UDP-N-acetyl-α-D-muramic acid (BioDeep_00001870050)

Main id: BioDeep_00000004552

 


代谢物信息卡片


(2R)-2-[(2R,3R,4R,5S,6R)-3-acetamido-2-[[[(2R,3S,4R,5R)-5-(2,4-dioxopyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxypropanoic acid

化学式: C20H31N3O19P2 (679.1027)
中文名称: UDP-N-乙酰胞壁酸
谱图信息: 最多检出来源 () 0%

Reviewed

Last reviewed on 2024-12-16.

Cite this Page

UDP-N-acetyl-α-D-muramic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/udp-n-acetyl-α-d-muramic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00001870050). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(C(=O)O)OC1C(C(OC(C1O)CO)OP(=O)(O)OP(=O)(O)OCC2C(C(C(O2)N3C=CC(=O)NC3=O)O)O)NC(=O)C
InChI: InChI=1S/C20H31N3O19P2/c1-7(18(30)31)38-16-12(21-8(2)25)19(40-9(5-24)14(16)28)41-44(35,36)42-43(33,34)37-6-10-13(27)15(29)17(39-10)23-4-3-11(26)22-20(23)32/h3-4,7,9-10,12-17,19,24,27-29H,5-6H2,1-2H3,(H,21,25)(H,30,31)(H,33,34)(H,35,36)(H,22,26,32)/t7-,9-,10-,12-,13-,14-,15-,16-,17-,19-/m1/s1

描述信息

UDP-N-acetyl-alpha-D-muramic acid is a UDP-N-acetyl-D-muramate in which the anomeric centre of the pyranose fragment has alpha-configuration. It is a conjugate acid of an UDP-N-acetyl-alpha-D-muramate(3-).

A nucleoside diphosphate sugar which is formed from UDP-N-acetylglucosamine and phosphoenolpyruvate. It serves as the building block upon which peptidoglycan is formed.

同义名列表

1 个代谢物同义名

(2r)-2-{[(2r,3r,4r,5s,6r)-3-(Acetylamino)-2-{[(S)-{[(R)-{[(2r,3s,4r,5r)-5-(2,4-Dioxo-3,4-Dihydropyrimidin-1(2h)-Yl)-3,4-Dihydroxytetrahydrofuran-2-Yl]methoxy}(Hydroxy)phosphoryl]oxy}(Hydroxy)phosphoryl]oxy}-5-Hydroxy-6-(Hydroxymethyl)tetrahydro-2h-Pyran-4-Yl]oxy}propanoic Acid



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 AARS1, CDK16, CRYZ, HPGDS, PC, PNPT1, RELA, SRR, TARS1
Peripheral membrane protein 2 CDK16, PNPT1
Endoplasmic reticulum membrane 1 PNPT1
Nucleus 3 AARS1, CDK16, RELA
cytosol 11 AARS1, CDK16, CRYZ, FAH, HPGDS, PC, PNPT1, RELA, SRR, TARS1, UPP1
nucleoplasm 3 HPGDS, RELA, UPP1
Cell membrane 2 CDK16, KCNE1
Cytoplasmic side 1 CDK16
Synapse 1 ALDH5A1
cell surface 1 KCNE1
glutamatergic synapse 1 RELA
mitochondrial inner membrane 1 OTC
neuronal cell body 1 SRR
synaptic vesicle 1 CDK16
Cytoplasmic vesicle, secretory vesicle 1 CDK16
Lysosome 1 KCNE1
plasma membrane 4 CDK16, F2, KCNE1, TPSG1
Membrane 3 AARS1, PGLYRP2, TPSG1
apical plasma membrane 1 KCNE1
extracellular exosome 8 AARS1, CPVL, CRYZ, F2, FAH, LYZ, PGLYRP2, TARS1
extracellular space 3 F2, LYZ, TPSG1
mitochondrion 6 AARS1, ALDH5A1, CRYZ, OTC, PC, PNPT1
intracellular membrane-bounded organelle 1 HPGDS
Single-pass type I membrane protein 1 KCNE1
Secreted 1 F2
extracellular region 3 F2, LYZ, PGLYRP2
cytoplasmic side of plasma membrane 1 CDK16
Single-pass membrane protein 1 TPSG1
Mitochondrion matrix 3 OTC, PC, PNPT1
mitochondrial matrix 4 ALDH5A1, OTC, PC, PNPT1
transcription regulator complex 1 RELA
Z disc 1 KCNE1
microtubule cytoskeleton 1 CDK16
apical part of cell 1 SRR
Apical cell membrane 1 KCNE1
Membrane raft 1 KCNE1
Mitochondrion intermembrane space 1 PNPT1
mitochondrial intermembrane space 1 PNPT1
collagen-containing extracellular matrix 1 F2
neuron projection 1 CDK16
chromatin 1 RELA
blood microparticle 1 F2
voltage-gated potassium channel complex 1 KCNE1
Golgi lumen 1 F2
endoplasmic reticulum lumen 1 F2
specific granule lumen 1 LYZ
tertiary granule lumen 1 LYZ
azurophil granule lumen 1 LYZ
Synapse, synaptosome 1 CDK16
cyclin-dependent protein kinase holoenzyme complex 1 CDK16
ribosome 1 PNPT1
catalytic complex 1 PNPT1
NF-kappaB p50/p65 complex 1 RELA
NF-kappaB complex 1 RELA
mitochondrial degradosome 1 PNPT1


