Ginsenoside Rg1
Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Angelicin
Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
Genistin
Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin is found in fruits. Genistin is present in soy foods. Potential nutriceutical. It is isolated from Prunus avium (wild cherry) Genistin is one of several known isoflavones. Genistin is found in a number of plants and herbs like soy Present in soy foods. Potential nutriceutical. Isolated from Prunus avium (wild cherry) Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=529-59-9 (retrieved 2024-11-05) (CAS RN: 529-59-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gentiopicrin
Gentiopicrin is a glycoside. Gentiopicroside is a natural product found in Aster auriculatus, Exacum affine, and other organisms with data available. See also: Centaurium erythraea whole (part of). Gentiopicroside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20831-76-9 (retrieved 2024-07-01) (CAS RN: 20831-76-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.
Sarsasapogenin
(25S)-5beta-spirostan-3beta-ol is a sapogenin. Sarsasapogenin is a natural product found in Yucca gloriosa, Narthecium ossifragum, and other organisms with data available. Constituent of Radix sarsaparilla (sarsaparilla root). Sarsasapogenin is found in asparagus, herbs and spices, and fenugreek. Sarsasapogenin is found in asparagus. Sarsasapogenin is a constituent of Radix sarsaparilla (sarsaparilla root) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C1907 - Drug, Natural Product Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities. Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge, with antidiabetic, anti-oxidative, anticancer and anti-inflamatory activities.
1,2,3,4,6-Pentagalloyl_glucose
1,2,3,4,6-pentakis-O-galloyl-beta-D-glucose is a galloyl-beta-D-glucose compound having five galloyl groups in the 1-, 2-, 3-, 4- and 6-positions. It has a role as a geroprotector, a radiation protective agent, an antineoplastic agent, a radical scavenger, an anti-inflammatory agent, a plant metabolite and a hepatoprotective agent. It is a gallate ester and a galloyl beta-D-glucose. It is a conjugate acid of a 1,2,3,4,6-pentakis-O-galloyl-beta-D-glucose(1-). Pentagalloylglucose is a natural product found in Quercus aliena, Cercidiphyllum japonicum, and other organisms with data available. See also: Paeonia lactiflora root (part of); Lagerstroemia speciosa leaf (part of). A galloyl-beta-D-glucose compound having five galloyl groups in the 1-, 2-, 3-, 4- and 6-positions. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity.
Methyl palmitate
Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].
Isobutyrylshikonin
Isobutylshikonin is a hydroxy-1,4-naphthoquinone. Isobutyrylshikonin is a natural product found in Lithospermum erythrorhizon with data available. Isobutylshikonin is a kind of shikonin pigments from hairy root culture of Lithospermum canescens[1].
Lupenone
Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Capsaicin
Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].
Quinic acid
Quinic acid, also known as quinate, belongs to the class of organic compounds known as quinic acids and derivatives. Quinic acids and derivatives are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3, 4, and 5, as well as a carboxylic acid at position 1. Quinic acid is a sugar acid. It is also a cyclitol, or cyclic polyol. More specifically, quinic acid is a crystalline acid obtained from cinchona bark, coffee beans, tobacco leaves, carrot leaves, apples, peaches, pears, plums, vegetables, etc. Quinic acid can also be made synthetically by hydrolysis of chlorogenic acid. Quinic acid is implicated in the perceived acidity of coffee. (-)-quinic acid is the (-)-enantiomer of quinic acid. It is a conjugate acid of a (-)-quinate. It is an enantiomer of a (+)-quinic acid. Quinate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quinic acid is a natural product found in Gamblea innovans, Pterocaulon virgatum, and other organisms with data available. An acid which is found in cinchona bark and elsewhere in plants. (From Stedman, 26th ed) Quinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=36413-60-2 (retrieved 2024-07-01) (CAS RN: 36413-60-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee. D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee.
Synephrine
Synephrine is a phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. It has a role as a plant metabolite and an alpha-adrenergic agonist. It is a phenethylamine alkaloid, a member of phenols and a member of ethanolamines. It is a conjugate base of a synephrinium. Synephrine, also referred to as, p-synephrine, is naturally occurring alkaloid. It is present in approved drug products as neo-synephrine, its m-substituted analog. p-synephrine and m-synephrine are known for their longer acting adrenergic effects compared to norepinephrine. The similarity of naming between m-synephrine and the unsubstituted form, synephrine, is a source of some confusion however m-synephrine refers to a related drug more commonly known as phenylephrine. While the compounds share some chemical and pharmacological similarities, they are in fact distinct chemical entities. Synephrine is a natural product found in Citrus medica, Ephedra sinica, and other organisms with data available. Sympathetic alpha-adrenergic agonist with actions like PHENYLEPHRINE. It is used as a vasoconstrictor in circulatory failure, asthma, nasal congestion, and glaucoma. Synephrine (or oxedrine) is a drug commonly used for weight loss. While its effectiveness is widely debated, synephrine has gained significant popularity as an alternative to ephedrine, a related substance which has been made illegal or restricted in many countries due to its use as a precursor in the illicit manufacture of methamphetamine. Products containing bitter orange or synephrine: suspected cardiovascular adverse reactions [citation needed]. Synephrine is derived primarily from the fruit of Citrus aurantium, a relatively small citrus tree, of which several of its more common names include Bitter Orange, Sour Orange, and Zhi shi.; There has been some confusion surrounding synephrine and phenylephrine (neosynephrine), one of its positional isomers. The chemicals are similar in structure; the only difference is the location of the aromatic hydroxyl group. In synephrine, the hydroxyl is at the para position, whereas, in neosynephrine, it is at the meta position. Each compound has differing biological properties.; p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents A phenethylamine alkaloid that is 4-(2-aminoethyl)phenol substituted by a hydroxy group at position 1 and a methyl group at the amino nitrogen. p-Synephrine is an endogenous amine in plasma, in variable levels with a tendency to be higher in hypertensive patients (PMID 8255371). 辛弗林(Synephrine),又称为辛弗林碱或对羟福林,是一种生物碱,化学结构与肾上腺素类似。它在中药中是一种重要的活性成分,尤其在某些温热性中药中含量较高,如麻黄(Ephedra sinica)。 在中医中,辛弗林具有发汗解表、宣肺平喘、利水消肿等功效,常用于治疗感冒、哮喘、风水浮肿等症状。此外,辛弗林作为一种强效的α-受体激动剂和较弱的β-受体激动剂,也具有一定的减肥和增强代谢的效果,因此在一些减肥补充剂中也有应用。 p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. p-Synephrine is an organic compound, found in multiple biofluids, such as urine and blood. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2]. Synephrine (Oxedrine), an alkaloid, is an α-adrenergic and β-adrenergic agonist derived from the Citrus aurantium. Synephrine is a sympathomimetic compound and can be used for weight loss[1][2].
Schisantherin B
Gomisin B is a tannin. Schisantherin B is a natural product found in Kadsura angustifolia, Schisandra rubriflora, and other organisms with data available. See also: Schisandra chinensis fruit (part of). Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product. Schisantherin B (Gomisin-B; Wuweizi ester-B; Schisantherin-B) is a natural product.
1,4-Naphthoquinone
1,4-naphtoquinone, also known as 1,4-naphthalenedione or 1,4-dihydro-1,4-diketonaphthalene, is a member of the class of compounds known as naphthoquinones. Naphthoquinones are compounds containing a naphthohydroquinone moiety, which consists of a benzene ring linearly fused to a bezene-1,4-dione (quinone). 1,4-naphtoquinone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 1,4-naphtoquinone can be synthesized from naphthalene. 1,4-naphtoquinone is also a parent compound for other transformation products, including but not limited to, 2,3-dimethoxynaphthalene-1,4-dione, alisiaquinone A, and 1,4-naphthoquinone-2-carboxylic acid. 1,4-naphtoquinone can be found in liquor, which makes 1,4-naphtoquinone a potential biomarker for the consumption of this food product. 1,4-naphtoquinone is a non-carcinogenic (not listed by IARC) potentially toxic compound. CONFIDENCE standard compound; INTERNAL_ID 18 1,4-Naphthoquinone is a potential pharmacophore for inhibition of both MAO (monoamine oxidase) and DNA topoisomerase activities, this latter associated with antitumor activity[1].
Dihydrocapsaicin
Dihydrocapsaicin is found in pepper (C. annuum). It is a potential nutriceutical. Dihydrocapsaicin is a capsaicinoid and analog and congener of capsaicin in chili peppers (Capsicum). Like capsaicin it is an irritant. Dihydrocapsaicin accounts for about 22\\\\\% of the total capsaicinoids mixture and has about the same pungency as capsaicin. Pure dihydrocapsaicin is a lipophilic colorless odorless crystalline to waxy compound. It is soluble in dimethyl sulfoxide and 100 \\\\\% ethanol. Dihydrocapsaicin is a capsaicinoid. Dihydrocapsaicin is a natural product found in Capsicum pubescens, Capsicum annuum, and Ganoderma lucidum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Potential nutriceutical Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Byakangelicol
Byakangelicol is a member of the class of compounds known as 5-methoxypsoralens. 5-methoxypsoralens are psoralens containing a methoxy group attached at the C5 position of the psoralen group. Byakangelicol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Byakangelicol can be found in lemon, which makes byakangelicol a potential biomarker for the consumption of this food product. Byakangelicol is a member of psoralens. Byakangelicol is a natural product found in Murraya koenigii, Ostericum grosseserratum, and other organisms with data available. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
Atractylenolide II
Atractylenolide II is a sesquiterpene lactone. Atractylenolide II is a natural product found in Chloranthus henryi, Atractylodes macrocephala, and other organisms with data available. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
Astragaloside
Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.
Isocolumbin
Isocolumbin is found in fruits. Isocolumbin is isolated from Dioscoreophyllum cumminsii (serendipity berry). Isolated from Dioscoreophyllum cumminsii (serendipity berry). Isocolumbin is found in fruits. Columbin is a natural product found in Tinospora capillipes and Cleidion with data available. Columbin is an organic heterotricyclic compound and an organooxygen compound. (2S,4AR,6aR,7R,10R,10aS,10bS)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4a,5,6,6a,7,10,10a,10b-octahydro-1H-10,7-(epoxymethano)benzo[f]isochromene-4,12(2H)-dione is a natural product found in Vateria indica, Penianthus zenkeri, and other organisms with data available. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2]. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2].
Hecogenin
Hecogenin is a triterpenoid. Hecogenin is a natural product found in Yucca gloriosa, Allium rotundum, and other organisms with data available.
Obacunone
Constituent of Citrus subspecies, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple). Obacunone is found in many foods, some of which are pomes, sweet orange, lemon, and fruits. Obacunone is found in fruits. Obacunone is a constituent of Citrus species, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple) Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
Dihydrosanguinarine
Dihydrosanguinarine is a benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. It has a role as a metabolite and an antifungal agent. It derives from a hydride of a sanguinarine. Dihydrosanguinarine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. A benzophenanthridine alkaloid obtained by selective hydrogenation of the 13,14-position of sanguinarine. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3]. Dihydrosanguinarine is a natural compound isolated from the leaves of Macleaya microcarpa; has antifungal and anticancer activity. IC50 value: Target: in vitro: Dihydrosanguinarine showed much less cytotoxicity than sanguinarine: at the highest concentration tested (20 microM) and 24h exposure, dihydrosanguinarine decreased viability only to 52\% [1]. Dihydrosanguinarine showed the highest antifungal activity against B. cinerea Pers, with 95.16\% mycelial growth inhibition at 50 μg/ml [2]. dihydrosanguinarine showed the most potent leishmanicidal activities (IC(50) value: 0.014 microg/ml, respectively) [4]. in vivo: Repeated dosing of DHSG for 90 days at up to 500 ppm in the diet (i.e. approximately 58 mg/kg/day) showed no evidence of toxicity in contrast to results published in the literature [3].
(R)-Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Pristimerin
Pristimerin is a carboxylic ester. Pristimerin is a quinone methide triterpenoid researched for its anti-cancer potential. Pristimerin is a natural product found in Reissantia buchananii, Crossopetalum gaumeri, and other organisms with data available. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.
Telocinobufagin
Telocinobufagin is a steroid lactone. It is functionally related to a bufanolide. Telocinobufagin is a natural product found in Bufo gargarizans, Bufo bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis. Telocinobufagin is one of anti-hepatoma constituent in Venenum Bufonis.
Alisol B
Alisol B is a triterpenoid. Alisol B is a natural product found in Alisma, Alisma plantago-aquatica, and other organisms with data available. Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo: Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo:
3,4-Dihydrocoumarin
3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
Gentianine
Gentianine, also known as 4-(2-hydroxyethyl)-5-vinylnicotinate g-lactone, is a member of the class of compounds known as pyranopyridines. Pyranopyridines are polycyclic aromatic compounds containing a pyran ring fused to a pyridine ring. Gentianine is soluble (in water) and a strong basic compound (based on its pKa). Gentianine is a bitter tasting compound found in fenugreek, which makes gentianine a potential biomarker for the consumption of this food product. Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).
Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (S)-columbianetin is the (S)-(+)-enantiomer of columbianetin. It is an enantiomer of a (R)-columbianetin. Columbianetin is a natural product found in Campylotropis hirtella, Prangos tschimganica, and other organisms with data available. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2].
8-Epixanthatin
Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. 8-Epixanthatin is found in fats and oils. 8-Epixanthatin is a constituent of Helianthus annuus (sunflower). Constituent of Helianthus annuus (sunflower). 8-Epixanthatin is found in fats and oils. D000970 - Antineoplastic Agents
Alloimperatorin
Alloimperatorin is a member of the class of compounds known as 8-hydroxypsoralens. 8-hydroxypsoralens are psoralens containing a hydroxyl group attached at the C8 position of the psoralen group. Alloimperatorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Alloimperatorin can be found in corn, which makes alloimperatorin a potential biomarker for the consumption of this food product. Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].
N-trans-feruloyltyramine
N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].
Worenin
Worenine is an alkaloid.
Nervonic acid
Nervonic acid is a long chain unsaturated fatty acid that is enriched in sphingomyelin. It consists of choline, sphingosine, phosphoric acid, and fatty acid. Nervonic acid may enhance the brain functions and prevent demyelination (Chemical Land21). Research shows that there is negative relationship between nervonic acid and obesity-related risk factors (PMID:16394593). Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. (PMID:8072429). (15Z)-tetracosenoic acid is a tetracosenoic acid having a cis-double bond at position 15. It is a conjugate acid of a (15Z)-tetracosenoate. Nervonic acid is a natural product found in Tropaeolum speciosum, Calophyllum inophyllum, and other organisms with data available. Nervonic Acid is a monounsaturated fatty acid with a 24-carbon backbone and the sole double bond originating from the 9th carbon from the methyl end, with this bond in the cis- configuration. See also: Borage Seed Oil (part of). A tetracosenoic acid having a cis-double bond at position 15. Present in fish and rape seed oils Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin. Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin.
Dmask
Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
alpha-Spinasterol
Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
tigogenin
Tigogenin is a widely used steroidal sapogenin isolated from several plant species and used for synthesizing steroid drugs. It has a role as a gout suppressant and a plant metabolite. Tigogenin is a natural product found in Cordyline australis, Yucca gloriosa, and other organisms with data available. A widely used steroidal sapogenin isolated from several plant species and used for synthesizing steroid drugs. Tigogenin, also known as sarsasapogenin, (3beta,5alpha,25s)-isomer or smilagenin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, tigogenin is considered to be a sterol lipid molecule. Tigogenin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Tigogenin can be found in fenugreek, which makes tigogenin a potential biomarker for the consumption of this food product. Tigogenin, one of steroidal sapogenins, is widely used for synthesizing steroid agents. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells[1]. Tigogenin, one of steroidal sapogenins, is widely used for synthesizing steroid agents. Tigogenin inhibits adipocytic differentiation and induces osteoblastic differentiation in mouse bone marrow stromal cells[1].
Soyasapogenol B
Soyasapogenol b-1, also known as 24-hydroxysophoradiol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Soyasapogenol b-1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Soyasapogenol b-1 can be synthesized from oleanane. Soyasapogenol b-1 is also a parent compound for other transformation products, including but not limited to, soyasapogenol B 3-O-beta-glucuronide, soyasaponin III, and soyasaponin I. Soyasapogenol b-1 can be found in soy bean, which makes soyasapogenol b-1 a potential biomarker for the consumption of this food product. Soyasapogenol B is a pentacyclic triterpenoid that is oleanane containing a double bond between positions 12 and 13 and substituted by hydroxy groups at the 3beta, 22beta and 24-positions. It derives from a hydride of an oleanane. Soyasapogenol B is a natural product found in Astragalus mongholicus, Melilotus messanensis, and other organisms with data available. See also: Trifolium pratense flower (part of); Medicago sativa whole (part of). Soyasapogenol B, also known as 24-hydroxysophoradiol, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Soyasapogenol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Soyasapogenol B is found in alfalfa. Soyasapogenol B is a constituent of soya bean saponin, Medicago, Astragalus, and Trifolium species. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].
Bruceantin
Bruceantin is a triterpenoid. Bruceantin is a natural product found in Brucea javanica and Brucea antidysenterica with data available. Bruceantin is a triterpene quassinoid antineoplastic antibiotic isolated from the plant Brucea antidysenterica. Bruceantin inhibits the peptidyl transferase elongation reaction, resulting in decreased protein and DNA synthesis. Bruceantin also has antiamoebic and antimalarial activity. (NCI04) C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C1974 - Quassinoid Agent C784 - Protein Synthesis Inhibitor C1907 - Drug, Natural Product Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388. Bruceantin (NSC165563) can be extracted from B. javanica and has inhibitory effects on B16 melanoma, colon cancer 38, L1210 and leukemia P388.
