Feb; 55(?):100-6. doi: 10.1016/j.enzmictec.2013.10.005. [PMID: 24411451]
  • Stephen R Mudge, Shiromi W V Basnayake, Richard L Moyle, Kenji Osabe, Michael W Graham, Terence E Morgan, Robert G Birch. Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant biotechnology journal. 2013 May; 11(4):502-9. doi: 10.1111/pbi.12038. [PMID: 23297683]
  • Daniel König, Stephan Theis, Gunhild Kozianowski, Aloys Berg. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (Palatinose™) ingestion. Nutrition (Burbank, Los Angeles County, Calif.). 2012 Jun; 28(6):651-6. doi: 10.1016/j.nut.2011.09.019. [PMID: 22264450]
  • Amelie Rabot, Clemence Henry, Khaoula Ben Baaziz, Eric Mortreau, Wassim Azri, Jeremy Lothier, Latifa Hamama, Rachid Boummaza, Nathalie Leduc, Sandrine Pelleschi-Travier, José Le Gourrierec, Soulaiman Sakr. Insight into the role of sugars in bud burst under light in the rose. Plant & cell physiology. 2012 Jun; 53(6):1068-82. doi: 10.1093/pcp/pcs051. [PMID: 22505690]
  • Shiromani W V Basnayake, Terrance C Morgan, Luguang Wu, Robert G Birch. Field performance of transgenic sugarcane expressing isomaltulose synthase. Plant biotechnology journal. 2012 Feb; 10(2):217-25. doi: 10.1111/j.1467-7652.2011.00655.x. [PMID: 21895946]
  • Luguang Wu, Robert G Birch. Isomaltulose is actively metabolized in plant cells. Plant physiology. 2011 Dec; 157(4):2094-101. doi: 10.1104/pp.111.189001. [PMID: 22010106]
  • Daniel J West, Richard D Morton, Jeffrey W Stephens, Stephen C Bain, Liam P Kilduff, Steve Luzio, Rachel Still, Richard M Bracken. Isomaltulose Improves Postexercise Glycemia by Reducing CHO Oxidation in T1DM. Medicine and science in sports and exercise. 2011 Feb; 43(2):204-10. doi: 10.1249/mss.0b013e3181eb6147. [PMID: 20543751]
  • Judith G P van Can, T Herman Ijzerman, Luc J C van Loon, Fred Brouns, Ellen E Blaak. Reduced glycaemic and insulinaemic responses following isomaltulose ingestion: implications for postprandial substrate use. The British journal of nutrition. 2009 Nov; 102(10):1408-13. doi: 10.1017/s0007114509990687. [PMID: 19671200]
  • Kazusa Sato, Hidekazu Arai, Akira Mizuno, Makiko Fukaya, Tadatoshi Sato, Megumi Koganei, Hajime Sasaki, Hironori Yamamoto, Yutaka Taketani, Toshio Doi, Eiji Takeda. Dietary palatinose and oleic acid ameliorate disorders of glucose and lipid metabolism in Zucker fatty rats. The Journal of nutrition. 2007 Aug; 137(8):1908-15. doi: 10.1093/jn/137.8.1908. [PMID: 17634263]
  • Toshiya Fujiwara, Yoshio Naomoto, Takayuki Motoki, Kaori Shigemitsu, Yasuhiro Shirakawa, Tomoki Yamatsuji, Masafumi Kataoka, Minoru Haisa, Toshiyoshi Fujiwara, Maritoki Egi, Hiroshi Morimatsu, Motohiko Hanazaki, Hiroshi Katayama, Kiyoshi Morita, Kenji Mizumoto, Takanobu Asou, Hirofumi Arima, Hajime Sasaki, Motoi Matsuura, Mehmet Gunduz, Noriaki Tanaka. Effects of a novel palatinose based enteral formula (MHN-01) carbohydrate-adjusted fluid diet in improving the metabolism of carbohydrates and lipids in patients with esophageal cancer complicated by diabetes mellitus. The Journal of surgical research. 2007 Apr; 138(2):231-40. doi: 10.1016/j.jss.2006.06.025. [PMID: 17254607]
  • Takashi Matsukubo, Ichiro Takazoe. Sucrose substitutes and their role in caries prevention. International dental journal. 2006 Jun; 56(3):119-30. doi: 10.1111/j.1875-595x.2006.tb00083.x. [PMID: 16826877]
  • Hidekazu Arai, Akira Mizuno, Kaoru Matsuo, Makiko Fukaya, Hajime Sasaki, Hirofumi Arima, Motoi Matsuura, Yutaka Taketani, Toshio Doi, Eiji Takeda. Effect of a novel palatinose-based liquid balanced formula (MHN-01) on glucose and lipid metabolism in male Sprague-Dawley rats after short- and long-term ingestion. Metabolism: clinical and experimental. 2004 Aug; 53(8):977-83. doi: 10.1016/j.metabol.2004.03.004. [PMID: 15281004]
  • Devika M De Costa, Katsunori Suzuki, Kazuo Yoshida. Structural and functional analysis of a putative gene cluster for palatinose transport on the linear chromosome of Agrobacterium tumefaciens MAFF301001. Journal of bacteriology. 2003 Apr; 185(7):2369-73. doi: 10.1128/jb.185.7.2369-2373.2003. [PMID: 12644509]
  • Rossitza Atanassova, Marina Leterrier, Cécile Gaillard, Alice Agasse, Emeric Sagot, Pierre Coutos-Thévenot, Serge Delrot. Sugar-regulated expression of a putative hexose transport gene in grape. Plant physiology. 2003 Jan; 131(1):326-34. doi: 10.1104/pp.009522. [PMID: 12529540]
  • Mohammad-Reza Hajirezaei, Frederik Börnke, Martin Peisker, Yasuhiro Takahata, Jens Lerchl, Ara Kirakosyan, Uwe Sonnewald. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of experimental botany. 2003 Jan; 54(382):477-88. doi: 10.1093/jxb/erg040. [PMID: 12508058]
  • Alok K Sinha, Markus G Hofmann, Ulrike Römer, Walter Köckenberger, Lothar Elling, Thomas Roitsch. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant physiology. 2002 Apr; 128(4):1480-9. doi: 10.1104/pp.010771. [PMID: 11950996]
  • Frederik Börnke, Mohammad Hajirezaei, Dieter Heineke, Michael Melzer, Karin Herbers, Uwe Sonnewald. High-level production of the non-cariogenic sucrose isomer palatinose in transgenic tobacco plants strongly impairs development. Planta. 2002 Jan; 214(3):356-64. doi: 10.1007/s004250100629. [PMID: 11855640]
  • F Börnke, M Hajirezaei, U Sonnewald. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici. Journal of bacteriology. 2001 Apr; 183(8):2425-30. doi: 10.1128/jb.183.8.2425-2430.2001. [PMID: 11274100]
  • A R Fernie, U Roessner, P Geigenberger. The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. Plant physiology. 2001 Apr; 125(4):1967-77. doi: 10.1104/pp.125.4.1967. [PMID: 11299376]