文献列表

  • Miranda S Sheridan, Preeti Pandey, Ulrich H E Hansmann. In Bacterial Membranes Lipid II Changes the Stability of Pores Formed by the Antimicrobial Peptide Nisin. The journal of physical chemistry. B. 2024 May; 128(19):4741-4750. doi: 10.1021/acs.jpcb.4c01249. [PMID: 38696215]
  • Diship Srivastava, Niladri Patra. Elucidating Daptomycin's Antibacterial Efficacy: Insights into the Tripartite Complex with Lipid II and Phospholipids in Bacterial Septum Membrane. The journal of physical chemistry. B. 2024 May; 128(18):4414-4427. doi: 10.1021/acs.jpcb.4c00332. [PMID: 38690887]
  • Irina S Panina, Sergey V Balandin, Andrey V Tsarev, Anton O Chugunov, Andrey A Tagaev, Ekaterina I Finkina, Daria V Antoshina, Elvira V Sheremeteva, Alexander S Paramonov, Jasmin Rickmeyer, Gabriele Bierbaum, Roman G Efremov, Zakhar O Shenkarev, Tatiana V Ovchinnikova. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. International journal of molecular sciences. 2023 Jan; 24(2):. doi: 10.3390/ijms24021332. [PMID: 36674846]
  • Sujeet Kumar, Aurelio Mollo, Daniel Kahne, Natividad Ruiz. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chemical reviews. 2022 05; 122(9):8884-8910. doi: 10.1021/acs.chemrev.1c00773. [PMID: 35274942]
  • Neda Moazzezy, Elham Rismani, Maryam Rezaei, Mohammad Reza Asadi Karam, Sima Rafati, Saeid Bouzari, Mana Oloomi. Computational evaluation of modified peptides from human neutrophil peptide 1 (HNP-1). Journal of biomolecular structure & dynamics. 2022 02; 40(3):1163-1171. doi: 10.1080/07391102.2020.1823249. [PMID: 32981420]
  • Rudramani Pokhrel, Nisha Bhattarai, Prabin Baral, Bernard S Gerstman, Jae H Park, Martin Handfield, Prem P Chapagain. Lipid II Binding and Transmembrane Properties of Various Antimicrobial Lanthipeptides. Journal of chemical theory and computation. 2022 Jan; 18(1):516-525. doi: 10.1021/acs.jctc.1c00666. [PMID: 34874159]
  • Ying Li, Adrien Boes, Yuanyuan Cui, Shan Zhao, Qingzhen Liao, Han Gong, Eefjan Breukink, Joe Lutkenhaus, Mohammed Terrak, Shishen Du. Identification of the potential active site of the septal peptidoglycan polymerase FtsW. PLoS genetics. 2022 01; 18(1):e1009993. doi: 10.1371/journal.pgen.1009993. [PMID: 34986161]
  • Elisabeth Reithuber, Torbjörn Wixe, Kevin C Ludwig, Anna Müller, Hanna Uvell, Fabian Grein, Anders E G Lindgren, Sandra Muschiol, Priyanka Nannapaneni, Anna Eriksson, Tanja Schneider, Staffan Normark, Birgitta Henriques-Normark, Fredrik Almqvist, Peter Mellroth. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences of the United States of America. 2021 11; 118(47):. doi: 10.1073/pnas.2108244118. [PMID: 34785593]
  • Hanae Utsunomiya, Nozomi Saiki, Hayato Kadoguchi, Masaya Fukudome, Satomi Hashimoto, Mami Ueda, Katsuaki Takechi, Hiroyoshi Takano. Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens. Plant molecular biology. 2021 Nov; 107(4-5):405-415. doi: 10.1007/s11103-020-01081-0. [PMID: 33078277]
  • Daniel Straume, Katarzyna Wiaroslawa Piechowiak, Morten Kjos, Leiv Sigve Håvarstein. Class A PBPs: It is time to rethink traditional paradigms. Molecular microbiology. 2021 07; 116(1):41-52. doi: 10.1111/mmi.14714. [PMID: 33709487]