Soyasaponin I
Soyasaponin I is a triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. It has a role as a sialyltransferase inhibitor. It is a pentacyclic triterpenoid, a triterpenoid saponin, a trisaccharide derivative and a carbohydrate acid derivative. It is functionally related to a soyasapogenol B. It is a conjugate acid of a soyasaponin I(1-). Soyasaponin I is a natural product found in Crotalaria albida, Hedysarum polybotrys, and other organisms with data available. A triterpenoid saponin that is composed of soyasapogenol B having an alpha-L-rhamnopyranosyl-(1->2)-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranosiduronic acid moiety attached at the 3-position via a glycosidic linkage. Azukisaponin V is found in pulses. Azukisaponin V is isolated from seeds of azuki bean (Vigna angularis). soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
Antirrhinin
Cyanidin 3-O-rutinoside chloride is a member of the class of anthocyanin chlorides that has cyanidin 3-O-rutinoside as the cationic counterpart. It contains a cyanidin 3-O-rutinoside. See also: Keracyanin cation (has active moiety); Asparagus (part of). C26170 - Protective Agent > C275 - Antioxidant
Smilagenin
(25R)-5beta-spirostan-3beta-ol is an oxaspiro compound that is(5beta,25R)-spirostan substituted by a beta-hydroxy group at position 3. It has a role as an antineoplastic agent and a metabolite. It is an oxaspiro compound, a 3beta-hydroxy steroid, an organic heterohexacyclic compound and a sapogenin. It derives from a hydride of a (25R)-5beta-spirostan. Smilagenin is a novel non-peptide, orally bioavailable neurotrophic factor inducer that readily reverses free radical neurotoxicity produced by 1-ethyl-4- phenylpyridium (MPP+) in dopaminergic neurones and reverses the decrease of neuronal growth factors and dopamine receptors in the brain. Pre-clinical work with smilagenin showed it to be neuroprotective against betya-amyloid and glutamate damage which contributes to Alzheimers disease and reverses the changes in the area of the brain involved in Parkinson’s disease. P58 is a protein synthesis stimulant acts by restoring levels of proteins that are altered in the ageing brain, reversing the loss of nerve receptors in the ageing brain and potentially allowing for the regrowth of neural connections. P58 therefore provides a totally novel mode of action with potential importance for diseases associated with ageing of the brain. P58 is one of a family of phytochemicals isolated from traditional treatments for the elderly that have previously been shown to offer significant benefit in the treatment of senile dementia. Smilagenin is a natural product found in Yucca gloriosa, Yucca aloifolia, and other organisms with data available. Constituent of Jamaica sarsaparilla (Smilax ornata). Smilagenin is found in herbs and spices and fenugreek. Smilagenin is found in fenugreek. Smilagenin is a constituent of Jamaica sarsaparilla (Smilax ornata) An oxaspiro compound that is(5beta,25R)-spirostan substituted by a beta-hydroxy group at position 3. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3]. Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3]. Smilagenin (SMI) is a small-molecule steroidal sapogenin from Anemarrhena asphodeloides and Pelargonium hortorum widely used in traditional Chinese medicine for treating chronic neurodegeneration diseases[1]. Smilagenin (SMI) improves memory of aged rats by increasing the muscarinic receptor subtype 1 (M1)-receptor density[2]. Smilagenin (SMI) attenuates Aβ(25-35)-induced neurodegenerationvia stimulating the gene expression of brain-derived neurotrophic factor, may represents a novel therapeutic strategy for AD[3].
Conessine
Conessine is a steroid alkaloid that is con-5-enine substituted by a N,N-dimethylamino group at position 3. It has been isolated from the plant species of the family Apocynaceae. It has a role as an antibacterial agent, an antimalarial, a H3-receptor antagonist and a plant metabolite. It is a steroid alkaloid and a tertiary amino compound. It is functionally related to a conanine. Conessine is a natural product found in Holarrhena floribunda, Funtumia elastica, and Holarrhena pubescens with data available. A steroid alkaloid that is con-5-enine substituted by a N,N-dimethylamino group at position 3. It has been isolated from the plant species of the family Apocynaceae. Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 12 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.501 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.499 Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1]. Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1]. Conessine, a steroidal alkaloid, is a potent and selective histamine H3 receptor antagonist with Kis of 5.4, 6.0, 5.7 and 25 nM for human, dog, guinea pig, and rat H H3 receptor, respectively. Anti-malarial activity[1].
Perillyl alcohol
Perillyl alcohol is a monoterpene isolated from the essential oils of lavendin, peppermint, spearmint, cherries, celery seeds, and several other plants. In animal studies it has been shown to regress pancreatic, mammary, and liver tumors, to exhibit possible application as a chemopreventative agent for colon, skin, and lung cancer, and as a chemotherapeutic agent for neuroblastoma, and prostate and colon cancer.(PMID: 9855569) [HMDB]. p-Mentha-1,8-dien-7-ol is found in many foods, some of which are caraway, ginger, german camomile, and sweet bay. (S)-(-)-perillyl alcohol is a perillyl alcohol in which the chiral centre has S configuration. It is an enantiomer of a (R)-(+)-perillyl alcohol. Perillyl alcohol is under investigation in clinical trial NCT02704858 (Safety and Efficacy Study in Recurrent Grade IV Glioma). (-)-Perillyl alcohol is a natural product found in Teucrium pestalozzae, Canella winterana, and other organisms with data available. See also: Paeonia lactiflora root (part of). Perillyl alcohol is a monoterpene isolated from the essential oils of lavendin, peppermint, spearmint, cherries, celery seeds, and several other plants. In animal studies it has been shown to regress pancreatic, mammary, and liver tumors, to exhibit possible application as a chemopreventative agent for colon, skin, and lung cancer, and as a chemotherapeutic agent for neuroblastoma, and prostate and colon cancer.(PMID:9855569). C471 - Enzyme Inhibitor > C2020 - Farnesyl Transferase Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors (S)-(?)-Perillyl alcohol is a monoterpene found in lavender, inhibits farnesylation of Ras, upregulates the mannose-6-phosphate receptor and induces apoptosis. Anti-cancer activity[1]. (S)-(?)-Perillyl alcohol is a monoterpene found in lavender, inhibits farnesylation of Ras, upregulates the mannose-6-phosphate receptor and induces apoptosis. Anti-cancer activity[1]. Perillyl alcohol, a monoterpene,?is active in inducing apoptosis in tumor cells without affecting normal cells[1]. Perillyl alcohol, a monoterpene,?is active in inducing apoptosis in tumor cells without affecting normal cells[1].
(-)-alpha-Bisabolol
(-)-alpha-Bisabolol is a sesquiterpenoid. Bisabolol, or more formally α-(−)-bisabolol or also known as levomenol, (-)-alpha-Bisabolol is found in fats and oils. (-)-alpha-Bisabolol is isolated from essential oil of Matricaria chamomilla (German chamomile) (-)-alpha-Bisabolol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. Levomenol is a natural product found in Santolina pectinata, Carthamus glaucus, and other organisms with data available. See also: Chamomile (part of); Adenosine; levomenol (component of); Adenosine; Ascorbic Acid; LEVOMENOL (component of) ... View More ... (-)-alpha-Bisabolol is found in fats and oils. (-)-alpha-Bisabolol is isolated from essential oil of Matricaria chamomilla (German chamomile). alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. Levomenol ((-)-α-Bisabolol), a monocyclic sesquiterpene alcohol, exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. Levomenol also has neuroprotective effects and prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Levomenol attenuates nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain. Orally active[1][2]. Levomenol ((-)-α-Bisabolol), a monocyclic sesquiterpene alcohol, exerts antioxidant, anti-inflammatory, and anti-apoptotic activities. Levomenol also has neuroprotective effects and prevents neuronal damage and memory deficits through reduction of proinflammatory markers induced by permanent focal cerebral ischemia in mice. Levomenol attenuates nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain. Orally active[1][2].
Chrysoeriol
Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
(-)-3-Isothujone
(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
Yakuchinone-A
1-(4-hydroxy-3-methoxyphenyl)-7-phenyl-3-heptanone is a ketone that is heptan-3-one substituted by a 4-hydroxy-3-methoxyphenyl group at position 1 and a phenyl group at position 7. Isolated from in Alpinia oxyphylla, it exhibits antineoplastic and inhibitory activities against COX-1, COX-2 and NO synthase. It has a role as a metabolite, a cyclooxygenase 1 inhibitor, a cyclooxygenase 2 inhibitor, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and an antineoplastic agent. It is a monomethoxybenzene, a member of phenols and a ketone. Yakuchinone-A is a natural product found in Alpinia oxyphylla with data available. Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1]. Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1].
RD4-2174
Ingenol 3,20-dibenzoate is a benzoate ester. Ingenol 3,20-dibenzoate is a potent protein kinase C (PKC) isoform-selective agonist. Ingenol 3,20-dibenzoate induces selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induces morphologically typical apoptosis through de novo synthesis of macromolecules. Ingenol 3,20-dibenzoate increases the IFN-γ production and degranulation by NK cells, especially when NK cells are stimulated by NSCLC cells[1][2]. Ingenol 3,20-dibenzoate is a potent protein kinase C (PKC) isoform-selective agonist. Ingenol 3,20-dibenzoate induces selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induces morphologically typical apoptosis through de novo synthesis of macromolecules. Ingenol 3,20-dibenzoate increases the IFN-γ production and degranulation by NK cells, especially when NK cells are stimulated by NSCLC cells[1][2].
Punicic_acid
(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).
(+)-Epicatechin
(+)-epicatechin is a catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). It has a role as a cyclooxygenase 1 inhibitor and a plant metabolite. It is a catechin and a polyphenol. It is an enantiomer of a (-)-epicatechin. (+)-Epicatechin is a natural product found in Gambeya perpulchra, Pavetta owariensis, and other organisms with data available. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. ent-Epicatechin is found in many foods, some of which are tea, apple, star fruit, and common buckwheat. A catechin that is flavan carrying five hydroxy substituents at positions 3, 3, 4, 5 and 7 (the 2S,3S-stereoisomer). (+)-Epicatechin is found in apple. (+)-Epicatechin or ent-Epicatechin is one of the 4 catechin diastereoisomers. C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST.
(-)-beta-Pinene
(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].
(+)-Fargesin
Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].
Vomifoliol
A fenchane monoterpenoid that is 3,5,5-trimethylcyclohex-2-en-1-one substituted by a hydroxy and a (1E)-3-hydroxybut-1-en-1-yl group at position 4. (6S,9R)-vomifoliol is a (6S)-vomifoliol with a R configuration for the hydroxy group at position 9. It has a role as a phytotoxin and a metabolite. It is an enantiomer of a (6R,9S)-vomifoliol. Vomifoliol is a natural product found in Sida acuta, Macrococculus pomiferus, and other organisms with data available. A (6S)-vomifoliol with a R configuration for the hydroxy group at position 9.
sulfurein
Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].
Sphondin
Sphondin is a member of the class of compounds known as angular furanocoumarins. Angular furanocoumarins are furanocoumarins, with a structure characterized by a furan ring angularly fused to a coumarin. Sphondin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Sphondin can be found in parsnip, which makes sphondin a potential biomarker for the consumption of this food product. Sphondin is a non-carcinogenic (not listed by IARC) potentially toxic compound. The furocoumarin 8-methoxypsoralen is carcinogenic to humans, and possibly 5-methoxypsoralen as well (L135). There is some evidence from mouse studies that other furocoumarins are carcinogenic when combined with exposure to UVA radiation (A15105). The SKLM regards the additional risk of skin cancer arising from the consumption of typical quantities of furocoumarin-containing foods, which remain significantly below the range of phototoxic doses, as insignificant. However, the consumption of phototoxic quantities cannot be ruled out for certain foods, particularly celery and parsnips, that may lead to significant increases in furocoumarin concentrations, depending on the storage, processing and production conditions (L2157) Furocoumarin photochemotherapy is known to induce a number of side-effects including erythema, edema, hyperpigmentation, and premature aging of skin. All photobiological effects of furocoumarins result from their photochemical reactions. Because many dietary or water soluble furocoumarins are strong inhibitors of cytochrome P450s, they will also cause adverse drug reactions when taken with other drugs. Cause of phototoxicity in patient with vitiligo (L579) (T3DB). Sphondin is a furanocoumarin. Sphondin is a natural product found in Heracleum lehmannianum, Heracleum asperum, and other organisms with data available. A furanocoumarin derivative isolated from Heracleum laciniatum (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1]. Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1].
Isochamaejasmin
Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.
Kobusin
Demethoxyaschantin is a member of the class of furofurans that is tetrahydro-1H,3H-furo[3,4-c]furan-1-yl]-1,3-benzodioxole carrying an additional 3,4-dimethoxyphenyl substituent at position 4. It has a role as a plant metabolite. It is a furofuran, a lignan, a dimethoxybenzene and a member of benzodioxoles. Kobusin is a natural product found in Pandanus utilis, Pandanus boninensis, and other organisms with data available. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].
Armepavine
Armepavine is a member of isoquinolines. (-)-Armepavine is a natural product found in Berberis integerrima, Aconitum variegatum, and other organisms with data available. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1]. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1].
Cuminyl alcohol
Cuminol or Cuminyl alcohol, also known as p-cumin-7-ol or 4-Isopropylbenzyl alcohol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Cuminol is an extremely weak basic (essentially neutral) compound (based on its pKa). Cuminol is an alcohol derivative of p-Cymene. It exists as a clear, colorless liquid that is poorly soluble in water. Cuminol can be used as a food additive or as a cosmetic fragrance. It has a cumin, caraway or spicy, herbal aroma and a similar spicy, herbal or peppery taste. Cuminol is found naturally in a number of plants, spices and foods including cumin seed and cumin oils, caraway eucalyptus oils, thyme, sunflowers, tuermeric, guava fruit and other spices and essential oils. Cumin, a widely used spice, is known to have anti-diabetic properties and two of its phytochemicals: cuminol and cuminaldehyde appear to be among the most active components. Cuminol is a potent insulinotrophic molecule that can enhance insulin secretion by up to 4-fold (in rat islet cells) (PMID:23507295 ). It also exhibits strong beta-cell protective action (PMID:23507295 ). 4-isopropylbenzyl alcohol is a member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. It has a role as a fragrance, an insect repellent, a volatile oil component, a plant metabolite and a xenobiotic metabolite. It is a p-menthane monoterpenoid and a member of benzyl alcohols. It is functionally related to a p-cymene. 4-Isopropylbenzyl alcohol is a natural product found in Xylopia aromatica, Curcuma amada, and other organisms with data available. Flavouring ingredient. Isolated from oils of Cuminum cyminum (cumin). Cuminyl alcohol is found in many foods, some of which are sweet bay, sunflower, cumin, and herbs and spices. A member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].
5-O-Methylvisamminol
5-O-Methylvisamminol is an oxacycle and an organic heterotricyclic compound. 5-O-Methylvisamminol is a natural product found in Saposhnikovia divaricata, Angelica japonica, and Prionosciadium thapsoides with data available. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].
Fustin
Fustin is a natural product found in Acacia vestita, Acacia carneorum, and other organisms with data available. See also: Cotinus coggygria whole (part of); Toxicodendron succedaneum whole (part of). A dihydroflavonol that is the 2,3-dihydro derivative of fisetin. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) is a potent amyloid β (Aβ) inhibitor. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases the expression of acetylcholine (ACh) levels, choline acetyltransferase (ChAT) activity, and ChAT gene induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) decreases in acetyl cholinesterase (AChE) activity and AChE gene expression induced by Aβ (1-42). Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) increases muscarinic M1 receptor gene expression and muscarinic M1 receptor binding activity. Fustinis ((±)-Fustin; 3,7,3',4'-Tetrahydroxyflavanone) can be used for Alzheimer's disease research[1].
Capsiate
Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
Neriifolin
Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.
1-Hydroxyanthraquinone
CONFIDENCE standard compound; INTERNAL_ID 8284 CONFIDENCE standard compound; INTERNAL_ID 25 D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
4-Vinylphenol
4-hydroxystyrene is a member of the class of phenols that is styrene carrying a hydroxy substituent at position 4. It has a role as a human urinary metabolite and a human xenobiotic metabolite. It derives from a hydride of a styrene. 4-Vinylphenol is a natural product found in Streptomyces, Cedronella canariensis, and other organisms with data available. 4-Vinylphenol is a metabolite found in or produced by Saccharomyces cerevisiae. 4-hydroxystyrene occurs frequently in different ciders, wines, foods and berries, e.g. cloudberry. Styrene is a prohapten metabolized in the skin by aryl hydrocarbon hydroxylase (AHH, EC 1.14.14.1) to styrene epoxide acting as the true hapten. Styrene occurs in nature and as a synthetic product.(PMID: 6713846). Flavour component of tea; flavouring ingredient
2-Pyrocatechuic acid
2-Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma (PMID 16351159), and is normally found with increased levels after consumption of many nutrients and drugs, i.e.: cranberry juice (PMID 14733499), aspirin ingestion. (PMID 3342084) It has been found associated with idiopathic oro-facial pain due to stress (oxidative stress might enhance the production of free radicals); it has been suggested that OH radicals are responsible for the production of many systemic and local tissue injury diseases which may initially manifest as pain syndrome, and 2-Pyrocatechuic acid is a biological marker for the detection and quantification of OH radicals, and patients had significantly increased circulating levels of 2-Pyrocatechuic acid after aspirin ingestion than control subjects. (PMID 7748148). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Occurs in Gentiana lutea (yellow gentian) Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
1-Methylxanthine
1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) KEIO_ID I024 Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
Beta-Tyrosine
The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. GMR beta tyrosine residues are not necessary for activation of the JAK/STAT pathway, or for proliferation, viability, or adhesion signaling in Ba/F3 cells, although tyrosine residues significantly affect the magnitude of the response. (PMID:10372132). The use of tyrosine kinase receptor inhibitors is increasingly becoming a valuable therapeutic alternative in tumors carrying activated tyrosine kinase receptors. KEIO_ID A176
3-Methylxanthine
3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. 3-Methylxanthine is a caffeine and a theophylline metabolite. (PMID 16870158, 16678550) 3-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1076-22-8 (retrieved 2024-07-02) (CAS RN: 1076-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.
2-Amino-6-[(1R,2S)-1,2,3-trihydroxypropyl]-7,8-dihydro-3H-pteridin-4-one
7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
L-Threoneopterin
L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
Sphinganine
Sphinganine, also known as c18-dihydrosphingosine or safingol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine can be found in a number of food items such as agar, biscuit, herbs and spices, and pasta, which makes sphinganine a potential biomarker for the consumption of these food products. Sphinganine can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Sphinganine exists in all eukaryotes, ranging from yeast to humans. In humans, sphinganine is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Sphinganine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, sphinganine is found to be associated with pregnancy. Sphinganine is a lyso-sphingolipid protein kinase inhibitor. It has the molecular formula C18H39NO2 and is a colorless solid. Medicinally, safingol has demonstrated promising anticancer potential as a modulator of multi-drug resistance and as an inducer of necrosis. The administration of safingol alone has not been shown to exert a significant effect on tumor cell growth. However, preclinical and clinical studies have shown that combining safingol with conventional chemotherapy agents such as fenretinide, vinblastine, irinotecan and mitomycin C can dramatically potentiate their antitumor effects. Currently in Phase I clinical trials, it is believed to be safe to co-administer with cisplatin . Sphinganine belongs to the class of organic compounds known as 1,2-aminoalcohols. These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Thus, sphinganine is considered to be a sphingoid base lipid molecule. Sphinganine is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Sphinganine exists in all living species, ranging from bacteria to humans. Within humans, sphinganine participates in a number of enzymatic reactions. In particular, sphinganine can be converted into 3-dehydrosphinganine through its interaction with the enzyme 3-ketodihydrosphingosine reductase. In addition, sphinganine can be converted into sphinganine 1-phosphate; which is catalyzed by the enzyme sphingosine kinase 2. Outside of the human body, sphinganine has been detected, but not quantified in, several different foods, such as Mexican oregano, jostaberries, winter squash, angelica, and epazotes. This could make sphinganine a potential biomarker for the consumption of these foods. Sphinganine blocks postlysosomal cholesterol transport by inhibiting low-density lipoprotein-induced esterification of cholesterol and causing unesterified cholesterol to accumulate in perinuclear vesicles. It has been suggested that endogenous sphinganine may inhibit cholesterol transport in Niemann-Pick Type C (NPC) disease (PMID: 1817037). D004791 - Enzyme Inhibitors KEIO_ID D078 D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity.
Nα-Acetyl-L-lysine
N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
N-Acetylleucine
N-Acetyl-L-leucine or N-Acetylleucine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylleucine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylleucine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lecuine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylleucine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free leucine can also occur. In particular, N-Acetylleucine can be biosynthesized from L-leucine and acetyl-CoA by the enzyme leucine N-acetyltransferase (EC 2.3.1.66). Excessive amounts N-acetyl amino acids including N-acetylleucine (as well as N-acetylglycine, N-acetylserine, N-acetylglutamine, N-acetylglutamate, N-acetylalanine, N-acetylmethionine and smaller amounts of N-acetylthreonine, N-acetylisoleucine, and N-acetylvaline) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylleucine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1188-21-2 (retrieved 2024-07-02) (CAS RN: 1188-21-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Acetyl-L-leucine is an endogenous metabolite.
Sepiapterin
Sepiapterin, also known as 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one, belongs to the class of organic compounds known as pterins and derivatives. These are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. Sepiapterin is also classified as a member of the pteridine class of organic chemicals. It is a yellow fluorescing pigment. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). More specifically, sepiapterin can be metabolized into tetrahydrobiopterin via the BH(4) salvage pathway. Tetrahydrobiopterin is an essential cofactor in humans for breakdown of phenylalanine and a catalyst of the metabolism of phenylalanine, tyrosine, and tryptophan to the neurotransmitters dopamine and serotonin. A deficiency of tetrahydrobiopterin can cause toxic buildup of phenylalanine (phenylketonuria) as well as deficiencies of dopamine, norepinephrine, and epinephrine, leading to dystonia and other neurological illnesses. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency, an inborn error of metabolism. Sepiapterin reductase deficiency is a condition characterized by movement problems, most often a pattern of involuntary, sustained muscle contractions known as dystonia. Other movement problems can include muscle stiffness (spasticity), tremors, problems with coordination and balance (ataxia), and involuntary jerking movements (chorea). People with sepiapterin reductase deficiency can experience episodes called oculogyric crises. These episodes involve abnormal rotation of the eyeballs; extreme irritability and agitation; and pain, muscle spasms, and uncontrolled movements, especially of the head and neck. Movement abnormalities are often worse late in the day. Most affected individuals have delayed development of motor skills such as sitting and crawling, and they typically are not able to walk unassisted. The problems with movement tend to worsen over time. Within humans, sepiapterin participates in a number of enzymatic reactions. In particular, sepiapterin can be converted into 7,8-dihydroneopterin; which is mediated by the enzyme sepiapterin reductase. In addition, sepiapterin can be converted into 7,8-dihydroneopterin through its interaction with the enzyme carbonyl reductase [NADPH] 1. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). It is a yellow fluorescing pigment. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency. [HMDB] C307 - Biological Agent
Carisoprodol
A centrally acting skeletal muscle relaxant whose mechanism of action is not completely understood but may be related to its sedative actions. It is used as an adjunct in the symptomatic treatment of musculoskeletal conditions associated with painful muscle spasm. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1202) M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents
Methohexital
Methohexital is only found in individuals that have used or taken this drug. It is an intravenous anesthetic with a short duration of action that may be used for induction of anesthesia. [PubChem]Methohexital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate
N-acetylneuraminate
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A018; [MS2] KO008824 KEIO_ID A018 N-Acetylneuraminic acid is a sialic acid monosaccharide ubiquitous on cell membrane glycoproteins and glycolipids of mammalian cell ganglioglycerides, which plays a biological role in neurotransmission, leukocyte vasodilation, and viral or bacterial infection.
Deoxycholic acid glycine conjugate
Deoxycholic acid glycine conjugate, or or Deoxyglycocholic acid or Deoxygcholylglycine is a bile salt formed in the liver by conjugation of deoxycholate with glycine. It usually exists as the sodium salt. Deoxygcholylglycine is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). As a bile acid Deoxyglycocholic acid acts as a detergent to solubilize fats for absorption and is itself absorbed. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Deoxyglycocholic acid is used as a cholagogue and choleretic. Deoxycholic acid glycine conjugate, or Deoxygcholylglycine, is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). As a bile salt it acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and choleretic. [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
Quinaldic acid
Quinaldic acid, also known as quinaldate, 2-carboxyquinoline, or quinoline-2-carboxylic acid, belongs to the class of organic compounds known as quinoline carboxylic acids. These are quinolines in which the quinoline ring system is substituted by a carboxyl group at one or more positions. The quinoline ring system is a double-ring structure composed of a benzene and a pyridine ring fused at two adjacent carbon atoms. Quinaldic acid is a quinoline having a carboxy group at the 2-position. It is a solid that is moderately soluble in water with a melting point of 156°C. Quinaldic acid is a metabolite of tryptophan degradation that is formed via the kynurenine pathway; it is formed through the dehydroxylation of the intermediate kynurenic acid (PMID: 13385219). It is excreted in urine, and its urine concentration is decreased in individuals suffering from chronic alcoholism (PMID: 25754126). Quinaldic acid has been shown to inhibit proinsulin synthesis in pancreatic islet cells (PMID: 373355). Quinaldic acid has been shown to have anti-proliferative or anti-tumour effects and has been found to alter the expression of the p53 tumour suppressor gene as well as the phosphorylation of the p53 protein in in vitro studies (PMID: 30780127). A product of l-tryptophan catabolism, via kynurenic acid, found in human urine. [HMDB] Quinoline-2-carboxylic acid is an endogenous metabolite.
Taurolithocholate 3-sulfate
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072
8-HETE
8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987) [HMDB] 8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987).
Sulfamethizole
Sulfamethizole is only found in individuals that have used or taken this drug. It is a sulfathiazole antibacterial agent. Sulfamethizole is a competitive inhibitor of bacterial enzyme dihydropteroate synthetase. The normal para-aminobenzoic acid (PABA) substrate is prevented from binding. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 1017
Aciclovir
Aciclovir is only found in individuals that have used or taken this drug. It is a guanosine analog that acts as an antimetabolite. Viruses are especially susceptible. Used especially against herpes. [PubChem]Viral (HSV-1, HSV-2 and VZV) thymidine kinase converts aciclovir to the aciclovir monophosphate, which is then converted to the diphosphate by cellular guanylate kinase, and finally to the triphosphate by phosphoglycerate kinase, phosphoenolpyruvate carboxykinase, and pyruvate kinase. Aciclovir triphosphate competitively inhibits viral DNA polymerase and competes with the natural deoxyguanosine triphosphate, for incorporation into viral DNA. Once incorporated, aciclovir triphosphate inhibits DNA synthesis by acting as a chain terminator. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AD - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent KEIO_ID A071; [MS2] KO008862 KEIO_ID A071 Acyclovir (Aciclovir) is a potent, orally active antiviral agent. Acyclovir has antiherpetic activity with IC50 values of 0.85 μM and 0.86 μM for HSV-1 and HSV-2, respectively. Acyclovir induces cell cycle perturbation and apoptosis. Acyclovir prevents bacterial infections during induction therapy for acute leukaemia[1][2][3][4].
Methamphetamine
Methamphetamine is a psychostimulant and sympathomimetic drug. It is a member of the amphetamine group of sympathomimetic amines. Methamphetamine can induce effects such as euphoria, increased alertness and energy, and enhanced self-esteem. It is a scheduled drug in most countries due to its high potential for addiction and abuse. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2829 D049990 - Membrane Transport Modulators
Propoxyphene
Propoxyphene is only found in individuals that have used or taken this drug. It is a narcotic analgesic structurally related to methadone. Only the dextro-isomer has an analgesic effect; the levo-isomer appears to exert an antitussive effect. [PubChem]Propoxyphene acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Propoxyphene primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as propoxyphene also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics
Phenylpropanolamine
Phenylpropanolamine is a sympathomimetic that acts mainly by causing release of norepinephrine but also has direct agonist activity at some adrenergic receptors. It is most commonly used as a nasal vasoconstrictor and an appetite depressant. -- Pubchem [HMDB] Phenylpropanolamine is a sympathomimetic that acts mainly by causing release of norepinephrine but also has direct agonist activity at some adrenergic receptors. It is most commonly used as a nasal vasoconstrictor and an appetite depressant. -- Pubchem. R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants CONFIDENCE standard compound; INTERNAL_ID 1547
Quinine
Quinine is a cinchona alkaloid that is cinchonidine in which the hydrogen at the 6-position of the quinoline ring is substituted by methoxy. It has a role as an antimalarial, a muscle relaxant and a non-narcotic analgesic. It is a conjugate base of a quinine(1+). It derives from a hydride of an (8S)-cinchonan. An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Quinine is an Antimalarial. Quinine is a natural cinchona alkaloid that has been used for centuries in the prevention and therapy of malaria. Quinine is also used for idiopathic muscle cramps. Quinine therapy has been associated with rare instances of hypersensitivity reactions which can be accompanied by hepatitis and mild jaundice. Quinine is a natural product found in Cinchona calisaya, Cinchona officinalis, and other organisms with data available. Quinine is a quinidine alkaloid isolated from the bark of the cinchona tree. Quinine has many mechanisms of action, including reduction of oxygen intake and carbohydrate metabolism; disruption of DNA replication and transcription via DNA intercalation; and reduction of the excitability of muscle fibers via alteration of calcium distribution. This agent also inhibits the drug efflux pump P-glycoprotein which is overexpressed in multi-drug resistant tumors and may improve the efficacy of some antineoplastic agents. (NCI04) Quinine is an alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. See also: Quinine Sulfate (active moiety of); Quinine salicylate (active moiety of); Quinine arsenite (active moiety of) ... View More ... Quinine is an alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. [PubChem]. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines A cinchona alkaloid that is cinchonidine in which the hydrogen at the 6-position of the quinoline ring is substituted by methoxy. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000700 - Analgesics It is used in tonics and bitter drinks [Raw Data] CB141_Quinine_pos_10eV_CB000051.txt [Raw Data] CB141_Quinine_pos_20eV_CB000051.txt [Raw Data] CB141_Quinine_pos_40eV_CB000051.txt [Raw Data] CB141_Quinine_pos_50eV_CB000051.txt [Raw Data] CB141_Quinine_pos_30eV_CB000051.txt Quinine is an alkaloid derived from the bark of the cinchona tree, acts as an anti-malaria agent. Quinine is a potassium channel inhibitor that inhibits WT mouse Slo3 (KCa5.1) channel currents evoked by voltage pulses to +100?mV with an IC50 of 169 μM[1][2]. Quinine is an alkaloid derived from the bark of the cinchona tree, acts as an anti-malaria agent. Quinine is a potassium channel inhibitor that inhibits WT mouse Slo3 (KCa5.1) channel currents evoked by voltage pulses to +100?mV with an IC50 of 169 μM[1][2].
Dimethyltryptamine
An N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others.; DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat.; DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it.; DMT is classified in the United States as a Schedule I drug. In December of 2004, the Supreme Court lifted a stay thereby allowing the Brazil-based Uniaeo do Vegetal (UDV) church to use a decoction containing DMT in their Christmas services that year. This decoction is a tea made from boiled leaves and vines, known as hoasca within the UDV, and ayahuasca in different cultures. In Gonzales v. O Centro EspArita Beneficente Uniaeo do Vegetal, the Supreme Court heard arguments on November 1, 2005 and unanimously ruled in February 2006 that the U.S. federal government must allow the UDV to import and consume the tea for religious ceremonies under the 1993 Religious Freedom Restoration Act. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT.; Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca.; Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they... Dimethyltryptamine is an N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others. DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat. DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it. DMT is classified in the United States as a Schedule I drug. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT. Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca. Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they can have lethal complications with some prescription drugs, such as SSRI antidepressants, and some over-the-counter drugs. Smoked: If DMT is smoked, the maximal effects last for a short period of time (5-30 minutes dose dependent). The onset after inhalation is very fast (less than 45 seconds) and maximal effects are reached within about a minute. The Business Mans lunch trip is a common name due to the relatively short duration of vaporized, insufflated, or injected DMT. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
Diethylstilbestrol
Diethylstilbestrol is a synthetic estrogen that was developed to supplement a womans natural estrogen production. In 1971, the Food and Drug Administration (FDA) issued a Drug Bulletin advising physicians to stop prescribing DES to pregnant women because it was linked to a rare vaginal cancer in female offspring. Diethylstilbesterol is found in gram bean. Diethylstilbestrol is a synthetic nonsteroidal estrogen used in the treatment of menopausal and postmenopausal disorders. It was also used formerly as a growth promoter in animals. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), diethylstilbestrol has been listed as a known carcinogen. (Merck, 11th ed). G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CC - Estrogens, combinations with other drugs G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CB - Synthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D009676 - Noxae > D002273 - Carcinogens
AICAR
Aicar, also known as 5-phosphoribosyl-5-amino-4-imidazolecarboxamide or 5-aminoimidazole-4-carboxamide ribotide, is a member of the class of compounds known as 1-ribosyl-imidazolecarboxamides. 1-ribosyl-imidazolecarboxamides are organic compounds containing the imidazole ring linked to a ribose ring through a 1-2 bond. Aicar is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Aicar can be found in a number of food items such as safflower, greenthread tea, common pea, and wild leek, which makes aicar a potential biomarker for the consumption of these food products. Aicar can be found primarily in saliva, as well as in human skeletal muscle tissue. Aicar exists in all living species, ranging from bacteria to humans. In humans, aicar is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. Aicar is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, purine nucleoside phosphorylase deficiency, xanthinuria type II, and gout or kelley-seegmiller syndrome. AICAR also known as ZMP is an analog of AMP that is capable of stimulating AMP-dependent protein kinase activity(AMPK). AICAR is an intermediate in the generation of inosine monophosphate. AICAR is being clinically used to treat and protect against cardiac ischemic injury. AICAR can enter cardiac cells to inhibit adenosine kinase and adenosine deaminase. It enhances the rate of nucleotide re-synthesis increasing adenosine generation from adenosine monophosphate only during conditions of myocardial ischemia. AICAR increases glucose uptake by inducing translocation of GLUT4 and/or by activating the p38 MAPK pathway. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus KEIO_ID A133 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Oxolinic acid
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3609 CONFIDENCE standard compound; INTERNAL_ID 1034 D004791 - Enzyme Inhibitors
Nodularin
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3252
Tulathromycin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
Josamycin
Josamycin is only found in individuals that have used or taken this drug. It is a macrolide antibiotic from Streptomyces narbonensis. The drug has antimicrobial activity against a wide spectrum of pathogens. [PubChem]The mechanism of action of macrolides such as Josamycin is via inhibition of bacterial protein biosynthesis by binding reversibly to the subunit 50S of the bacterial ribosome, thereby inhibiting translocation of peptidyl tRNA. This action is mainly bacteriostatic, but can also be bactericidal in high concentrations. Macrolides tend to accumulate within leukocytes, and are therefore actually transported into the site of infection. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.
Asiaticoside
Constituent of Centella asiatica (Asiatic pennywort). Asiaticoside is found in herbs and spices and green vegetables. Asiaticoside is found in green vegetables. Asiaticoside is a constituent of Centella asiatica (Asiatic pennywort) D000890 - Anti-Infective Agents Same as: D07576 Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties. Asiaticoside, a trisaccaride triterpene from Centella asiatica, suppresses TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts; Asiaticoside shows antioxidant, anti-inflammatory, and anti-ulcer properties.
Glycitin
Glycitin is an isoflavone glycoside present in human diets containing soy. The transformation of glycitin by intestinal microflora produces glycitein, a compound found to scavenge intracellular reactive oxygen species. Diverse bacteria strains from human origin have specific activity (beta-glucosidase activity) in the metabolism of dietary flavonoids. Soy isoflavones are popular supplements based on their potential protection against cancer and their use as alternative hormone replacement therapy. Is one of the isoflavones present in ready-to-feed soy-based infant formula. (PMID: 17516245, 17157426, 17439230, 12607743). Present in soya foods; potential nutriceutical. Glycitin is found in many foods, some of which are soy milk, tofu, miso, and soy sauce. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.
2-Hydroxy-6-pentadecylbenzoic acid
2-Hydroxy-6-pentadecylbenzoic acid is found in cashew nut. Synthesised by immature seeds of Ginkgo biloba (ginkgo).Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms; anacardic acid is a mixture of saturated and unsaturated molecules. The exact mixture depends on the species of the plant and the major component is C5:3 all-Z. (Wikipedia D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Synthesised by immature seeds of Ginkgo biloba (ginkgo) Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively. Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively.
Flunisolide
Flunisolide is only found in individuals that have used or taken this drug. It is a corticosteroid often prescribed as treatment for allergic rhinitis.Flunisolide is a glucocorticoid receptor agonist. The antiinflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flunisolide binds to plasma transcortin, and it becomes active when it is not bound to transcortin. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; INTERNAL_ID 2812 D000893 - Anti-Inflammatory Agents
Flurbiprofen
Flurbiprofen, a propionic acid derivative, is a nonsteroidal anti-inflammatory agent (NSAIA) with antipyretic and analgesic activity. Oral formulations of flurbiprofen may be used for the symptomatic treatment of rheumatoid arthritis, osteoarthritis and anklylosing spondylitis. Flurbiprofen may also be used topically prior to ocular surgery to prevent or reduce intraoperative miosis. Flurbiprofen is structurally and pharmacologically related to fenoprofen, ibuprofen, and ketoprofen. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Levallorphan
An opioid antagonist with properties similar to those of naloxone; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
(+)-Syringaresinol
(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.
Quinapril
Quinapril is a prodrug that belongs to the angiotensin-converting enzyme (ACE) inhibitor class of medications. It is metabolized to quinaprilat (quinapril diacid) following oral administration. Quinaprilat is a competitive inhibitor of ACE, the enzyme responsible for the conversion of angiotensin I (ATI) to angiotensin II (ATII). ATII regulates blood pressure and is a key component of the renin-angiotensin-aldosterone system (RAAS). Quinapril may be used to treat essential hypertension and congestive heart failure. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Skullcapflavone II
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
Crustecdysone
20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].
2,2-Bis[4-(2,3-epoxypropoxy)phenyl]propane
Potential food contaminant arising from its use in epoxy resin coatings for cans, concrete vats and tanks, etc. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 5810 D009676 - Noxae > D002273 - Carcinogens
10-Nitrolinoleic acid
Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525) [HMDB] Nitrolinoleic acid is a nitrated fatty acid (or nitroalkene, a class of cell signaling mediators generated by Nitric Oxide (NO) and fatty acid-dependent redox reactions). Nitrated fatty acids such as 10- and 12-nitro-9,12-octadecadienoic acid exhibit pluripotent antiinflammatory cell signaling properties. (PMID 16537525).