  • Anna York, Adrian J Lloyd, Charo I Del Genio, Jonathan Shearer, Karen J Hinxman, Konstantin Fritz, Vilmos Fulop, Christopher G Dowson, Syma Khalid, David I Roper. Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure (London, England : 1993). 2021 07; 29(7):731-742.e6. doi: 10.1016/j.str.2021.03.001. [PMID: 33740396]
  • Qian Li, Rubén Cebrián, Manuel Montalbán-López, Huan Ren, Weihui Wu, Oscar P Kuipers. Outer-membrane-acting peptides and lipid II-targeting antibiotics cooperatively kill Gram-negative pathogens. Communications biology. 2021 01; 4(1):31. doi: 10.1038/s42003-020-01511-1. [PMID: 33398076]
  • Kaitlin Schaefer, Tristan W Owens, Julia E Page, Marina Santiago, Daniel Kahne, Suzanne Walker. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nature microbiology. 2021 01; 6(1):34-43. doi: 10.1038/s41564-020-00808-5. [PMID: 33168989]
  • Hélène Barreteau, Delphine Patin, Ahmed Bouhss, Didier Blanot, Dominique Mengin-Lecreulx, Thierry Touzé. CbrA Mediates Colicin M Resistance in Escherichia coli through Modification of Undecaprenyl-Phosphate-Linked Peptidoglycan Precursors. Journal of bacteriology. 2020 11; 202(23):. doi: 10.1128/jb.00436-20. [PMID: 32958631]
  • Weitong Zhao, Yong Liang, Xiaowen Yan, Limin Yang, Qiuquan Wang. A Biochemical Lanthanide-Encoding Approach Enables Quantitative Monitoring of the Bacterial Response to Vancomycin Treatment. Biochemistry. 2020 09; 59(38):3523-3528. doi: 10.1021/acs.biochem.0c00614. [PMID: 32885950]
  • Rhythm Shukla, João Medeiros-Silva, Anish Parmar, Bram J A Vermeulen, Sanjit Das, Alessandra Lucini Paioni, Shehrazade Jekhmane, Joseph Lorent, Alexandre M J J Bonvin, Marc Baldus, Moreno Lelli, Edwin J A Veldhuizen, Eefjan Breukink, Ishwar Singh, Markus Weingarth. Mode of action of teixobactins in cellular membranes. Nature communications. 2020 06; 11(1):2848. doi: 10.1038/s41467-020-16600-2. [PMID: 32503964]
  • Irina Panina, Nikolay Krylov, Dmitry Nolde, Roman Efremov, Anton Chugunov. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Scientific reports. 2020 06; 10(1):8821. doi: 10.1038/s41598-020-65522-y. [PMID: 32483218]
  • Xinghong Zhao, Zhongqiong Yin, Eefjan Breukink, Gert N Moll, Oscar P Kuipers. An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrobial agents and chemotherapy. 2020 05; 64(6):. doi: 10.1128/aac.02050-19. [PMID: 32179527]
  • Adrien Boes, Samir Olatunji, Tamimount Mohammadi, Eefjan Breukink, Mohammed Terrak. Fluorescence anisotropy assays for high throughput screening of compounds binding to lipid II, PBP1b, FtsW and MurJ. Scientific reports. 2020 04; 10(1):6280. doi: 10.1038/s41598-020-63380-2. [PMID: 32286439]
  • Frederick A Rubino, Aurelio Mollo, Sujeet Kumar, Emily K Butler, Natividad Ruiz, Suzanne Walker, Daniel E Kahne. Detection of Transport Intermediates in the Peptidoglycan Flippase MurJ Identifies Residues Essential for Conformational Cycling. Journal of the American Chemical Society. 2020 03; 142(12):5482-5486. doi: 10.1021/jacs.9b12185. [PMID: 32129990]
  • Sorina Chiorean, Isaac Antwi, Daniel W Carney, Ioli Kotsogianni, Andrew M Giltrap, Francesca M Alexander, Stephen A Cochrane, Richard J Payne, Nathaniel I Martin, Antoine Henninot, John C Vederas. Dissecting the Binding Interactions of Teixobactin with the Bacterial Cell-Wall Precursor Lipid II. Chembiochem : a European journal of chemical biology. 2020 03; 21(6):789-792. doi: 10.1002/cbic.201900504. [PMID: 31552694]