Lovastatin acid
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent A polyketide obtained by hydrolysis of the pyranone ring of lovastatin. C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor
Isobutyric acid
Isobutyric acid is a carboxylic or short chain fatty acid with characteristic sweat-like smell. Small amount of isobutyrate is generated via microbial (gut) metabolism. Small amounts may also be found in certain foods or fermented beverages. There is anosmia (genetic inability to smell) for the odor of isobutyric acid with a frequency of about 2.5\\%. (OMIM 207000). Isobutyric acid is slightly soluble in water but much more soluble in ethanol, ether and organic solvents. Isobutyric acid can affect people if breathed in and may be absorbed through the skin. Contact can irritate and burn the skin and eyes. Breathing Isobutyric acid can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. Present in apple, morello cherry, guava fruit, wine grapes, pineapple, crispbread, other breads, cheeses, wines, scallop and several essential oils, e.g. Roman chamomile. Acid and simple esters used as flavouring agents KEIO_ID I012
2-Aminobenzimidazole
CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2161; ORIGINAL_PRECURSOR_SCAN_NO 2159 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2163; ORIGINAL_PRECURSOR_SCAN_NO 2161 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4547; ORIGINAL_PRECURSOR_SCAN_NO 4545 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4568 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4534; ORIGINAL_PRECURSOR_SCAN_NO 4533 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2155; ORIGINAL_PRECURSOR_SCAN_NO 2153 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4515 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4543 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4549; ORIGINAL_PRECURSOR_SCAN_NO 4547 CONFIDENCE standard compound; INTERNAL_ID 1067; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2165; ORIGINAL_PRECURSOR_SCAN_NO 2163 CONFIDENCE standard compound; EAWAG_UCHEM_ID 138 CONFIDENCE standard compound; INTERNAL_ID 2003 CONFIDENCE standard compound; INTERNAL_ID 4008 KEIO_ID A042
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
Isoquinoline
Isoquinoline is a flavouring agent Being an analog of pyridine, isoquinoline is a weak base, with a pKb of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF3. Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative. Isoquinoline is a heterocyclic aromatic organic compound. It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine Flavouring agent KEIO_ID I067
Pyruvic acid
Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
1,3-Benzenediol
1,3-Benzenediol, also known as resorcin or m-hydroquinone, belongs to the class of organic compounds known as resorcinols. Resorcinols are compounds containing a resorcinol moiety, which is a benzene ring bearing two hydroxyl groups at positions 1 and 3. 1,3-Benzenediol exists in all living organisms, ranging from bacteria to humans. 1,3-Benzenediol is a creamy, hawthorn, and musty tasting compound. 1,3-Benzenediol has been detected, but not quantified, in several different foods, such as alcoholic beverages, cereals and cereal products, coffee and coffee products, eggplants, and java plums. This could make 1,3-benzenediol a potential biomarker for the consumption of these foods. 1,3-Benzenediol is a potentially toxic compound. In addition, exogenous ochronosis is associated with prolonged exposure to resorcinol . Data regarding the specific mechanisms of action of resorcinol does not appear to be readily accessible in the literature. Nevertheless, the role played by iodide ions in the irreversible inactivation of the enzymes is not yet fully elucidated . Resorcinol works by helping to remove hard, scaly, or roughened skin. In particular, it appears that resorcinol indicated for treating acne, dermatitis, or eczema in various skin care topical applications and peels revolves around the compounds ability to precipitate cutaneous proteins from the treated skin . In LPO and TPO, the resulting π-cation radical of the porphyrin can isomerize to a radical cation with the radical in an aromatic side chain of the enzyme . In vitro and in vivo studies have demonstrated that resorcinol can inhibit peroxidases in the thyroid and subsequently block the synthesis of thyroid hormones and cause goiter . Present in roasted barley, cane molasses, coffee, beer and wine. Flavouring ingredient. 1,3-Benzenediol is found in many foods, some of which are cereals and cereal products, coffee and coffee products, alcoholic beverages, and java plum. D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
Phenylacetylglutamine
Phenylacetylglutamine is a product formed from the conjugation of phenylacetate and glutamine. Technically, it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals such as the dog, cat, rat, monkey, sheep, and horse do not excrete this compound. Phenylacetyl-CoA and L-glutamine react to form phenylacetylglutamine and coenzyme A. The enzyme (glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a polypeptide species distinct from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia (PMID: 2791363, 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430). Phenylacetylglutamine is a microbial metabolite found in Christensenellaceae, Lachnospiraceae and Ruminococcaceae (PMID: 26241311). Phenylacetylglutamine is a product formed by the conjugation of phenylacetate and glutamine. Technically it is the amino acid acetylation product of phenylacetate (or phenylbutyrate after beta-oxidation). Phenylacetylglutamine is a normal constituent of human urine, but other mammals including the dog, cat, rat, monkey, sheep and horse do not excrete this compound. Phenylacetyl CoA and glutamine react to form phenylacetyl glutamine and Coenzyme A. The enzyme (Glutamine N-acetyl transferase) that catalyzes this reaction has been purified from human liver mitochondria and shown to be a distinct polypeptide species from glycine-N-acyltransferase. Phenylacetylglutamine is a major nitrogenous metabolite that accumulates in uremia. (PMID: 2791363; PMID: 8972626). It has been shown that over 50\\\% of urine phenylacetylglutamine may be derived from kidney conjugation of free plasma phenylacetic acid and/or from the kidneys preferential filtration of conjugated phenylacetic acid (PMID: 6420430) Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.
4-Hydroxysphinganine
Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124) [HMDB] Phytosphingosine is a phospholipid. Phospholipids are a class of lipids and a major component of all biological membranes; sphingolipid metabolites, such as sphingosine and ceramide, are highly bioactive compounds and are involved in diverse cell processes, including cell-cell interaction, cell proliferation, differentiation, and apoptosis. Phytosphingosine is also one of the most widely distributed natural sphingoid bases, which is abundant in fungi and plants, and also found in animals including humans. Phytosphingosine is structurally similar to sphingosine; phytosphingosine possesses a hydroxyl group at C-4 of the sphingoid long-chain base. The physiological roles of phytosphingosine are largely unknown. Phytosphingosine induces apoptosis in human T-cell lymphoma and non-small cell lung cancer cells, and induces caspase-independent cytochrome c release from mitochondria. In the presence of caspase inhibitors, phytosphingosine-induced apoptosis is almost completely suppressed, suggesting that phytosphingosine-induced apoptosis is largely dependent on caspase activities. (PMID: 12576463, 12531554, 8046331, 8048941,8706124). Phytosphingosine is a?phospholipid and has anti-cancer activities. Phytosphingosine induces cell apoptosis via caspase 8 activation and Bax translocation in cancer cells[1].
Cytidine monophosphate
Cytidine monophosphate, also known as 5-cytidylic acid and abbreviated CMP, is a nucleotide. It is an ester of phosphoric acid with the nucleoside cytidine. CMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase cytosine. Cytidine monophosphate (CMP) is derived from cytidine triphosphate (CTP) with subsequent loss of two phosphates. The synthesis of the pyrimidines CTP and UTP occurs in the cytoplasm and starts with the formation of carbamoyl phosphate from glutamine and CO2. Next, aspartate undergoes a condensation reaction with carbamoyl-phosphate to form orotic acid. In a subsequent cyclization reaction, the enzyme Aspartate carbamoyltransferase forms N-carbamoyl-aspartate which is converted into dihydroorotic acid by Dihydroorotase. The latter is converted to orotate by Dihydroorotate oxidase. Orotate is covalently linked with a phosphorylated ribosyl unit with Orotate phosphoribosyltransferase (aka "PRPP transferase") catalyzing reaction, yielding orotidine monophosphate (OMP). Orotidine-5-phosphate is decarboxylated by Orotidine-5-phosphate decarboxylase to form uridine monophosphate (UMP). UMP is phosphorylated by two kinases to uridine triphosphate (UTP) via two sequential reactions with ATP. CTP is subsequently formed by amination of UTP by the catalytic activity of CTP synthetase. Cytosine monophosphate (CMP) and uridine monophosphate (UMP) have been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions. Additionally, the administration of CMP/UMP appears to favour the entry of glucose in the muscle and CMP/UMP may be important in maintaining the level of hepatic glycogen constant during exercise. [PMID:18663991]. Cytidine monophosphate, also known as cmp or cytidylic acid, is a member of the class of compounds known as pyrimidine ribonucleoside monophosphates. Pyrimidine ribonucleoside monophosphates are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. Cytidine monophosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Cytidine monophosphate can be found in a number of food items such as elliotts blueberry, small-leaf linden, orange mint, and malabar spinach, which makes cytidine monophosphate a potential biomarker for the consumption of these food products. Cytidine monophosphate can be found primarily in saliva, as well as throughout all human tissues. Cytidine monophosphate exists in all living species, ranging from bacteria to humans. In humans, cytidine monophosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/i-18:0/i-17:0/18:2(9z,11z)), cardiolipin biosynthesis cl(i-13:0/i-24:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(i-13:0/i-22:0/i-20:0/i-15:0), and cardiolipin biosynthesis cl(i-12:0/a-17:0/i-20:0/a-21:0). Cytidine monophosphate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), UMP synthase deficiency (orotic aciduria), and dihydropyrimidinase deficiency. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
N2-acetyllysine
N-alpha-Acetyl-L-lysine also known as Nalpha-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-lysine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-alpha-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-alpha-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-alpha-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free lysine can also occur. In particular, N-alpha-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Individuals with hyperlysinaemia due to L-lysine alpha-ketoglutarate reductase deficiency will excrete high levels of N-alpha-Acetyl-L-lysine in their urine (PMID: 116084). L-lysine alpha-ketoglutarate reductase deficiency, if untreated, can lead to neurological and behavioral deficits (PMID: 116084). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Acetyl-L-lysine is an endogenous metabolite.
Oxypurinol
Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. PMID: 15139781. Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 853 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 883; ORIGINAL_PRECURSOR_SCAN_NO 881 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 893; ORIGINAL_PRECURSOR_SCAN_NO 892 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 860 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 894; ORIGINAL_PRECURSOR_SCAN_NO 892 Acquisition and generation of the data is financially supported in part by CREST/JST. Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].
Ribothymidine
Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
3b,17b-Dihydroxyetiocholane
The unspecified form of the steroid, normally a major metabolite of testosterone with androgenic activity. It has been implicated as a regulator of gonadotropin secretion. [HMDB] The unspecified form of the steroid, normally a major metabolite of testosterone with androgenic activity. It has been implicated as a regulator of gonadotropin secretion.
Norvaline
Norvaline is a non-proteinogenic branched-chain amino acid with the chemical formula C5H11NO2, isomeric with valine. It has previously been reported to be a natural component of an antifungal peptide of Bacillus subtilis. Norvaline and other modified branched chain amino acids have received attention in recent studies, as they appear to be incorporated in some recombinant proteins found in E. coli. This amino acid is often made synthetically. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.
Phosphoserine
The phosphoric acid ester of serine. As a constituent (residue) of proteins, its side chain can undergo O-linked glycosylation. This might be important in explaining some of the devastating consequences of diabetes. It is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Phosphorylated serine residues are often referred to as phosphoserine. Serine proteases are a common type of protease. Serine, organic compound, one of the 20 amino acids commonly found in animal proteins. Only the L-stereoisomer appears in mammalian protein. It is not essential to the human diet, since it can be synthesized in the body from other metabolites, including glycine. Serine was first obtained from silk protein, a particularly rich source, in 1865. Its name is derived from the Latin for silk, sericum. Serines structure was established in 1902. [HMDB] Phosphoserine is the phosphoric acid ester of the amino acid serine. It is found in essentially all living organisms ranging from microbes to plants to mammals. Phosphoserine is a component of many proteins as the result of posttranslational modifications to the native protein’s serine residue(s). The phosphorylation of the hydroxyl functional group in serine to produce phosphoserine is catalyzed by various types of kinases. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. Free phosphoserine is found in many biofluids and likely arises from the proteolysis of proteins containing phosphoserine residues (PMID: 7693088). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P060 DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.
D-Leucic acid
D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). [HMDB] D-Leucic acid is an alpha-hydroxycarboxylic acid present in patients affected with Short-bowel syndrome (an Inborn errors of metabolism, OMIM 175200) (PMID 9766851), and in Maple Syrup Urine Disease (MSUD, an autosomal recessive inherited metabolic disorder of branched-chain amino acid) (PMID 9766851). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H091 (R)-Leucic acid is an amino acid metabolite[1].
3-Methylcatechol
3-methylcatechol, also known as 2,3-dihydroxytoluene or 2,3-toluenediol, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3-methylcatechol is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-methylcatechol can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 3-methylcatechol a potential biomarker for the consumption of these food products. 3-methylcatechol is a chemical compound . 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].
L-3-Cyanoalanine
3-cyano-l-alanine, also known as L-beta-cyanoalanine or 3-cyanoalanine, (D)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 3-cyano-l-alanine is soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-cyano-l-alanine can be found in a number of food items such as conch, abiyuch, rubus (blackberry, raspberry), and lemon thyme, which makes 3-cyano-l-alanine a potential biomarker for the consumption of these food products. 3-cyano-l-alanine exists in all living organisms, ranging from bacteria to humans. L-3-Cyanoalanine, also known as L-beta-cyanoalanine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha-amino acids which have the L-configuration of the alpha-carbon atom. L-3-Cyanoalanine is a very strong basic compound (based on its pKa). L-3-Cyanoalanine exists in all living organisms, ranging from bacteria to humans. Outside of the human body, L-3-cyanoalanine has been detected, but not quantified in, several different foods, such as summer savouries, orange bell peppers, red rices, mixed nuts, and green bell peppers. This could make L-3-cyanoalanine a potential biomarker for the consumption of these foods.
Glucobrassicin
Constituent of Brassica and Raphanus subspecies, e.g. rape (Brassica napus variety napus) and Brussels sprouts (Brassica oleracea variety gemmifera). Glucobrassicin is found in many foods, some of which are capers, swede, white cabbage, and common cabbage. Glucobrassicin is found in brassicas. Glucobrassicin is a constituent of Brassica and Raphanus species, e.g. rape (Brassica napus var. napus) and Brussels sprouts (Brassica oleracea var. gemmifera)
2,2',5,5'-Tetrachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Proteinase inhibitor E 64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015
Neomycin
A component of neomycin that is produced by Streptomyces fradiae. On hydrolysis it yields neamine and neobiosamine B. (From Merck Index, 11th ed). Neomycin is a bactericidal aminoglycoside antibiotic that binds to the 30S ribosome of susceptible organisms. Binding interferes with mRNA binding and acceptor tRNA sites and results in the production of non-functional or toxic peptides. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives D - Dermatologicals > D09 - Medicated dressings > D09A - Medicated dressings > D09AA - Medicated dressings with antiinfectives D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AB - Antibiotics S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID N022
Undecylenic acid
Undecylenic acid, also known as 10-undecylenate or omega-undecenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecylenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecylenic acid is found in black elderberry. Undecylenic acid is a flavouring ingredient and is a sweet and woody-tasting compound. Undecylenic acid was identified as one of forty plasma metabolites that could be used to predict gut microbiome Shannon diversity (PMID:31477923). Shannon diversity is a metric that summarizes both species abundance and evenness, and it has been suggested as a marker for microbiome health. Undecylenic acid is used in the production of the bioplastic Nylon-11, in the treatment of fungal infections in the skin, and as a precursor in the manufacture of a wide assortment of pharmaceuticals, cosmetics, perfumes, and personal hygiene products. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use Flavouring ingredient. Undecylenic acid is found in black elderberry. C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.
Gossypin
A glycosyloxyflavone that is gossypetin attached to a beta-D-glucopyranosyl residue at position 8 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Gossypin is a flavone isolated from?Hibiscus vitifolius and has antioxidant, antiinflammatory, anticancer, anticataract, antidiabetic, and hepatoprotective activities. Gossypin inhibits NF-κB and NF-κB-regulated gene expression. Gossypin inhibits RANKL-induced osteoclastogenesis both in mouse primary bone marrow cells and RAW 264.7 cells in vitro[1][2]. Gossypin is a flavone isolated from?Hibiscus vitifolius and has antioxidant, antiinflammatory, anticancer, anticataract, antidiabetic, and hepatoprotective activities. Gossypin inhibits NF-κB and NF-κB-regulated gene expression. Gossypin inhibits RANKL-induced osteoclastogenesis both in mouse primary bone marrow cells and RAW 264.7 cells in vitro[1][2].
Humulone
An optically active cyclic ketone consisting of 3,5,6-trihydroxycyclohexa-2,4-dien-1-one bearing two 3-methylbut-2-en-1-yl substituents at positions 4 and 6 as well as a 3-methylbutanoyl group at the 2-position. Humulone is a natural product found in Humulus lupulus with data available. Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3]. Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3].
Lithospermic acid
Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].
all-trans-Phytofluene
all-trans-Phytofluene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids 7,7,8,8,11,12-Hexahydro-Carotene is a carotenoid found in human fluids.
alpha-Tocopherol acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols Vitamin E supplement and antioxidant for foodstuffs Vitamin E supplement and antioxidant for foodstuff D018977 - Micronutrients > D014815 - Vitamins Same as: D01735 D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1]. D-α-Tocopherol acetate (D-Vitamin E acetate) can be hydrolyzed to d-alpha-tocopherol (VE) and absorbed in the small intestine[1].
Eudesmin
(+)-Eudesmin is a lignan. (+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available. Origin: Plant Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].
Tephrosin
Tephrosin is a member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities. It has a role as a pesticide, an antineoplastic agent and a metabolite. It is an organic heteropentacyclic compound, an aromatic ether, a cyclic ketone and a member of rotenones. Tephrosin is a natural product found in Millettia ferruginea, Tephrosia vogelii, and other organisms with data available. A member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities.
2'-O-Methylisoliquiritigenin
2-O-Methylisoliquiritigenin (CAS: 51828-10-5), also known as 4,4-dihydroxy-2-methoxychalcone or 3-deoxysappanchalcone, belongs to the class of organic compounds known as cinnamylphenols. These are organic compounds containing the 1,3-diphenylpropene moiety with one benzene ring bearing one or more hydroxyl groups. Thus, 2-O-methylisoliquiritigenin is considered to be a flavonoid lipid molecule. 2-O-Methylisoliquiritigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-O-Methylisoliquiritigenin is a stress metabolite of Pisum sativum (pea). Stress metabolite of Pisum sativum (pea). 2-Methylisoliquiritigenin is found in pulses and common pea. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1].
Actinonin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Actinonin ((-)-Actinonin) is a naturally occurring antibacterial agent produced by Actinomyces. Actinonin inhibits aminopeptidase M, aminopeptidase N and leucine aminopeptidase. Actinonin is a potent reversible peptide deformylase (PDF) inhibitor with a Ki of 0.28 nM. Actinonin also inhibits MMP-1, MMP-3, MMP-8, MMP-9, and hmeprin α with Ki values of 300 nM, 1,700 nM, 190 nM, 330 nM, and 20 nM, respectively. Actinonin is an apoptosis inducer. Actinonin has antiproliferative and antitumor activities[1][2][3][4][5].
Enniatin B
An enniatin obtained from formal cyclocondensation of three N-[(2R)-2-hydroxy-3-methylbutanoyl]-N-methyl-L-valine units. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE Reference Standard (Level 1)
Dihydrolipoate
Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki). Inside the cell, alpha lipoic acid is readily reduced or broken down to dihydrolipoic acid. Dihydrolipoic acid is even more potent than alpha lipoic acid, neutralizing free radicals, preventing them from causing harm. It directly destroys damaging superoxide radicals, hydroperoxy radicals and hydroxyl radicals. It has been shown in vitro that dihydrolipoate (DL-6,8-dithioloctanoic acid) has antioxidant activity against microsomal lipid peroxidation.Dihydrolipoate is tested for its neuroprotective activity using models of hypoxic and excitotoxic neuronal damage in vitro and rodent models of cerebral ischemia in vivo. Dihydrolipoate, similarly to dimethylthiourea, is able to protect neurons against ischemic damage by diminishing the accumulation of reactive oxygen species within the cerebral tissue.(PMID: 1345759). Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki) D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 162
3-oxo-C12 homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 211
FA 15:0
A branched-chain saturated fatty acid comprising tetradecanoic acid carrying a 12-methyl substituent. CONFIDENCE standard compound; INTERNAL_ID 246 CONFIDENCE standard compound; INTERNAL_ID 247 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].
Prostaglandin B2
Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B2 (PGB2) is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)
Isosilybin
Constituent of Silybum marianum (milk thistle). Isosilybin is found in coffee and coffee products and green vegetables. Isosilybin is found in coffee and coffee products. Isosilybin is a constituent of Silybum marianum (milk thistle) Isosilybin is a natural product found in Silybum with data available. [Raw Data] CBA83_Isosilybin-B_pos_20eV.txt [Raw Data] CBA83_Isosilybin-B_neg_30eV.txt [Raw Data] CBA83_Isosilybin-B_neg_20eV.txt [Raw Data] CBA83_Isosilybin-B_pos_10eV.txt [Raw Data] CBA83_Isosilybin-B_pos_40eV.txt [Raw Data] CBA83_Isosilybin-B_neg_10eV.txt [Raw Data] CBA83_Isosilybin-B_pos_50eV.txt [Raw Data] CBA83_Isosilybin-B_pos_30eV.txt [Raw Data] CBA83_Isosilybin-B_neg_50eV.txt [Raw Data] CBA83_Isosilybin-B_neg_40eV.txt Isosilybin (Isosilybinin) is a flavonoid from Silybum marianum; inhibits CYP3A4 induction with an IC50 of 74 μM. Isosilybin (Isosilybinin) is a flavonoid from Silybum marianum; inhibits CYP3A4 induction with an IC50 of 74 μM.
(-)-trans-Carveol
Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.
2-Butenal
(e)-2-butenal, also known as (cis)-crotonaldehyde or (E)-crotonaldehyde (iupac), is a member of the class of compounds known as enals. Enals are an alpha,beta-unsaturated aldehyde of general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position (e)-2-butenal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-2-butenal is a flower tasting compound found in fruits, garden tomato, and potato, which makes (e)-2-butenal a potential biomarker for the consumption of these food products (e)-2-butenal can be found primarily in feces and saliva. 2-Butenal (CAS: 4170-30-3), also known as crotonaldehyde, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. The (E)-form of 2-butenal predominates (>95\\%). 2-Butenal can undergo polycondensation with phenols to synthesize phenolic resins. It is an eye, skin, and mucous membrane irritant. (E)-2-Butenal is found in fruits and vegetables (e.g. tomato juice, strawberry aroma).
N-Dodecane
N-Dodecane is found in black walnut. Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. (Wikipedia). Dodecane is a volatile organic compound found in feces of patients with Clostridium difficile infection, and considered as a potential fecal biomarker of Clostridium difficile infection (PMID: 30986230). Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. N-Dodecane is found in papaya, black walnut, and garden tomato (variety). D009676 - Noxae > D002273 - Carcinogens
Gibberellin A116
Gibberellin a116, also known as ga12, is a member of the class of compounds known as c20-gibberellin 6-carboxylic acids. C20-gibberellin 6-carboxylic acids are c20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin a116 is considered to be an isoprenoid lipid molecule. Gibberellin a116 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a116 can be found in a number of food items such as rape, pigeon pea, chinese cabbage, and linden, which makes gibberellin a116 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
Prostaglandin H2
Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin . D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
L-Aspartate-semialdehyde
L-Aspartate-semialdehyde (CAS: 15106-57-7) is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways. In the lysine biosynthesis I pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with pyruvate to produce L-2,3-dihydrodipicolinate and water. Dihydrodipicolinate synthase catalyzes this reaction. In the homoserine biosynthesis pathway, L-aspartate-semialdehyde is produced from a reaction between L-aspartyl-4-phosphate and NADPH, with phosphate and NADP+ as byproducts. The reaction is catalyzed by aspartate-semialdehyde dehydrogenase. L-Aspartate-semialdehyde reacts with NAD(P)H and H+ to form homoserine and NAD(P)+. L-Aspartate-semialdehyde is involved in both the lysine biosynthesis I and homoserine biosynthesis pathways.
Cyclopentanone
Cyclopentanone belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Cyclopentanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, cyclopentanone is considered to be an oxygenated hydrocarbon lipid molecule. Cyclopentanone is a cyclic ketone, structurally similar to cyclopentane, consisting of a five-membered ring containing a ketone functional group. Cyclopentanone is a colorless liquid organic compound with a peppermint-like odor. Cyclopentanone is found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Cyclopentanone is also used as a flavouring ingredient. Found in various foods, including potato and tomato, and cooked foods, e.g. butter, meats, coffee, roasted peanut. Flavouring ingredient
UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
UDP-N-acetylmuraminate
UDP-N-acetylmuraminate is a nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed. UDP-N-acetylmuraminate, also known as UDP-MurNAc, is a key molecule in the biosynthesis of bacterial cell walls. It is a nucleotide sugar, which means it consists of a nucleotide (uridine diphosphate, UDP) linked to a sugar molecule (N-acetylmuramic acid, MurNAc). This compound plays a critical role in the formation of peptidoglycan, the essential structural component of the bacterial cell wall. Here are some key points about UDP-N-acetylmuraminate: Biosynthesis: UDP-MurNAc is synthesized from UDP-N-acetylglucosamine (UDP-GlcNAc) through a series of enzymatic reactions. The addition of a lactyl group to UDP-GlcNAc forms UDP-MurNAc. Peptidoglycan Precursor: It serves as a precursor for the synthesis of peptidoglycan, which is a polymer made up of alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The peptide chains attached to MurNAc units cross-link to provide structural strength to the cell wall. Enzymatic Processing: UDP-MurNAc is further processed by enzymes such as Mur synthases, which add amino acids to form the pentapeptide chain attached to the MurNAc residue. This pentapeptide is crucial for the cross-linking of peptidoglycan layers. Target for Antibiotics: Since peptidoglycan synthesis is unique to bacteria, enzymes involved in the biosynthesis and processing of UDP-MurNAc are targets for antibiotics. Inhibiting these enzymes can prevent proper cell wall formation, leading to bacterial cell death. Importance in Bacterial Growth: The availability of UDP-MurNAc is essential for bacterial growth and cell division, as it is a direct precursor to the building blocks of the cell wall. Research and Applications: Understanding the biosynthesis and function of UDP-MurNAc is important for developing new antibiotics, as well as for basic research in bacterial cell biology. UDP-N-acetylmuraminate is a vital molecule in the construction of the bacterial cell wall, and its biosynthesis and function are of significant interest in both basic research and the development of antibacterial therapies. A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed [HMDB]
Bromide
Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. From cytotoxicity and mutagenicity assays, it is known that brominated organic compounds are more toxic than chlorinated organic compounds. However, only a limited number of brominated organic compounds have been regulated. (PMID: 17316744). Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants > D001965 - Bromides N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives
Arsenate
Arsenate is an ion consisting of arsenic. An arsenate is any compound containing the arsenate ion AsO43−. Arsenates are also referred to as pentavalent arsenic [As(V)] as the arsenic atom in arsenate has a valence of five. Arsenates can be both salts and esters of arsenic acid. Arsenate can be used as an indicator of mineral deposits, as a result of transition metals reacting with it to form bright colours. These mineral blooms can be used to find nickel (annabergite), copper (chalcophyllite), and cobalt (erythrite) arsenide ores. Arsenate is a chemical analogue of phosphate due to arsenic and phosphorous being part of the same group (pnictogens). Because of the similarities, arsenate can be taken by phosphate transporters due to imperfect selectivity (PMID: 328484, 8598055). Arsenate is much less toxic than the trivalent form arsenite, which is more mobile in groundwater and soils, and forms strong metal-like interactions with thiol groups in protein cysteine residues and small molecule thiols (PMID: 30852446). The arsenate ion is AsO43−. An arsenate (compound) is any compound that contains this ion.The arsenic atom in arsenate has a valency of 5 and is also known as pentavalent arsenic or As[V].Arsenate resembles phosphate in many respects, since arsenic and phosphorus occur in the same group (column) of the periodic table. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
TOLRESTAT
A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10X - Other drugs used in diabetes > A10XA - Aldose reductase inhibitors C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D004791 - Enzyme Inhibitors
ZOPOLRESTAT
C471 - Enzyme Inhibitor > C72880 - Aldose Reductase Inhibitor D007004 - Hypoglycemic Agents D004791 - Enzyme Inhibitors
Naphthazarin
A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents
Questiomycin A
Questiomycin A, also known as 2-aminophenoxazin-3-one (APO), is found in mushrooms such as Calocybe gambosa (St Georges mushroom). 2-Aminophenoxazin-3-one is a benzoxazinoid metabolite. It was found excreted in the feces of rats that were fed a rye bread-based diet which makes this compound a potential fecal biomarker of whole grain intake (PMID: 23113707).
Hexanal
Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
L-3-Aminodihydro-2(3H)-furanone
L-3-Aminodihydro-2(3H)-furanone is found in pulses. L-3-Aminodihydro-2(3H)-furanone is a constituent of pea Pisum sativum seedlings Constituent of pea Pisum sativum seedlings. L-3-Aminodihydro-2(3H)-furanone is found in pulses and common pea.
Thiamine triphosphate
Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins
Adenosine tetraphosphate
Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4). [HMDB] Adenosine 5 tetraphosphate, Ap4, is a natural nucleotide present in many biological systems. This nucleotide has been found as a constituent of the nucleotide pool present in the aqueous humor of a number of mammals and appears to act as a regulator of intraocular pressure (PMID: 14600249). AP4 may also play a significant role in the physiological regulation of vascular tone (PMID: 8599250). The plasma concentration of AP4 is in the nanomolar range. Technically adenosine tetraphosphate is condensation product of adenosine with tetraphosphoric acid at the 5 position. Acetyl coenzyme A (CoA) synthetase (EC 6.2.1.1) catalyzes the synthesis of adenosine 5-tetraphosphate (P4A) and adenosine 5-pentaphosphate (p5A) from ATP and tri- or tetrapolyphosphate (P3 or P4).
Ethyl acetoacetate
Ethyl acetoacetate (EAA) is found in coffee and coffee products as well as in strawberry and yellow passion fruit juice. Ethyl acetoacetate is a flavouring agent. The organic compound ethyl acetoacetate is the ethyl ester of acetoacetic acid. It is mainly used as a chemical intermediate in the production of a wide variety of compounds, such as amino acids, analgesics, antibiotics, antimalarial agents, antipyrine, aminopyrine, and vitamin B1, as well as in the manufacture of dyes, inks, lacquers, perfumes, plastics, and yellow paint pigments (Wikipedia). The organic compound ethyl acetoacetate (EAA) is the ethyl ester of acetoacetic acid. It is mainly used as a chemical intermediate in the production of a wide variety of compounds, such as amino acids, analgesics, antibiotics, antimalarial agents, antipyrine and aminopyrine, and vitamin B1; as well as the manufacture of dyes, inks, lacquers, perfumes, plastics, and yellow paint pigments. Alone, it is used as a flavoring for food.
5'-Phosphoribosyl-N-formylglycinamide
5-phosphoribosyl-n-formylglycinamide, also known as N-formyl-gar or N-formylglycinamide ribonucleotide, is a member of the class of compounds known as glycinamide ribonucleotides. Glycinamide ribonucleotides are compounds in which the amide N atom of glycineamide is linked to the C-1 of a ribosyl (or deoxyribosyl) moiety. Nucleotides have a phosphate group linked to the C5 carbon of the ribose (or deoxyribose) moiety. 5-phosphoribosyl-n-formylglycinamide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-phosphoribosyl-n-formylglycinamide can be found in a number of food items such as rosemary, mexican groundcherry, common wheat, and bitter gourd, which makes 5-phosphoribosyl-n-formylglycinamide a potential biomarker for the consumption of these food products. 5-phosphoribosyl-n-formylglycinamide exists in all living species, ranging from bacteria to humans. In humans, 5-phosphoribosyl-n-formylglycinamide is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. 5-phosphoribosyl-n-formylglycinamide is also involved in several metabolic disorders, some of which include mitochondrial DNA depletion syndrome, aICA-Ribosiduria, molybdenum cofactor deficiency, and xanthinuria type I. 5-Phosphoribosyl-N-formylglycinamide, also known as FGAR or N-formyl-GAR, belongs to the class of organic compounds known as glycinamide ribonucleotides. Glycinamide ribonucleotides are compounds in which the amide N atom of glycineamide is linked to the C-1 of a ribosyl (or deoxyribosyl) moiety. FGAR is an extremely weak basic (essentially neutral) compound (based on its pKa). FGAR is a substrate for phosphoribosylformylglycinamidine synthase. It is involved in aminoimidazole ribonucleotide biosynthesis and plays a vital role in purine metabolism as well as in the conversion of glutamine to glutamate.
SAICAR
SAICAR, also known as succinylaminoimidazolecarboxamide ribotide or phosphoribosylaminoimidazolesuccinocarboxamide, is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. SAICAR is converted from 5-aminoimidazole-4-carboxyribonucleotide (CAIR) via phosphoribosylaminoimidazolesuccinocarboxamide synthetase (EC: 6.3.2.6) or SAICAR synthase. This enzyme catalyzes the eighth step in the biosynthesis of purine nucleotides. SAICAR (a ribotide) can lose its phosphate group leading to the appearance of a riboside known as succinylaminoimidazolecarboxamide riboside (SAICAriboside) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma. This particular riboside (called SAICAr) is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). On the other hand, the ribotide (SAICAR) is generally harmless and is an essential intermediate in purine metabolism. When present in sufficiently high levels, SAICAR can act as an oncometabolite. An oncometabolite is a compound that promotes tumour growth and survival. As an oncometabolite, high levels of SAICAR stimulate pyruvate kinase isoform M2 and promote cancer cell survival in glucose-limited conditions such as aerobic glycolysis (PMID: 23086999). SAICAR (or (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate) is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate is converted from 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate via phosphoribosylaminoimidazole-succinocarboxamide synthase [EC: 6.3.2.6] or SAICAR synthase. This enzyme catalyses the seventh step out of ten in the biosynthesis of purine nucleotides. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, urine, and to a lesser extent in plasma is characteristic of a heritable deficiency Adenylosuccinate lyase deficiency. [HMDB]. SAICAR is found in many foods, some of which are sweet potato, black chokeberry, common wheat, and globe artichoke. SAICAR. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3031-95-6 (retrieved 2024-08-20) (CAS RN: 3031-95-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
lipid X
An N-acyl-D-glucosamine 1-phosphate where the N-acyl group is (R)-3-hydroxytetradecanoyl and carrying an additional (R)-3-hydroxytetradecanoyl group at the 3-position.
lipid IVA
Selenocystathionine
Selenocystathionine (CAS: 2196-58-9), also known as SeCysta, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Selenocystathionine is a very strong basic compound (based on its pKa). Selenocystathionine participates in a number of enzymatic reactions. In particular, selenocystathionine can be converted into selenocysteine and 2-ketobutyric acid through the action of the enzyme cystathionine gamma-lyase. Selenocystathionine is formed from selenohomocysteine by the enzyme cystathionine beta-synthase (EC 4.2.1.22) as a by-product of cystathionine synthesis. Selenocystathionine is consumed in the diet and is one of the main compounds present in plants that tend to hyperaccumulate selenium for use as an elemental plant defence mechanism (PMID: 10026151, 6456763, 16920881). Selenocystathionine is formed from Selenohomocysteine by the enzyme cystathionine beta-synthase (EC 4.2.1.22), as a by-product of cystathionine synthesis. Selenocystathionine is consumed in the diet, and is one of the main compounds present in plants that tend to hyperaccumulate selenium and use it as an elemental plant defense mechanism. (PMID: 10026151, 6456763, 16920881) [HMDB]
Phycocyanobilin
Phycocyanobilin is a linear, open-chain tetrapyrrole pigment that belongs to the family of bilins. It serves as a chromophore in various phytochrome photoreceptors found in cyanobacteria, as well as in the chlorosomes of green sulfur bacteria. Phycocyanobilin is a key component of phycobiliproteins, which are water-soluble pigments involved in light harvesting during photosynthesis. **Chemical Structure:** Phycocyanobilin has a molecular formula of C33H36N4O6 and a molecular weight of approximately 596.67 g/mol. Structurally, it consists of a porphyrin backbone with four pyrrole rings connected by methine bridges. The pyrrole rings contain nitrogen atoms that coordinate a central magnesium ion in phycobiliproteins. Unlike chlorophyll, phycocyanobilin has an open-chain structure due to the presence of a double bond between the C-20 and C-21 positions of the macrocyclic ring, which prevents it from forming a fully circular porphyrin ring. **Properties:** - **Color:** Phycocyanobilin imparts a blue color to the phycobiliproteins in which it is bound. The specific color is due to the electronic structure of the phycocyanobilin molecule, which allows it to absorb light in the red region of the visible spectrum, typically around 620-630 nm. - **Solubility:** Unlike many other pigments, phycocyanobilin is water-soluble due to its binding to phycobiliproteins, which enhances its functionality in the thylakoid membranes of cyanobacteria. - **Chemical Reactivity:** Phycocyanobilin can be isomerized and oxidized to form other bilins, such as phycoerythrobilin and phycourobilin, which have different spectral properties and can be found in different phycobiliproteins. **Biological Role:** Phycocyanobilin plays a critical role in the photosynthetic process of cyanobacteria and certain green sulfur bacteria. Its primary functions include: - **Light Harvesting:** In phycobiliproteins like phycocyanin, phycocyanobilin serves as a light-harvesting antenna. It absorbs light energy and transfers it to the photosynthetic reaction centers, where it is used to drive the synthesis of ATP and NADPH. - **Photoregulation:** In cyanobacteria, phycocyanobilin is also involved in the regulation of photosynthesis through the action of phytochrome-like photoreceptors. These photoreceptors can switch between a Pr (red-absorbing) and a Pfr (far-red-absorbing) form in response to light, regulating gene expression and various metabolic processes. **Synthesis:** Phycocyanobilin is synthesized from the amino acid L-arginine through a series of enzymatic reactions that include the production of 5-aminolevulinic acid (ALA), which is then transformed into protoporphyrin IX. The protoporphyrin IX is subsequently modified to form phycocyanobilin, a process that involves the removal of the macrocyclic ring and the introduction of the double bond at the C-20 and C-21 positions. In summary, phycocyanobilin is an essential pigment for the photosynthetic apparatus of certain photosynthetic organisms, contributing to their ability to capture and utilize light energy for the production of organic compounds. Its unique structure and properties allow it to perform a variety of functions that are critical to the survival and ecological success of these organisms.