  • Jay Chauhan, Wenbo Yu, Steven Cardinale, Timothy J Opperman, Alexander D MacKerell, Steven Fletcher, Erik Ph de Leeuw. Optimization of a Benzothiazole Indolene Scaffold Targeting Bacterial Cell Wall Assembly. Drug design, development and therapy. 2020; 14(?):567-574. doi: 10.2147/dddt.s226313. [PMID: 32103898]
  • Samantha J Bann, Ross D Ballantine, Conor E McCallion, Pei-Yuan Qian, Yong-Xin Li, Stephen A Cochrane. A Chemical-Intervention Strategy To Circumvent Peptide Hydrolysis by d-Stereoselective Peptidases. Journal of medicinal chemistry. 2019 11; 62(22):10466-10472. doi: 10.1021/acs.jmedchem.9b01078. [PMID: 31657913]
  • Rachael Dickman, Emma Danelius, Serena A Mitchell, D Flemming Hansen, Máté Erdélyi, Alethea B Tabor. A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1-12): Synthesis and NMR Ensemble Analysis of Nisin(1-12) and Analogues. Chemistry (Weinheim an der Bergstrasse, Germany). 2019 Nov; 25(64):14572-14582. doi: 10.1002/chem.201902814. [PMID: 31599485]
  • Rachael Dickman, Serena A Mitchell, Angelo M Figueiredo, D Flemming Hansen, Alethea B Tabor. Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. The Journal of organic chemistry. 2019 09; 84(18):11493-11512. doi: 10.1021/acs.joc.9b01253. [PMID: 31464129]
  • Erik R Nöldeke, Thilo Stehle. Unraveling the mechanism of peptidoglycan amidation by the bifunctional enzyme complex GatD/MurT: A comparative structural approach. International journal of medical microbiology : IJMM. 2019 Sep; 309(6):151334. doi: 10.1016/j.ijmm.2019.151334. [PMID: 31383542]
  • Fabian Grein, Tanja Schneider, Hans-Georg Sahl. Docking on Lipid II-A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides. Journal of molecular biology. 2019 08; 431(18):3520-3530. doi: 10.1016/j.jmb.2019.05.014. [PMID: 31100388]
  • Jay Chauhan, Steven M Kwasny, Steven Fletcher, Timothy J Opperman, Erik P H de Leeuw. Optimization of a small-molecule Lipid II binder. Bioorganic & medicinal chemistry letters. 2019 07; 29(14):1849-1853. doi: 10.1016/j.bmcl.2019.04.046. [PMID: 31126852]
  • João Medeiros-Silva, Shehrazade Jekhmane, Eefjan Breukink, Markus Weingarth. Towards the Native Binding Modes of Antibiotics that Target Lipid II. Chembiochem : a European journal of chemical biology. 2019 07; 20(14):1731-1738. doi: 10.1002/cbic.201800796. [PMID: 30725496]
  • Hannah Piepenbreier, Angelika Diehl, Georg Fritz. Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance. Nature communications. 2019 06; 10(1):2733. doi: 10.1038/s41467-019-10673-4. [PMID: 31227716]
  • Ahmad Massarweh, Michael Bosco, Isabelle Chantret, Thibaut Léger, Layla Jamal, David I Roper, Christopher G Dowson, Patricia Busca, Ahmed Bouhss, Christine Gravier-Pelletier, Stuart E H Moore. Bacterial Lipid II Analogs: Novel In Vitro Substrates for Mammalian Oligosaccharyl Diphosphodolichol Diphosphatase (DLODP) Activities. Molecules (Basel, Switzerland). 2019 Jun; 24(11):. doi: 10.3390/molecules24112135. [PMID: 31174247]
  • Yang Liu, Weifeng Li, Mary B Chan-Park, Yuguang Mu. The Necessity of d-Thr in the New Antibiotic Teixobactin: A Molecular Dynamics Study. Journal of chemical information and modeling. 2019 04; 59(4):1575-1583. doi: 10.1021/acs.jcim.8b00949. [PMID: 30855952]