Prostaglandin A2
Produced by the seminal vesicles, prostaglandins are a group of lipid compounds that are derived enzymatically from fatty acids. Technically hormones, the prostanoid class of fatty acid derivatives is a subclass of eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Prostaglandin A is a cyclopentenone and is an endogenous metabolite derived from arachidonic acid. It exhibits potent cellular anti-proliferative activity in vivo and in vitro. Excess PGA2 causes an accumulation in both S and G2/M, and a marked decrease in G1. There is also an increase in DNA content preceeding the G0/G1 peak (indicative of apoptotic body formation) mediated by changes in expression levels of Bax and Bcl-2. Produced by the seminal vessicals: Prostaglandins are a group of lipid compounds that are derived enzymatically from fattyacids. Technically a hormone, the prostanoid class of fatty acid derivatives is a subclass of eicosanoids. Prostaglandin A is cyclopentenone and endogenous metabolite derived from arachidonic acid. Exhibits potent cellular anti-proliferative activity in vivo and in vitro. Excess PGA2 causes an accumulation in both S and G2/M, and a marked decrease in G1. As well there is an increase in DNA content preceeding the G0/G1 peak (indicative of apoptic body formation) mediated by changes in expression levels of Bax and Bcl-2.
Delta-12-Prostaglandin J2
Delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. delta-12-Prostaglandin J2 (d12-PGJ2) is the ultimate metabolite of Prostaglandin D2 (PGD2). PGD2 is an unstable molecule and undergoes dehydration to form PGJ2 in aqueous solution, and is then converted to d12-PGJ2, in the presence of serum albumin or plasma. d12-PGJ2 forms a conjugate with the thiol of glutathione (GSH) and GSH suppresses the d12-PGJ2-induced HSP synthesis and subsequent inhibition of cell growth (HSPs are a set of proteins synthesized in response to heat shock or to other environmental stresses). d12-PGJ2 has been shown to stimulate alkaline phosphatase activity and calcification of human osteoblastic cells, the potency of the PGs being comparable to that of 1-a,25-dihydroxy vitamin D. d12-PGJ2 enhances the type-1 collagen synthesis in human osteoblasts during calcification. Thus, d12-PGJ2 modulates osteogenesis through induction of the syntheses of multiple proteins related to mineralization. Considering that PGD2 is a major arachidonate metabolite in bone marrow, d12-PGJ2, may be physiologically involved in the modulation of osteogenesis. d12-PGJ2 induces heme oxygenase, HO-l. Heme oxygenase is a key enzyme in heme catabolism, oxidatively clearing heme to yield biliverdin, iron and carbon monoxide. The biological function of this enzyme is the conversion of potentially toxic heme to bile and the recovery of the iron. Furthermore, carbon monoxide produced on the enzymatic degradation of heme has been suggested to function as a neural messenger. Two isozymes of heme oxygenase, HO-l and HO-2, have been identified. HO-2 is constitutively expressed, while HO-l is drastically induced in response to a variety of stresses, including heavy metals, heat shock and UV irradiation. (PMID: 8777585) D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
ent-8(14),15-Pimaradiene
ent-8(14),15-Pimaradiene is found in fruits. ent-8(14),15-Pimaradiene is a constituent of Aralia racemosa (American spikenard). Constituent of Aralia racemosa (American spikenard). ent-8(14),15-Pimaradiene is found in fruits.
4-Methylbenzaldehyde
4-Methylbenzaldehyde, also known as p-toluylaldehyde or p-formyltoluene, belongs to the class of organic compounds known as benzoyl derivatives. A tolualdehyde compound with the methyl substituent at the 4-position. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 4-Methylbenzaldehyde is a cherry and fruity tasting compound. 4-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as caraway, sweet cherries, tea, nuts, and coffee and coffee products. Component of *FEMA 3068* together with the o- and m-isomers. Flavouring ingredient. Methylbenzaldehydes are present in roasted nuts, cooked beef, cider, tomato, coffee, tea and elderberry juice. 4-Methylbenzaldehyde is found in many foods, some of which are tea, caraway, nuts, and garden tomato. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.
Ceforanide
Ceforanide is a second-generation parenteral cephalosporin antibiotic. It has a longer elimination half-life than any currently available cephalosporin. Its activity is very similar to that of cefamandole, a second-generation cephalosporin, except that ceforanide is less active against most gram-positive organisms. Many coliforms, including Escherichia coli, Klebsiella, Enterobacter, and Proteus, are susceptible to ceforanide, as are most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
2-((3-Aminopropyl)amino)ethanethiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
Previtamin D3
Previtamin D3 is an intermediate in the production of Vitamin D. [HMDB] Previtamin D3 is an intermediate in the production of Vitamin D.
Mometasone
Mometasone is a medium-potency synthetic corticosteroid with antiinflammatory, antipruritic, and vasoconstrictive properties. Studies in asthmatic patients have demonstrated that mometasone provides a favorable ratio of topical to systemic activity due to its primary local effect along with the extensive hepatic metabolism and the lack of active metabolites. Though effective for the treatment of asthma, glucocorticoids do not affect asthma symptoms immediately. Maximum improvement in symptoms following inhaled administration of mometasone furoate may not be achieved for 1 to 2 weeks or longer after starting treatment. he antiinflammatory actions of corticosteroids are thought to involve phospholipase A2 inhibitory proteins, lipocortins, which control the biosynthesis of potent mediators of inflammation such as prostaglandins and leukotrienes. D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents
Thiamylal
Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Chlorphenesin
Chlorphenesin is only found in individuals that have used or taken this drug. It is a centrally acting muscle relaxant. Its mode of action is unknown. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1203)The mechanism of action of chlorphenesin is not well defined, and its effects are measured mainly by subjective responses. It is known that chlorphenesin acts in the central nervous system (CNS) rather than directly on skeletal muscle. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents
Indican
Indican is a colourless, water-soluble organic compound consisting of an indole ring conjugated to glucose. It is an indole glycoside. Its hydrolysis yields β-D-glucose and indoxyl. Indoles are compounds which consist of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. The oxidation of indican by a mild oxidizing agent, e.g. atmospheric oxygen or CYP450 enzymes, yields indigo dye which is blue in colour. Indican is a substance occurring naturally in the urine of humans and mammals and also in blood plasma as a normal metabolite of tryptophan. Tryptophan is first converted to indole by gut bacteria. Following absorption from the gut, indole is converted to 3-hydroxyindole (indoxyl or indican) in the liver, where it is again then conjugated with sulfuric acid or glucoronic acid through normal xenobiotic metabolism pathways. It is then transported to the kidneys for excretion. In individuals affected by the blue diaper syndrome (a rare, autosomal recessive metabolic disorder characterized in infants by bluish urine-stained diapers), the patients exhibit a defect in tryptophan metabolism, leading to an increase in indican synthesis. Indican is then excreted into the urine and from there into the diaper where, upon exposure to air, it is converted to indigo blue dye due to oxidation by atmospheric oxygen. An increased urinary excretion of indican is seen in Hartnup disease from the bacterial degradation of unabsorbed tryptophan (PMID: 19967017). Hartnup disease is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan), which leads to excessive bacterial fermentation of tryptophan (to indole) in the gut. Indican has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Its excretion is decreased by the presence of Lactobacillus bacteria in the gut (PMID: 6785555 ). Indican is an indolyl carbohydrate, a beta-D-glucoside and an exopolysaccharide. Indican is a natural product found in Indigofera suffruticosa, Isatis tinctoria, and other organisms with data available. Indican is a toxic metabolite derived from dietary proteins and tryptophan. In the intestine, proteins and tryptophan are converted to indole by tryptophanase-expressing organisms. In the liver, indole is hydroxylated to form indoxyl and indoxyl is sufated to produce indican. Overproduction of indican is associated with glomerular sclerosis, interstitial fibrosis and renal failure. Indican is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It is a colourless organic compound, soluble in water, naturally occurring in Indigofera plants. It is a precursor of indigo dye. Indican interferes with many commercial procedures for measuring total bilirubin[6] which can be a problem for renal failure patients where blood indican levels are raised. It can cause gastrointestinal symptoms in patients where protein absorption is reduced - like Hartnups disease, allowing for greater bacterial decomposition of the Tryptophan to indole and its conversion to indican.
Asitribin
Asiminacin is found in fruits. Asiminacin is a constituent of Asimina triloba (pawpaw) and Annona squamosa (sugar apple). Constituent of the seeds of Asimina triloba (pawpaw). Asitribin is found in fruits.
Vulgaxanthin I
Vulgaxanthin I is found in common beet. Vulgaxanthin I is a yellow pigment from Beta species Vulgaxanthin I is a food colouran Yellow pigment from Beta subspecies Food colourant. Vulgaxanthin I is found in red beetroot, common beet, and root vegetables. D004396 - Coloring Agents > D050858 - Betalains
Heteratisine
Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid
Schottenol
Schottenol is found in cucumber. Schottenol is a constituent of cucumber leaves (Cucumis sativus).
Tetraprenol
Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].
Inflexin
An ent-kaurane diterpenoid that is ent-kaur-16-ene substituted by an alpha-hydroxy group at position 1, beta-acetoxy groups at positions 3 and 6a and oxo groups at positions 11 and 15. Isolated from Isodon excisus and Rabdosia inflexa,it acts as an aromatase inhibitor.
Cryptolepine
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
Thienodolin
An indole alkaloid that is a thienoindole ring with carboxamide group and chlorine substituents at positions 2 and 6 respectively.
8-Deoxylactucin
Eupatolide
A germacranolide with formula C15H20O3, isolated from several Inula species. It exhibits anti-cancer properties.
Inulicin
Britannilactone 1-O-acetate is a natural product found in Pentanema britannicum and Inula japonica with data available. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation. Inulicin (1-O-Acetylbritannilactone) is an active compound that inhibits VEGF-mediated activation of Src and FAK. Inulicin (1-O-Acetylbritannilactone) inhibits LPS-induced PGE2 production and COX-2 expression, and NF-κB activation and translocation.
beta-Cubebene
Beta-cubebene, also known as (-)-B-cubebene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Beta-cubebene is a citrus and fruity tasting compound and can be found in a number of food items such as sweet basil, roman camomile, pot marjoram, and sweet bay, which makes beta-cubebene a potential biomarker for the consumption of these food products. Beta-cubebene can be found primarily in saliva. Piper cubeba, cubeb or tailed pepper is a plant in genus Piper, cultivated for its fruit and essential oil. It is mostly grown in Java and Sumatra, hence sometimes called Java pepper. The fruits are gathered before they are ripe, and carefully dried. Commercial cubebs consist of the dried berries, similar in appearance to black pepper, but with stalks attached – the "tails" in "tailed pepper". The dried pericarp is wrinkled, and its color ranges from grayish brown to black. The seed is hard, white and oily. The odor of cubebs is described as agreeable and aromatic and the taste as pungent, acrid, slightly bitter and persistent. It has been described as tasting like allspice, or like a cross between allspice and black pepper . beta-Cubebene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.
Valerenic acid
Valerenic acid is found in fats and oils. Valerenic acid is a constituent of Valeriana officinalis (valerian) Valerenic acid is a sesquiterpenoid constituent of the essential oil of the Valerian plant Constituent of Valeriana officinalis (valerian) Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].
6-Hydroxyluteolin
Isolated from Valerianella eriocarpa (Italian corn salad). 6-Hydroxyluteolin is found in many foods, some of which are common thyme, mexican oregano, green vegetables, and lemon verbena. 6-Hydroxyluteolin is found in common thyme. 6-Hydroxyluteolin is isolated from Valerianella eriocarpa (Italian corn salad).
Betavulgarin
Betavulgarin, also known as 2-hydroxy-5-methoxy-6,7-methylenedioxyisoflavone, is a member of the class of compounds known as isoflavones. Isoflavones are polycyclic compounds containing a 2-isoflavene skeleton which bears a ketone group at the C4 carbon atom. Thus, betavulgarin is considered to be a flavonoid lipid molecule. Betavulgarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Betavulgarin can be found in chickpea, common beet, and red beetroot, which makes betavulgarin a potential biomarker for the consumption of these food products.
Cristacarpin
Cristacarpin is found in pulses. Cristacarpin is isolated from Psophocarpus tetragonolobus (winged bean).
Prodelphinidin B
Prodelphinidin B is found in alcoholic beverages. Prodelphinidin B is isolated from beer Prodelphinidin is a name for the polymeric tannins composed of gallocatechin (Porter, 1992). Isolated from beer
Irisolidone
Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].
LICARIN A
(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].
3',4'-Dihydroxyacetophenone
3,4-Dihydroxyacetophenone is found in coffee and coffee products. 3,4-Dihydroxyacetophenone is extracted from coffee residues. Potential component of FEMA 3662. 3,4-Dihydroxyacetophenone is a mixture of dihydroxyacetophenone isomers is used in food flavourin D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2]. 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2].
Sesamol
Sesamol is a member of benzodioxoles. Sesamol is a natural product found in Sesamum indicum with data available. See also: Sesame Oil (part of). Isolated from sesame oil. Sesamol is found in fats and oils and sesame. Sesamol is found in fats and oils. Sesamol is isolated from sesame oi D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].
3,3',4,4'-Tetrachlorobiphenyl
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Teniposide
A semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. Teniposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent cells from entering into the mitotic phase of the cell cycle, and lead to cell death. Teniposide acts primarily in the G2 and S phases of the cycle. [PubChem] Same as: D02698
Valspodar
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D003524 - Cyclosporins C1744 - Multidrug Resistance Modulator Same as: D06277
Chymostatin
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors
C-1027
An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents
Militarinone A
A pyridine alkaloid that is 1,4-dihydroxypyridin-2(1H)-one substituted by a cis-1,4-dihydroxycyclohexyl group at position 5 and a (2E,4E,6E,8R,10R)-6,8,10-trimethyldodeca-2,4,6-trienoyl moiety at position 3. It is isolated from the mycelium of the entomogenous fungus, Paecilomyces militaris and has been found to induce pronounced neurite sprouting.
Pyrrolnitrin
A member of the class of pyrroles carrying chloro and 3-chloro-2-nitrophenyl substituents at positions 3 and 4 respectively. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01094
5'-Deoxy-5-fluorouridine
5-Deoxy-5-fluorouridine is a metabolite of capecitabine. Capecitabine (Xeloda, Roche) is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to 5-fluorouracil in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. (Wikipedia) D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].
carmofur
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000970 - Antineoplastic Agents Same as: D01784 Carmofur (HCFU) is a rat recombinant acid ceramidase inhibitor with an IC50 of 29 nM. Carmofur is also a protease inhibitor of SARS-CoV-2 main protease (Mpro), fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA). Carmofur has anti-cancer, anti-inflammatory and anti-virus activities, and can be used for the study of COVID-19 and acute lung injury (ALI)[1][2][3].
I-123 BMIPP
C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate Same as: D06608
FA 11:1
An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.
palmitoyllipid A
A member of the class of lipid As that is lipid A in which the free OH group on the N-hydroxytetradecanoyl group is carrying a palimitoyl group.
2,2',4,4'-Tetrachlorobiphenyl
2,2',4,4'-tetrachlorobiphenyl is a tetrachlorobiphenyl that is biphenyl in which each of the phenyl groups is substituted at positions 2 and 4 by chlorines. It is a tetrachlorobiphenyl and a dichlorobenzene. D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Pentachloronitrobenzene
D016573 - Agrochemicals D010575 - Pesticides
coelenterazine
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents
1-[(4-Amino-3-methylphenyl)methyl]-5-(2,2-diphenylacetyl)-6,7-dihydro-4H-imidazo[4,5-c]pyridine-6-carboxylic acid
2-[(4-{2-[(4-Cyclohexylbutyl)(cyclohexylcarbamoyl)amino]ethyl}phenyl)sulfanyl]-2-methylpropanoic acid
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.
3-(3-(N-(2-Chloro-3-trifluoromethylbenzyl)(2,2-diphenylethyl)amino)propoxy)phenylacetic acid
beta-Sesquiphellandrene
Constituent of the oil of ginger (Zingiber officinale). beta-Sesquiphellandrene is found in many foods, some of which are turmeric, parsley, rosemary, and tea. beta-Sesquiphellandrene is found in common oregano. beta-Sesquiphellandrene is a constituent of the oil of ginger (Zingiber officinale)
Jaspamide
A cyclodepsipeptide isolated from Jaspis splendens and has been shown to exhibit antineoplastic activity. It is an actin polymerization and stabilization inducer. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals
Anabaseine
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Anabaseine is a non-selective nicotinic agonist. Anabaseine stimulates all AChRs, preferentially stimulates skeletal muscle and brain α7 subtypes[1][2]. Anabaseine is also a weak partial agonist at α4β2 nAChRs[3].
G-418
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins
Pyropheophorbide a
Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].
β-Pinene
An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants.
Widely distributed in plants, usually associated with a-Pinene
alpha-Bisabolol
alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].
3-amino-3-(4-hydroxyphenyl)propanoic acid
A beta-amino acid comprising propionic acid having amino and 4-hydroxyphenyl groups attached at the 3-position.
1,4-Naphthoquinone
1,4-naphthoquinone appears as yellow needles or brownish green powder with an odor of benzoquinone. (NTP, 1992) 1,4-naphthoquinone is the parent structure of the family of 1,4-naphthoquinones, in which the oxo groups of the quinone moiety are at positions 1 and 4 of the naphthalene ring. Derivatives have pharmacological properties. It derives from a hydride of a naphthalene. 1,4-Naphthoquinone is a natural product found in Juglans nigra and Juglans regia with data available. 1,4-Naphthoquinone or para-naphthoquinone is an organic compound derived from naphthalene. Several isomeric naphthoquinones are known, notably 1,2-naphthoquinone. 1,4-Naphthoquinone forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. Naphthalene is a constituent of jet fuel, diesel fuel and cigarette smoke. It is also a byproduct of incomplete combustion and hence is an ubiquitous environmental pollutant. The typical air concentration of naphthalene in cities is about 0.18 ppb. 1,4-Naphthoquinone is a potential pharmacophore for inhibition of both MAO (monoamine oxidase) and DNA topoisomerase activities, this latter associated with antitumor activity[1].
Neobaicalein
Scullcapflavone II is a tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. It has a role as a plant metabolite and an anti-asthmatic drug. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Skullcapflavone II is a natural product found in Lagochilus leiacanthus, Scutellaria guatemalensis, and other organisms with data available. A tetramethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7, 8 and 6 and hydroxy groups at positons 5 and 2 respectively. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
Hydroxyanthraquinone
1-hydroxyanthraquinone is a monohydroxyanthraquinone. 1-Hydroxyanthraquinone is a natural product found in Rheum palmatum, Handroanthus impetiginosus, and Morinda citrifolia with data available. D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
Carveol
Carveol is a clear colorless liquid. Insoluble in water. Carveol is a limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. It has a role as a volatile oil component and a plant metabolite. Carveol is a natural product found in Echinophora tournefortii, Trachyspermum anethifolium, and other organisms with data available. Present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Flavouring agent. Carveol is found in many foods, some of which are fruits, parsley, tea, and cumin. Carveol is found in caraway. Carveol is present in oil of grapefruit (Citrus paradisi), mandarin (Citrus reticulata), blackcurrant berries, celery, black tea, dill, caraway seeds and lambs lettuce. Carveol is a flavouring agent A limonene monoterpenoid that is cyclohex-2-en-1-ol substituted by a methyl group at position 2 and a prop-1-en-2-yl group at position 5. Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.
7,8-Dihydroneopterin
7,8-Dihydroneopterin, also known as dihydroneopterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. They are synthesized in several parts of the body, including the pineal gland. 7,8-Dihydroneopterin is a strong basic compound (based on its pKa). Within humans, 7,8-dihydroneopterin participates in a number of enzymatic reactions. In particular, 7,8-dihydroneopterin can be biosynthesized from sepiapterin; which is catalyzed by the enzyme sepiapterin reductase or carbonyl reductase [NADPH] 1. In humans, 7,8-dihydroneopterin is involved in the metabolic disorder called hyperphenylalaninemia due to 6-pyruvoyltetrahydropterin synthase (PTPS) deficiency. 7,8-Dihydroneopterin is produced by human monocyte-derived macrophages upon stimulation with interferon-gamma. Increased amounts of 7,8-dihydroneopterin in human body fluids are found in many disorders, including viral infections and autoimmune diseases (PMID: 12804528). 7,8-dihydroneopterin, also known as npr, belongs to biopterins and derivatives class of compounds. Those are coenzymes containing a 2-amino-pteridine-4-one derivative. They are mainly synthesized in several parts of the body, including the pineal gland. 7,8-dihydroneopterin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroneopterin can be found in a number of food items such as prickly pear, star anise, cocoa bean, and black salsify, which makes 7,8-dihydroneopterin a potential biomarker for the consumption of these food products. 7,8-dihydroneopterin exists in all living organisms, ranging from bacteria to humans. In humans, 7,8-dihydroneopterin is involved in the pterine biosynthesis. 7,8-dihydroneopterin is also involved in several metabolic disorders, some of which include hyperphenylalaninemia due to dhpr-deficiency, sepiapterin reductase deficiency, dopa-responsive dystonia, and hyperphenylalaniemia due to guanosine triphosphate cyclohydrolase deficiency. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
4-Methylpentanal
4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial). [HMDB] 4-Methylpentanal is an intermediate in the metabolism of C21-Steroid hormone. It is a substrate for Cytochrome P450 11A1 (mitochondrial).
Leucinic acid
Leucinic acid, also known as leucic acid, 2-hydroxyisocaproic acid or 2-hydroxy-4-methylvaleric acid, belongs to the class of organic compounds known as hydroxy fatty acids. These are fatty acids in which the chain bears a hydroxyl group. Leucinic acid is a valeric acid derivative having a hydroxy substituent at the 2-position and a methyl substituent at the 4-position. It is an alpha-hydroxy analogue of leucine and a metabolite of the branched-chain amino acid leucine. Leucinic acid is found in all organisms ranging from bacteria to plants to animals. Leucinic acid has been found in a patient with dihydrolipoyl dehydrogenase (DLD) deficiency (PMID: 6688766). DLD deficiency is caused by mutations in the DLD gene and is inherited in an autosomal recessive manner. A common feature of dihydrolipoamide dehydrogenase deficiency is a potentially life-threatening buildup of lactic acid in tissues (lactic acidosis), which can cause nausea, vomiting, severe breathing problems, and an abnormal heartbeat. Neurological problems are also common in this condition; the first symptoms in affected infants are often decreased muscle tone (hypotonia) and extreme tiredness (lethargy). As the problems worsen, affected infants can have difficulty feeding, decreased alertness, and seizures. Liver problems can also occur in dihydrolipoamide dehydrogenase deficiency, ranging from an enlarged liver (hepatomegaly) to life-threatening liver failure. In some affected people, liver disease, which can begin anytime from infancy to adulthood, is the primary symptom. Leucinic acid is also present in the urine of patients with short bowel syndrome (PMID: 4018104) Leucinic acid has been isolated from amniotic fluid (PMID: 6467607), and have been found in a patient with dihydrolipoyl dehydrogenase deficiency (PMID 6688766).
Neopterin
Neopterin, also known as monapterin, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative and are mainly synthesized in several parts of the body, including the pineal gland. Neopterin is a solid that is soluble in water. Neopterin is a catabolic product of guanosine triphosphate (GTP). In humans, it is involved in pterine biosynthesis and it also serves as a precursor in the biosynthesis of biopterin, which is an essential cofactor in neurotransmitter synthesis. Neopterin has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic toxins can cause kidney, liver and heart damage. They can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Uremic toxins such as neopterin are actively transported into the kidneys via organic ion transporters (especially OAT3). Elevated levels of neopterin result from immune system activation, including from malignant cancer, allograft rejection, viral infection, and autoimmune disorders (PMID: 19500901). Measurement of neopterin concentration allows estimation of the extent of oxidative stress elicited by the immune system. Neopterin concentrations usually correlate with the extent and activity of a given disease, and are also used to monitor the course of the disease. Elevated neopterin concentrations are among the best predictors of adverse outcome in patients with HIV infection, in cardiovascular disease, and in various types of cancer. Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
DL-O-Phosphoserine
DL-O-Phosphoserine, also known as DL-O-phosphorylserine or DL-O-serine phosphate, belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Serine proteases are a common type of protease. DL-O-Phosphoserine exists in all living species, ranging from bacteria to humans. Serine is one of three amino acid residues that are commonly phosphorylated by kinases during cell signalling in eukaryotes. It is a normal metabolite found in human biofluids. (PMID 7693088, 7688003) DL-O-Phosphoserine, a normal metabolite in human biofluid, is an ester of serine and phosphoric acid.
(+)-Lithospermic acid
(2R,3Z)-Phycocyanobilin
y,y-Carotene, 7,7',8,8',11,12-hexahydro-, cis-(9CI)
beta,beta-Dimethylacrylshikonin
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
3-Nitrobenzanthrone
N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide
alpha-Bisabolol
alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].
Carmofur
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000970 - Antineoplastic Agents Carmofur (HCFU) is a rat recombinant acid ceramidase inhibitor with an IC50 of 29 nM. Carmofur is also a protease inhibitor of SARS-CoV-2 main protease (Mpro), fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA). Carmofur has anti-cancer, anti-inflammatory and anti-virus activities, and can be used for the study of COVID-19 and acute lung injury (ALI)[1][2][3].
Coelenterazine
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents
Dehydrodiisoeugenol
DL-Methamphetamine
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators
Lipid IVA
5,8-Dihydroxy-1,4-naphthoquinone
D000970 - Antineoplastic Agents
Valnemulin
Spinosterol
Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
4-hydroxysphinganine
4-hydroxysphinganine is a member of the class of compounds known as 1,3-aminoalcohols. 1,3-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C3 atom. 4-hydroxysphinganine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxysphinganine can be found in a number of food items such as fenugreek, citrus, chestnut, and boysenberry, which makes 4-hydroxysphinganine a potential biomarker for the consumption of these food products.
glutamine-betaxanthin
D004396 - Coloring Agents > D050858 - Betalains
Glycodeoxycholate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
Perillyl alcohol
Perillyl alcohol is a limonene monoterpenoid consists of a cyclohexene ring substituted by a hydroxymethyl and a prop-1-en-2-yl group at positions 1 and 4 respectively. It is a constituent of a variety of essential oils including lavender. It has a role as a plant metabolite and a volatile oil component. Perillyl alcohol is a natural product found in Trachyspermum anethifolium, Geum heterocarpum, and other organisms with data available. Perillyl Alcohol is a naturally occurring monoterpene related to limonene with antineoplastic activity. Perillyl alcohol inhibits farnesyl transferase and geranylgeranyl transferase, thereby preventing post-translational protein farnesylation and isoprenylation and activation of oncoproteins such as p21-ras, and arresting tumor cells in the G1 phase of the cell cycle. (NCI04) Perillyl alcohol is a monoterpene isolated from the essential oils of lavendin, peppermint, spearmint, cherries, celery seeds, and several other plants. In animal studies it has been shown to regress pancreatic, mammary, and liver tumors, to exhibit possible application as a chemopreventative agent for colon, skin, and lung cancer, and as a chemotherapeutic agent for neuroblastoma, and prostate and colon cancer.(PMID: 9855569) [HMDB]. p-Mentha-1,8-dien-7-ol is found in many foods, some of which are caraway, ginger, german camomile, and sweet bay. Perillyl alcohol is a monoterpene isolated from the essential oils of lavendin, peppermint, spearmint, cherries, celery seeds, and several other plants. In animal studies it has been shown to regress pancreatic, mammary, and liver tumors, to exhibit possible application as a chemopreventative agent for colon, skin, and lung cancer, and as a chemotherapeutic agent for neuroblastoma, and prostate and colon cancer.(PMID:9855569). A limonene monoterpenoid consists of a cyclohexene ring substituted by a hydroxymethyl and a prop-1-en-2-yl group at positions 1 and 4 respectively. It is a constituent of a variety of essential oils including lavender. C471 - Enzyme Inhibitor > C2020 - Farnesyl Transferase Inhibitor D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors (S)-(?)-Perillyl alcohol is a monoterpene found in lavender, inhibits farnesylation of Ras, upregulates the mannose-6-phosphate receptor and induces apoptosis. Anti-cancer activity[1]. (S)-(?)-Perillyl alcohol is a monoterpene found in lavender, inhibits farnesylation of Ras, upregulates the mannose-6-phosphate receptor and induces apoptosis. Anti-cancer activity[1]. Perillyl alcohol, a monoterpene,?is active in inducing apoptosis in tumor cells without affecting normal cells[1]. Perillyl alcohol, a monoterpene,?is active in inducing apoptosis in tumor cells without affecting normal cells[1].
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Hispidulin
Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Irisolidone
Irisolidone is a member of 4-methoxyisoflavones. Irisolidone is a natural product found in Dalbergia sissoo, Wisteria brachybotrys, and other organisms with data available. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3]. Irisolidone is a major isoflavone found in Pueraria lobata flowers. Irisolidone exhibits potent hepatoprotective activity. Irisolidone shows the high efficacy for volume-regulated anion channels (VRAC) blockade (IC50=9.8 μM)[1][2][3].
Fargesin
Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. (+/-)-Fargesin is a natural product found in Piper mullesua, Aristolochia cymbifera, and other organisms with data available. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].
Glycitin
Glycitin is a glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. It has a role as a plant metabolite. It is a methoxyisoflavone, a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. Glycitin is a natural product found in Sorbus cuspidata, Ziziphus spina-christi, and other organisms with data available. A glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.
Isoferulic acid
Isoferulic acid (CAS: 537-73-5) is a chlorogenic acid (CGA). CGAs are formed by the esterification of hydroxycinnamic acids (e.g. caffeic acid, ferulic acid, and p-coumaric acid) with quinic acid. CGAs are abundant phenolic compounds in coffee, with caffeoylquinic (CQA), feruloylquinic (FQA), and dicaffeoylquinic (diCQA) acids being the major subclasses, and coffee is the most consumed food product in the world. Isoferulic acid is present in normal human urine in concentrations of 0.05-2.07 umol/mmol creatinine at baseline, and reaches 0.2-9.6 umol/mmol creatinine in four hours after a cup of coffee, with a large inter-individual variation (PMID:17884997). Isoferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It has a role as a metabolite, a biomarker and an antioxidant. Isoferulic acid is a natural product found in Sibiraea angustata, Astragalus onobrychis, and other organisms with data available. See also: Black Cohosh (part of); Ipomoea aquatica leaf (part of). A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 4 and 3 respectively on the phenyl ring. It is used as a food additive; listed in the EAFUS Food Additive Database (Jan 2001) Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
Quinic acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee. D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee.
(+)-Fargesin
Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].
Isoflavanone
Isoflavone in which the double bond between positions 2 and 3 has been reduced to a single bond.
Betavulgarin
A hydroxyisoflavone that is isoflavone substituted by a hydroxy group at position 2, a methoxy group at position 5 and a methylenedioxy group across positions 6 and 7 respectively.
cristacarpin
Isolated from Psophocarpus tetragonolobus (winged bean). Cristacarpin is found in winged bean and pulses.
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
multiflorin B
A glycosyloxyflavone that is kaempferol substituted by a 6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl residue at position 3 via a glycosidic linkage.
sulfurein
Sulfuretin is a member of 1-benzofurans. Sulfuretin is a natural product found in Calanticaria bicolor, Dipteryx lacunifera, and other organisms with data available. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2]. Sulfuretin inhibits the inflammatory response by suppressing the NF-κB pathway. Sulfuretin can be used for the research of allergic airway inflammation. Sulfuretin reduces oxidative stress, platelet aggregation, and mutagenesis[1]. Sulfuretin is a competitive and potent inhibitor of monophenolase and diphenolase activities with the IC50 of 13.64 μM[2].
Thujone
α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
Genistin
Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3].
valerenic acid
A monocarboxylic acid that is 2-methylprop-2-enoic acid which is substituted at position 3 by a 3,7-dimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-4-yl group. A bicyclic sesquiterpenoid constituent of the essential oil of the Valerian plant. Valerenic acid ((-)-Valerenic Acid), a sesquiterpenoid, is an orally active positive allosteric modulator of GABAA receptors. Valerenic acid is also a partial agonist of the 5-HT5a receptor. Valerenic acid mediates anxiolytic activity via GABAA receptors containing the β3 subunit. Valerenic acid also exhibits potent antioxidant properties[1][2][3].
Obacunone
Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
Lupenone
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
phytofluene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).
Syringaresinol
(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.
2'-O-Methylisoliquiritigenin
2-O-Methylisoliquiritigenin (CAS: 51828-10-5), also known as 4,4-dihydroxy-2-methoxychalcone or 3-deoxysappanchalcone, belongs to the class of organic compounds known as cinnamylphenols. These are organic compounds containing the 1,3-diphenylpropene moiety with one benzene ring bearing one or more hydroxyl groups. Thus, 2-O-methylisoliquiritigenin is considered to be a flavonoid lipid molecule. 2-O-Methylisoliquiritigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-O-Methylisoliquiritigenin is a stress metabolite of Pisum sativum (pea). 2-O-methylisoliquiritigenin is a member of the class of chalcones that is isoliquiritigenin in which one of the hydroxy groups at position 2 is replaced by a methoxy group. It has a role as a metabolite. It is a member of chalcones, a monomethoxybenzene and a member of phenols. It is functionally related to an isoliquiritigenin. 2-O-Methylisoliquiritigenin is a natural product found in Dracaena draco, Dracaena cinnabari, and other organisms with data available. A member of the class of chalcones that is isoliquiritigenin in which one of the hydroxy groups at position 2 is replaced by a methoxy group. Stress metabolite of Pisum sativum (pea). 2-Methylisoliquiritigenin is found in pulses and common pea. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1].
3',4'-Dihydroxyacetophenone
3,4-Dihydroxyacetophenone is found in coffee and coffee products. 3,4-Dihydroxyacetophenone is extracted from coffee residues. Potential component of FEMA 3662. 3,4-Dihydroxyacetophenone is a mixture of dihydroxyacetophenone isomers is used in food flavourin 3,4-dihydroxyacetophenone is a member of acetophenones. It has a role as a metabolite. 3,4-Dihydroxyacetophenone is a natural product found in Vincetoxicum atratum, Picea obovata, and other organisms with data available. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2]. 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2].
2-Hydroxy-6-pentadecylbenzoic acid
Anacardic acid is a hydroxybenzoic acid that is salicylic acid substituted by a pentadecyl group at position 6. It is a major component of cashew nut shell liquid and exhibits an extensive range of bioactivities. It has a role as an EC 2.3.1.48 (histone acetyltransferase) inhibitor, an apoptosis inducer, a neuroprotective agent, an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor, an anticoronaviral agent, an antibacterial agent, an anti-inflammatory agent and a plant metabolite. It is a hydroxybenzoic acid and a hydroxy monocarboxylic acid. It is functionally related to a salicylic acid. Anacardic acid is a natural product found in Amphipterygium adstringens, Knema elegans, and other organisms with data available. 2-Hydroxy-6-pentadecylbenzoic acid is found in cashew nut. Synthesised by immature seeds of Ginkgo biloba (ginkgo).Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms; anacardic acid is a mixture of saturated and unsaturated molecules. The exact mixture depends on the species of the plant and the major component is C5:3 all-Z. (Wikipedia A hydroxybenzoic acid that is salicylic acid substituted by a pentadecyl group at position 6. It is a major component of cashew nut shell liquid and exhibits an extensive range of bioactivities. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Synthesised by immature seeds of Ginkgo biloba (ginkgo) Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively. Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively.
4-Methoxybenzaldehyde
4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
2-AMINOBENZIMIDAZOLE
A member of the class of benzimidazoles that is benzimidazole in which the hydrogen at position 2 is replaced by an amino group. CONFIDENCE standard compound; INTERNAL_ID 2240 CONFIDENCE standard compound; INTERNAL_ID 2003
carisoprodol
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3327
Propoxyphene
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3344
Norephedrine
R - Respiratory system > R01 - Nasal preparations > R01B - Nasal decongestants for systemic use > R01BA - Sympathomimetics D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3684
undecenoic acid
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.
Indolylmethyl glucosinolate
Annotation level-3 Acquisition and generation of the data is financially supported by the Max-Planck-Society
Dihydrocapsaicin
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.271 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.269 Acquisition and generation of the data is financially supported in part by CREST/JST. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
Chryseriol
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.094 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.096 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.093 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.091 Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Josamycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides A macrolide antibiotic produced by certain strains of Streptomyces narbonensis var. josamyceticus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D01235 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.133 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.131 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.130 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.135 Josamycin (EN-141) is a macrolide antibiotic exhibiting antimicrobial activity against a wide spectrum of pathogens, such as bacteria. The dissociation constant Kd from ribosome for Josamycin is 5.5 nM.
flurbiprofen
M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AE - Propionic acid derivatives S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BC - Antiinflammatory agents, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
sulfamethizole
D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BA - Sulfonamides J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01E - Sulfonamides and trimethoprim > J01EB - Short-acting sulfonamides B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions > B05CA - Antiinfectives A sulfonamide consisting of a 1,3,4-thiadiazole nucleus with a methyl substituent at C-5 and a 4-aminobenzenesulfonamido group at C-2. S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides
Aica ribonucleotide
A 1-(phosphoribosyl)imidazolecarboxamide that is acadesine in which the hydroxy group at the 5 position has been converted to its monophosphate derivative. COVID info from COVID-19 Disease Map D007004 - Hypoglycemic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2,3-Dihydroxybenzoic acid
A dihydroxybenzoic acid that is benzoic acid substituted by hydroxy groups at positions 2 and 3. It occurs naturally in Phyllanthus acidus and in the aquatic fern Salvinia molesta. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
N-Acetyl-L-leucine
The N-acetyl derivative of L-leucine. N-Acetyl-L-leucine is an endogenous metabolite.
Oxipurinol
C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].
3-Methylxanthine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GMSNIKWWOQHZGF-UHFFFAOYSA-N_STSL_0034_3-Methylxanthine_0500fmol_180410_S2_LC02_MS02_57; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle. 3-Methylxanthine, a xanthine derivative, is a cyclic guanosine monophosphate (GMP) inhibitor, with an IC50 of 920 μM on guinea-pig isolated trachealis muscle.
Angelicin
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Origin: Plant, Coumarins Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
Columbin
Columbin is an organic heterotricyclic compound and an organooxygen compound. (2S,4AR,6aR,7R,10R,10aS,10bS)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4a,5,6,6a,7,10,10a,10b-octahydro-1H-10,7-(epoxymethano)benzo[f]isochromene-4,12(2H)-dione is a natural product found in Vateria indica, Penianthus zenkeri, and other organisms with data available. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2]. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2].