  • Scott McAuley, Stephen Vadia, Charul Jani, Alan Huynh, Zhizhou Yang, Petra Anne Levin, Justin R Nodwell. A Chemical Inhibitor of Cell Growth Reduces Cell Size in Bacillus subtilis. ACS chemical biology. 2019 04; 14(4):688-695. doi: 10.1021/acschembio.8b01066. [PMID: 30848888]
  • Ti-Yu Lin, William S Gross, George K Auer, Douglas B Weibel. Cardiolipin Alters Rhodobacter sphaeroides Cell Shape by Affecting Peptidoglycan Precursor Biosynthesis. mBio. 2019 02; 10(1):. doi: 10.1128/mbio.02401-18. [PMID: 30782656]
  • Alice B M Lanne, Alice Goode, Charlotte Prattley, Divya Kumari, Mette Ryun Drasbek, Paul Williams, Raquel Conde-Álvarez, Ignacio Moriyón, Boyan B Bonev. Molecular recognition of lipopolysaccharide by the lantibiotic nisin. Biochimica et biophysica acta. Biomembranes. 2019 01; 1861(1):83-92. doi: 10.1016/j.bbamem.2018.10.006. [PMID: 30296414]
  • Seonghoon Kim, Marcos M Pires, Wonpil Im. Insight into Elongation Stages of Peptidoglycan Processing in Bacterial Cytoplasmic Membranes. Scientific reports. 2018 12; 8(1):17704. doi: 10.1038/s41598-018-36075-y. [PMID: 30531805]
  • Nathanael A Caveney, Franco Kk Li, Natalie Cj Strynadka. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Current opinion in structural biology. 2018 12; 53(?):45-58. doi: 10.1016/j.sbi.2018.05.002. [PMID: 29885610]
  • Lok-To Sham, Sanduo Zheng, Anastasiya A Yakhnina, Andrew C Kruse, Thomas G Bernhardt. Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Molecular microbiology. 2018 09; 109(5):633-641. doi: 10.1111/mmi.14002. [PMID: 29907971]
  • Ismahene Dahmane, Caroline Montagner, André Matagne, Shrinivas Dumbre, Piet Herdewijn, Mohammed Terrak. Peptidoglycan glycosyltransferase-ligand binding assay based on tryptophan fluorescence quenching. Biochimie. 2018 Sep; 152(?):1-5. doi: 10.1016/j.biochi.2018.06.010. [PMID: 29909047]
  • Xiaolei Wang, Larissa Krasnova, Kevin Binchia Wu, Wei-Shen Wu, Ting-Jen Cheng, Chi-Huey Wong. Towards new antibiotics targeting bacterial transglycosylase: Synthesis of a Lipid II analog as stable transition-state mimic inhibitor. Bioorganic & medicinal chemistry letters. 2018 09; 28(16):2708-2712. doi: 10.1016/j.bmcl.2018.03.035. [PMID: 29602680]
  • Han Jiang, Xuan Tang, Qingqing Zhou, Jiong Zou, Ping Li, Eefjan Breukink, Qing Gu. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied microbiology and biotechnology. 2018 Sep; 102(17):7465-7473. doi: 10.1007/s00253-018-9182-3. [PMID: 29982926]
  • Marina Santiago, Wonsik Lee, Antoine Abou Fayad, Kathryn A Coe, Mithila Rajagopal, Truc Do, Fabienne Hennessen, Veerasak Srisuknimit, Rolf Müller, Timothy C Meredith, Suzanne Walker. Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nature chemical biology. 2018 06; 14(6):601-608. doi: 10.1038/s41589-018-0041-4. [PMID: 29662210]
  • Yu Zong, Xiuyun Sun, Hongying Gao, Kirsten J Meyer, Kim Lewis, Yu Rao. Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin. Journal of medicinal chemistry. 2018 04; 61(8):3409-3421. doi: 10.1021/acs.jmedchem.7b01241. [PMID: 29629769]
  • Jani Reddy Bolla, Joshua B Sauer, Di Wu, Shahid Mehmood, Timothy M Allison, Carol V Robinson. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nature chemistry. 2018 03; 10(3):363-371. doi: 10.1038/nchem.2919. [PMID: 29461535]
  • João M Monteiro, Ana R Pereira, Nathalie T Reichmann, Bruno M Saraiva, Pedro B Fernandes, Helena Veiga, Andreia C Tavares, Margarida Santos, Maria T Ferreira, Vânia Macário, Michael S VanNieuwenhze, Sérgio R Filipe, Mariana G Pinho. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature. 2018 02; 554(7693):528-532. doi: 10.1038/nature25506. [PMID: 29443967]
  • Claudiu N Lungu, Mircea V Diudea. Binding Site and Potency Prediction of Teixobactin and other Lipid II Ligands by Statistical Base Scoring of Conformational Space Maps. Current computer-aided drug design. 2018; 14(1):29-34. doi: 10.2174/1573409913666170927113813. [PMID: 28969532]
  • Michael A Welsh, Atsushi Taguchi, Kaitlin Schaefer, Daria Van Tyne, François Lebreton, Michael S Gilmore, Daniel Kahne, Suzanne Walker. Identification of a Functionally Unique Family of Penicillin-Binding Proteins. Journal of the American Chemical Society. 2017 12; 139(49):17727-17730. doi: 10.1021/jacs.7b10170. [PMID: 29182854]
  • Karthik R Chamakura, Lok-To Sham, Rebecca M Davis, Lorna Min, Hongbaek Cho, Natividad Ruiz, Thomas G Bernhardt, Ry Young. A viral protein antibiotic inhibits lipid II flippase activity. Nature microbiology. 2017 Nov; 2(11):1480-1484. doi: 10.1038/s41564-017-0023-4. [PMID: 28894177]
  • Marco Franzoi, Yasemin van Heuvel, Susanne Thomann, Nadia Schürch, Pauli T Kallio, Paola Venier, Andreas Essig. Structural Insights into the Mode of Action of the Peptide Antibiotic Copsin. Biochemistry. 2017 09; 56(37):4992-5001. doi: 10.1021/acs.biochem.7b00697. [PMID: 28825809]
  • Anna Müller, Anna Klöckner, Tanja Schneider. Targeting a cell wall biosynthesis hot spot. Natural product reports. 2017 07; 34(7):909-932. doi: 10.1039/c7np00012j. [PMID: 28675405]
  • Khaled M Elsayed, Mohammad R Islam, Abdullah-Al-Mahin, Jun-Ichi Nagao, Takeshi Zendo, Kenji Sonomoto. LiaRS reporter assay: A simple tool to identify lipid II binding moieties in lantibiotic nukacin ISK-1. Journal of bioscience and bioengineering. 2017 Mar; 123(3):398-401. doi: 10.1016/j.jbiosc.2016.10.002. [PMID: 27856233]
  • Sophie Leclercq, Adeline Derouaux, Samir Olatunji, Claudine Fraipont, Alexander J F Egan, Waldemar Vollmer, Eefjan Breukink, Mohammed Terrak. Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Scientific reports. 2017 02; 7(?):43306. doi: 10.1038/srep43306. [PMID: 28233869]
  • James D Chang, Erin E Foster, Hao Yang, Sung Joon Kim. Quantification of the d-Ala-d-Lac-Terminated Peptidoglycan Structure in Vancomycin-Resistant Enterococcus faecalis Using a Combined Solid-State Nuclear Magnetic Resonance and Mass Spectrometry Analysis. Biochemistry. 2017 01; 56(4):612-622. doi: 10.1021/acs.biochem.6b00774. [PMID: 28040891]
  • Miriam Wilmes, Kirstin Meier, Andrea Schiefer, Michaele Josten, Christian F Otten, Anna Klöckner, Beate Henrichfreise, Waldemar Vollmer, Achim Hoerauf, Kenneth Pfarr. AmiD Is a Novel Peptidoglycan Amidase in Wolbachia Endosymbionts of Drosophila melanogaster. Frontiers in cellular and infection microbiology. 2017; 7(?):353. doi: 10.3389/fcimb.2017.00353. [PMID: 28824885]
  • Patrick Hardt, Ina Engels, Marvin Rausch, Mike Gajdiss, Hannah Ulm, Peter Sass, Knut Ohlsen, Hans-Georg Sahl, Gabriele Bierbaum, Tanja Schneider, Fabian Grein. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. International journal of medical microbiology : IJMM. 2017 Jan; 307(1):1-10. doi: 10.1016/j.ijmm.2016.12.001. [PMID: 27989665]