Phenylacetylglutamine
Phenylacetylglutamine is a colonic microbial metabolite from amino acid fermentation.
N6-acetyl-L-lysine
An N(6)-acyl-L-lysine where the N(6)-acyl group is specified as acetyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DTERQYGMUDWYAZ-ZETCQYMHSA-N_STSL_0232_N-epsilon-Acetyl-L-lysine (N6)_8000fmol_190114_S2_LC02MS02_018; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
Sphinganine
A 2-aminooctadecane-1,3-diol having (2S,3R)-configuration. D004791 - Enzyme Inhibitors D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. D-Erythro-dihydrosphingosin directly inhibits cytosolic phospholipase A2α (cPLA2α) activity. DL-erythro-Dihydrosphingosine is a potent inhibitor of PKC and phospholipase A2 (PLA2)[1][2].
Quinaldic acid
A quinolinemonocarboxylic acid having the carboxy group at the 2-position. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; LOAUVZALPPNFOQ-UHFFFAOYSA-N_STSL_0207_Quinaldic acid_0125fmol_180831_S2_L02M02_32; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Quinoline-2-carboxylic acid is an endogenous metabolite.
Ribothymidine
A methyluridine having a single methyl substituent at the 5-position on the uracil ring. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
ISOBUTYRIC ACID
A branched fatty acid comprising propanoic acid carrying a methyl branch at C-2.
2-Hydroxychalcone
2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3]. 2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3].
5-Methyluridine
CONFIDENCE standard compound; INTERNAL_ID 320 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
Methohexital
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CA - Barbiturates, plain N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AF - Barbiturates, plain C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate
3-methylcatechol
A methylcatechol carrying a methyl substituent at position 3. It is a xenobiotic metabolite produced by some bacteria capable of degrading nitroaromatic compounds present in pesticide-contaminated soil samples. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].
Pyruvic acid
A 2-oxo monocarboxylic acid that is the 2-keto derivative of propionic acid. It is a metabolite obtained during glycolysis. Pyruvic acid is an intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures (From Stedman, 26th ed.). Biological Source: Intermediate in primary metabolism including fermentation processes. Present in muscle in redox equilibrium with Lactic acid. A common constituent, as a chiral cyclic acetal linked to saccharide residues, of bacterial polysaccharides. Isolated from cane sugar fermentation broth and peppermint. Constituent of Bauhinia purpurea, Cicer arietinum (chickpea), Delonix regia, Pisum sativum (pea) and Trigonella caerulea (sweet trefoil) Use/Importance: Reagent for regeneration of carbonyl compdounds from semicarbazones, phenylhydrazones and oximes. Flavoring ingredient (Dictionary of Organic Compounds); Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol. Therefore it unites several key metabolic processes.; Pyruvate is an important chemical compound in biochemistry. It is the output of the anaerobic metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvate, which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle. Pyruvate is also converted to oxaloacetate by an anaplerotic reaction which replenishes Krebs cycle intermediates; alternatively, the oxaloacetate is used for gluconeogenesis. These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also called the citric acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.; Pyruvic acid (CH3COCOOH) is an organic acid. It is also a ketone, as well as being the simplest alpha-keto acid. The carboxylate (COOH) ion (anion) of pyruvic acid, CH3COCOO-, is known as pyruvate, and is a key intersection in several metabolic pathways. It can be made from glucose through glycolysis, supplies energy to living cells in the citric acid cycle, and can also be converted to carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol.; Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid. It is miscible with water, and soluble in ethanol and diethyl ether. In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate, by the oxidation of propylene glycol by a strong oxidizer (eg. potassium permanganate or bleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide:; Pyruvic acid or pyruvate is a key intermediate in the glycolytic and pyruvate dehydrogenase pathways, which are involved in biological energy production. Pyruvate is widely found in living organisms. It is not an essential nutrient since it can be synthesized in the cells of the body. Certain fruits and vegetables are rich in pyruvate. For example, an average-size red apple contains approximately 450 milligrams. Dark beer and red wine are also rich sources of pyruvate. Recent research suggests that pyruvate in high concentrations may have a role in cardiovascular therapy, as an inotropic agent. Supplements of this dietary substance may also have bariatric and ergogenic applications. Pyruvic acid is isolated from cane sugar fermentation broth, Cicer arietinum (chickpea), Pisum sativum (pea), Trigonella cerulea (sweet trefoil) and peppermint. It can be used as a flavouring ingredient. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Pristimerin
Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM. Pristimerin is a potent and reversible monoacylglycerol lipase (MGL) inhibitor with an IC50 of 93 nM.
Sphondin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1]. Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1].
1-Methylxanthine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
acyclovir
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AB - Nucleosides and nucleotides excl. reverse transcriptase inhibitors D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AD - Antivirals D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C471 - Enzyme Inhibitor > C29575 - DNA Polymerase Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 2780 Acyclovir (Aciclovir) is a potent, orally active antiviral agent. Acyclovir has antiherpetic activity with IC50 values of 0.85 μM and 0.86 μM for HSV-1 and HSV-2, respectively. Acyclovir induces cell cycle perturbation and apoptosis. Acyclovir prevents bacterial infections during induction therapy for acute leukaemia[1][2][3][4].
8-HETE
An HETE having a 8-hydroxy group and (5Z)-, (9E)-, (11Z)- and (14Z)-double bonds. CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID STD_neg_MSMS_1min0122.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 10.0 eV within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 40.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 30.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ] CONFIDENCE standard compound; NATIVE_RUN_ID QExHF03_NM_0001287.mzML; PROCESSING averaging of repeated ion fragments at 20.0 NCE within 5 ppm window [MS, MS:1000575, mean of spectra, ]
Glycodeoxycholate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents A bile acid glycine conjugate of deoxycholic acid. Glycodeoxycholic Acid is an endogenous metabolite. Glycodeoxycholic Acid is an endogenous metabolite.
capsiate
Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].
Catechin C
C26170 - Protective Agent > C275 - Antioxidant
FA 20:5;O2
An oxylipin that is the (5S,6S)-epoxy-(15S)-hydroxy derivative of 7E,9E,11Z,13E-icosa-7,9,11,13-tetraenoic acid. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Prostaglandin H2
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
n-Dodecane
A straight-chain alkane with 12 carbon atoms. It has been isolated from the essential oils of various plants including Zingiber officinale (ginger). D009676 - Noxae > D002273 - Carcinogens
Schottenol
spinasterol
α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
Geranyl geraniol
Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].
Iodofiltic acid (123I)
C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate
oxolinic acid
A quinolinemonocarboxylic acid having the carboxy group at position 7 as well as oxo- and ethyl groups at positions 4 and 1 respectively and a dioxolo ring fused at the 5- and 6-positions. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors
Doxifluridine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].
atractylenolideII
Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2]. Atractylenolide II is a sesquiterpene compound isolated from the dried rhizome of Atractylodes macrocephala (Baizhu in Chinese); anti-proliferative activity. IC50 value: 82.3 μM(B16 melanoma cell, 48 h) [1] Target: anticancer natural compound in vitro: AT-II treatment for 48 h dose-dependently inhibited cell proliferation with an IC(50) of 82.3 μM, and induced G1 phase cell cycle arrest. Moreover, treatment with 75 μM AT-II induced apoptosis. These observations were associated with the decrease of the expression of Cdk2, phosphorylated-Akt, phosphorylated-ERK and Bcl-2, the increase of the expression of phosphorylated-p38, phosphorylated-p53, p21, p27, and activation of caspases-8, -9 and -3. In addition, a chemical inhibitor of p53, PFTα, significantly decreased AT-II-mediated growth inhibition and apoptosis [1]. In B16 and A375 cells, AT-II (20, 40 μm) treatment for 48 h dose-dependently reduced protein expression levels of phospho-STAT3, phospho-Src, as well as STAT3-regulated Mcl-1 and Bcl-xL. Overexpression of a constitutively active variant of STAT3, STAT3C in A375 cells diminished the antiproliferative and apoptotic effects of AT-II [2]. in vivo: Daily administration of AT-II (12.5, 25 mg/kg, i.g.) for 14 days significantly inhibited tumor growth in a B16 xenograft mouse model and inhibited the activation/phosphorylation of STAT3 and Src in the xenografts [2].
AIDS-026330
C26170 - Protective Agent > C275 - Antioxidant
SCM 3B
soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1]. soyasaponin Bb is a soyasaponin isolated from Phaseolus vulgaris, acting as an aldose reductase differential inhibitor (ARDI)[1].
Gentiopicrin
Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.
Gentianine
Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).
Uniphat A60
Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].
Sesamol
D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2]. Sesamol is a constituent of sesame oil. Sesamol shows a free radical scavenging activity. Sesamol shows an IC50=5.95±0.56 μg/mL in the DPPH assay. Anti-oxidant activities[1]. Anticancer activities[2].
Obepin
4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].
NCI60_040650
Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2]. Skullcapflavone II, a flavonoid derived from Scutellaria baicalensis, has anti-inflammatory, anti-microbial activities. Skullcapflavone II regulates osteoclast differentiation, survival, and function. Skullcapflavone II exerts potent antimicrobial activity against M. aurum and M. bovis BCG[1][2].
2-O-Methylisoliquiritigenin
2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1].
Prangenidin
Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].
Angecin
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
595-15-3
Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].
cuminol
4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].
Cruex
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.
multiflorin
Byakangelicol
Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
537-73-5
Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. Isoferulic acid (3-Hydroxy-4-methoxycinnamic acid) is a cinnamic acid derivative that has antidiabetic activity. Isoferulic acid binds to and activates α1-adrenergic receptors (IC50=1.4 μM) to enhance secretion of β-endorphin (EC50=52.2 nM) and increase glucose use. Isoferulic acid also has anti-influenza virus activities. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2]. trans-Isoferulic acid (trans-3-Hydroxy-4-methoxycinnamic acid) is an aromatic acid isolated from the roots of Clematis florida var. plena. trans-Isoferulic acid exhibits anti-inflammatory activity[1].trans-isoferulic acid suppresses NO and PGE2 production through the induction of Nrf2-dependent heme oxygenase-1 (HO-1)[2].
EU-0100782
Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].
AIDS-070887
Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity.
Yakuchinone A
Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1]. Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1].
129-43-1
D009676 - Noxae > D002273 - Carcinogens 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1]. 1-Hydroxyanthraquinone, a naturally occurring compound with oral activity from some plants like Tabebuia avellanedae, exhibits carcinogenic effect[1].
PA-9A
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively. Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively.
80681-42-1
5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].
melilotin
Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
FR-1294
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Acnomel
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
FLUOROLINK(R) D
A diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. A geranylgeraniol in which all four double bonds have E- (trans-) geometry. Geranylgeraniol, also known as tetraprenol or (2e,6e,10e)-geranylgeraniol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, geranylgeraniol is considered to be an isoprenoid lipid molecule. Geranylgeraniol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Geranylgeraniol can be found in flaxseed, which makes geranylgeraniol a potential biomarker for the consumption of this food product. Geranylgeraniol is a diterpene alcohol which plays a role in several important biological processes. It is an intermediate in the biosynthesis of other diterpenes and of vitamins E and K. It also used in the post-translational modification known as geranylgeranylation. Geranylgeraniol is a pheromone for bumblebees and a variety of other insects . Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4]. Geranylgeraniol is an orally acitve vitamin K2 sub-type, an intermediate of the mevalonate pathway. Geranylgeraniol targets NF-kB signaling pathway and could alleviate LPS-induced microglial inflammation in animal model[1][2][3][4].
alpha-Spinasterol
Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
Quinic_acid
(-)-quinic acid is the (-)-enantiomer of quinic acid. It is a conjugate acid of a (-)-quinate. It is an enantiomer of a (+)-quinic acid. Quinate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quinic acid is a natural product found in Gamblea innovans, Pterocaulon virgatum, and other organisms with data available. An acid which is found in cinchona bark and elsewhere in plants. (From Stedman, 26th ed) D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee. D-(-)-Quinic acid is a cyclohexanecarboxylic acid and is implicated in the perceived acidity of coffee.
Biacangelicol
Byakangelicol is a member of psoralens. Byakangelicol is a natural product found in Murraya koenigii, Ostericum grosseserratum, and other organisms with data available. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1]. Byakangelicol, isolated from Angelica dahurica, inhibits interleukin-1beta (IL-1beta) -induced prostaglandin E2 (PGE2) release in A549 cells mediated by suppression of cyclooxygenase-2 (COX-2) expression and the activity of COX-2 enzyme. Byakangelicol has therapeutic potential as an anti-inflammatory agent on airway inflammation[1].
Xanthatin
Xanthatin is a sesquiterpene lactone. Xanthatin is a natural product found in Xanthium spinosum, Dittrichia graveolens, and other organisms with data available. D000970 - Antineoplastic Agents
Isoarnebin I
Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
Spinasterol
Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].
Yakuchinone A
1-(4-hydroxy-3-methoxyphenyl)-7-phenyl-3-heptanone is a ketone that is heptan-3-one substituted by a 4-hydroxy-3-methoxyphenyl group at position 1 and a phenyl group at position 7. Isolated from in Alpinia oxyphylla, it exhibits antineoplastic and inhibitory activities against COX-1, COX-2 and NO synthase. It has a role as a metabolite, a cyclooxygenase 1 inhibitor, a cyclooxygenase 2 inhibitor, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and an antineoplastic agent. It is a monomethoxybenzene, a member of phenols and a ketone. Yakuchinone-A is a natural product found in Alpinia oxyphylla with data available. A ketone that is heptan-3-one substituted by a 4-hydroxy-3-methoxyphenyl group at position 1 and a phenyl group at position 7. Isolated from in Alpinia oxyphylla, it exhibits antineoplastic and inhibitory activities against COX-1, COX-2 and NO synthase. Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1]. Yakuchinone A is a natural product isolated from the fruit of Alpinia oxyphylla, which can induce apoptosis and has anticancer and anti-inflammatory activities[1].
Sfondin
Sphondin is a furanocoumarin. Sphondin is a natural product found in Heracleum lehmannianum, Heracleum asperum, and other organisms with data available. A furanocoumarin derivative isolated from Heracleum laciniatum (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1]. Sphondin possesses an inhibitory effect on IL-1β-induced increase in the level of COX-2 protein and PGE2 release in A549 cells[1].
Isochamaejasmin
Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available. A biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3.
p-Tolualdehyde
A tolualdehyde compound with the methyl substituent at the 4-position. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.
Arsenic acid
An arsenic oxoacid comprising one oxo group and three hydroxy groups attached to a central arsenic atom. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Dimethyltryptamine
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A tryptamine derivative having two N-methyl substituents on the side-chain.
ethyl acetoacetate
An ethyl ester resulting from the formal condensation of the carboxy group of acetoacetic acid with ethanol.
levallorphan
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist
FLUNISOLIDE
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents
chlorphenesin
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D002491 - Central Nervous System Agents
5-Cytidylic acid
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1]. Cytidine 5'-monophosphate (5'-Cytidylic acid) is a nucleotide which is used as a monomer in RNA. Cytidine 5'-monophosphate consists of the nucleobase cytosine, the pentose sugar ribose, and the phosphate group[1].
Quinapril
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Ceforanide
A second-generation cephalosporin antibiotic with {[1-(carboxymethyl)-1H-tetrazol-5-yl]sulfanyl}methyl and 2-(aminomethyl)phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It is effective against many coliforms, including Escherichia coli, Klebsiella, Enterobacter and Proteus, and most strains of Salmonella, Shigella, Hemophilus, Citrobacter and Arizona species. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
thiamylal
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Mometasone
D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents D003879 - Dermatologic Agents
SAICAR
A 1-(phosphoribosyl)imidazolecarboxamide resulting from the formal condesation of the darboxy group of 5-amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxylic acid with the amino group of L-aspartic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Taurolithocholic acid 3-sulfate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Anabaseine
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Anabaseine is a non-selective nicotinic agonist. Anabaseine stimulates all AChRs, preferentially stimulates skeletal muscle and brain α7 subtypes[1][2]. Anabaseine is also a weak partial agonist at α4β2 nAChRs[3].
7,8-Dihydroneopterin
A neopterin where positions C-7 and C-8 have been hydrogenated. 7,8-Dihydroneopterin, an inflammation marker, induces cellular apoptosis in astrocytes and neurons via enhancement of nitric oxide synthase (iNOS) expression. 7,8-Dihydroneopterin can be used in the research of neurodegenerative diseases[1].
delta-12-Prostaglandin J2
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Amifostine thiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
Cryptolepine
An organic heterotetracyclic compound that is 5H-indolo[3,2-b]quinoline in which the hydrogen at position N-5 is replaced by a methyl group. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
jasplakinolide
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals
e-64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
homoserine lactone
A butan-4-olide having an amino substituent at the 2-position.
Previtamin D3
A hydroxy seco-steroid which is an intermediate in the production of vitamin D3 in human skin.
3-cyano-L-alanine
A cyanoamino acid that is the 3-cyano-derivative of L-alanine.
L-Selenocystathionine
An optically active form of selenocystathionine in which both amino acid residues have L-configuration.
Uridine-5-diphosphate-N-acetylmuramoyl-L-alanine-D-glutamate
Vulgaxanthin-I
D004396 - Coloring Agents > D050858 - Betalains
(-)-Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
UDP-N-acetyl-α-D-muramic acid
UDP-N-acetyl-alpha-D-muramic acid is a UDP-N-acetyl-D-muramate in which the anomeric centre of the pyranose fragment has alpha-configuration. It is a conjugate acid of an UDP-N-acetyl-alpha-D-muramate(3-). A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed.
CID 5281302
Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].
BISPHENOL A DIGLYCIDYL ETHER
D009676 - Noxae > D002273 - Carcinogens
GW 3965
DL-NORVALINE
DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase. DL-Norvaline, a derivative of L-norvaline, L-norvaline is a non-competitive inhibitor of arginase.
L-Threonine phosphate
A L-threonine derivative phosphorylated at the side-chain hydroxy function. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
Gibberellin A12
Gibberellin A12. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1164-45-0 (retrieved 2024-10-09) (CAS RN: 1164-45-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
DL-Leucic Acid
A valeric acid derivative having a hydroxy substituent at the 2-position and a methyl substituent at the 4-position; an alpha-hydroxy analogue of leucine. A bacterial metabolite, it has also been isolated from amniotic fluid, was found in a patient with dihydrolipoyl dehydrogenase deficiency and is present in the urine of patients with short bowel syndrome.
Dihydrolipoic acid
A thio-fatty acid that is reduced form of lipoic acid. A potent antioxidant shown to directly destroy superoxide, hydroperoxy and hydroxyl radicals; also has neuroprotective and anti-tumour effects. D020011 - Protective Agents > D000975 - Antioxidants
Tocopheryl acetate
D020011 - Protective Agents > D000975 - Antioxidants > D024505 - Tocopherols D018977 - Micronutrients > D014815 - Vitamins
GW 7647
GW7647 is a potent PPARα agonist, with EC50s of 6 nM, 1.1 μM, and 6.2 μM for human PPARα, PPARγ and PPARδ, respectively.
2,3,14-trihydroxy-10,13-dimethyl-17-(2,3,6-trihydroxy-6-methylheptan-2-yl)-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
PD 123177
Selenocystathionine
A member of the class of cystathionines derived from homoselenocysteine and serine residues joined by a selenide bond.