  • Maria Ngo, Michael D L Suits. Methods for Determining Glycosyltransferase Kinetics. Methods in molecular biology (Clifton, N.J.). 2017; 1588(?):59-70. doi: 10.1007/978-1-4939-6899-2_6. [PMID: 28417361]
  • Hannah Ulm, Tanja Schneider. Targeting bactoprenol-coupled cell envelope precursors. Applied microbiology and biotechnology. 2016 Sep; 100(18):7815-25. doi: 10.1007/s00253-016-7732-0. [PMID: 27495122]
  • Vivian Ng, Weng C Chan. New Found Hope for Antibiotic Discovery: Lipid II Inhibitors. Chemistry (Weinheim an der Bergstrasse, Germany). 2016 Aug; 22(36):12606-16. doi: 10.1002/chem.201601315. [PMID: 27388768]
  • Bart Blanchaert, Ismail Murat Palabiyik, Alper Gökbulut, Ming-Juan Wang, Zhong Dai, Feng Wei, Shuang-Cheng Ma, Erwin Adams, Ann Van Schepdael. Bioanalytical LC/MS study of potential bacterial transglycosylation inhibitors. Journal of pharmaceutical and biomedical analysis. 2016 Aug; 127(?):123-8. doi: 10.1016/j.jpba.2015.12.050. [PMID: 26782294]
  • Yao Liu, João P G L M Rodrigues, Alexandre M J J Bonvin, Esther A Zaal, Celia R Berkers, Michal Heger, Katarzyna Gawarecka, Ewa Swiezewska, Eefjan Breukink, Maarten R Egmond. New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies. The Journal of biological chemistry. 2016 07; 291(29):15057-68. doi: 10.1074/jbc.m116.717884. [PMID: 27226570]
  • Sourav Sarkar, Elizabeth A Libby, Sean E Pidgeon, Jonathan Dworkin, Marcos M Pires. In Vivo Probe of Lipid II-Interacting Proteins. Angewandte Chemie (International ed. in English). 2016 07; 55(29):8401-4. doi: 10.1002/anie.201603441. [PMID: 27225706]
  • Sarah Witzke, Michael Petersen, Timothy S Carpenter, Syma Khalid. Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the Staphylococcus aureus Membrane. Biochemistry. 2016 06; 55(23):3303-14. doi: 10.1021/acs.biochem.5b01315. [PMID: 27158738]
  • Ben C Chung, Ellene H Mashalidis, Tetsuya Tanino, Mijung Kim, Akira Matsuda, Jiyong Hong, Satoshi Ichikawa, Seok-Yong Lee. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature. 2016 05; 533(7604):557-560. doi: 10.1038/nature17636. [PMID: 27088606]
  • Paulina Schmitt, Rafael D Rosa, Delphine Destoumieux-Garzón. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Biochimica et biophysica acta. 2016 May; 1858(5):958-70. doi: 10.1016/j.bbamem.2015.10.011. [PMID: 26498397]
  • Sabine F Oppedijk, Nathaniel I Martin, Eefjan Breukink. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. Biochimica et biophysica acta. 2016 May; 1858(5):947-57. doi: 10.1016/j.bbamem.2015.10.024. [PMID: 26523408]
  • Laurens H J Kleijn, Sabine F Oppedijk, Peter 't Hart, Roel M van Harten, Leah A Martin-Visscher, Johan Kemmink, Eefjan Breukink, Nathaniel I Martin. Total Synthesis of Laspartomycin C and Characterization of Its Antibacterial Mechanism of Action. Journal of medicinal chemistry. 2016 Apr; 59(7):3569-74. doi: 10.1021/acs.jmedchem.6b00219. [PMID: 26967152]
  • Matthew A Jorgenson, Suresh Kannan, Mary E Laubacher, Kevin D Young. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Molecular microbiology. 2016 Apr; 100(1):1-14. doi: 10.1111/mmi.13284. [PMID: 26593043]
  • Sonia I Maffioli, João C S Cruz, Paolo Monciardini, Margherita Sosio, Stefano Donadio. Advancing cell wall inhibitors towards clinical applications. Journal of industrial microbiology & biotechnology. 2016 Mar; 43(2-3):177-84. doi: 10.1007/s10295-015-1703-9. [PMID: 26515981]
  • Sam Mulholland, Eleanor R Turpin, Boyan B Bonev, Jonathan D Hirst. Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II. Scientific reports. 2016 Feb; 6(?):21185. doi: 10.1038/srep21185. [PMID: 26888784]
  • Erik Henrich, Yi Ma, Ina Engels, Daniela Münch, Christian Otten, Tanja Schneider, Beate Henrichfreise, Hans-Georg Sahl, Volker Dötsch, Frank Bernhard. Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway. The Journal of biological chemistry. 2016 Jan; 291(5):2535-46. doi: 10.1074/jbc.m115.664292. [PMID: 26620564]
  • Peter 't Hart, Sabine F Oppedijk, Eefjan Breukink, Nathaniel I Martin. New Insights into Nisin's Antibacterial Mechanism Revealed by Binding Studies with Synthetic Lipid II Analogues. Biochemistry. 2016 Jan; 55(1):232-7. doi: 10.1021/acs.biochem.5b01173. [PMID: 26653142]
  • Izidor Sosič, Marko Anderluh, Matej Sova, Martina Gobec, Irena Mlinarič Raščan, Adeline Derouaux, Ana Amoroso, Mohammed Terrak, Eefjan Breukink, Stanislav Gobec. Structure-Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase. Journal of medicinal chemistry. 2015 Dec; 58(24):9712-21. doi: 10.1021/acs.jmedchem.5b01482. [PMID: 26588190]
  • Daniela Münch, Hans-Georg Sahl. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides. Biochimica et biophysica acta. 2015 Nov; 1848(11 Pt B):3062-71. doi: 10.1016/j.bbamem.2015.04.014. [PMID: 25934055]
  • Tobias Spieß, Sophie Marianne Korn, Peter Kötter, Karl-Dieter Entian. Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II. Applied and environmental microbiology. 2015 Aug; 81(16):5335-43. doi: 10.1128/aem.01368-15. [PMID: 26025904]
  • Timo Koopmans, Thomas M Wood, Peter 't Hart, Laurens H J Kleijn, Antoni P A Hendrickx, Rob J L Willems, Eefjan Breukink, Nathaniel I Martin. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. Journal of the American Chemical Society. 2015 Jul; 137(29):9382-9. doi: 10.1021/jacs.5b04501. [PMID: 26122963]
  • Jack C Slootweg, Eric F van Herwerden, Mark F M van Doremalen, Eefjan Breukink, Rob M J Liskamp, Dirk T S Rijkers. Synthesis of nisin AB dicarba analogs using ring-closing metathesis: influence of sp(3) versus sp(2) hybridization of the α-carbon atom of residues dehydrobutyrine-2 and dehydroalanine-5 on the lipid II binding affinity. Organic & biomolecular chemistry. 2015 Jun; 13(21):5997-6009. doi: 10.1039/c5ob00336a. [PMID: 25940216]
  • Alexander J Meeske, Lok-To Sham, Harvey Kimsey, Byoung-Mo Koo, Carol A Gross, Thomas G Bernhardt, David Z Rudner. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America. 2015 May; 112(20):6437-42. doi: 10.1073/pnas.1504967112. [PMID: 25918422]
  • Evi Stegmann, Hans-Joerg Frasch, Regina Kilian, Roberta Pozzi. Self-resistance mechanisms of actinomycetes producing lipid II-targeting antibiotics. International journal of medical microbiology : IJMM. 2015 Feb; 305(2):190-5. doi: 10.1016/j.ijmm.2014.12.015. [PMID: 25601631]
  • Menno B Tol, Danae Morales Angeles, Dirk-Jan Scheffers. In vivo cluster formation of nisin and lipid II is correlated with membrane depolarization. Antimicrobial agents and chemotherapy. 2015; 59(6):3683-6. doi: 10.1128/aac.04781-14. [PMID: 25870072]
  • Steven Fletcher, Wenbo Yu, Jing Huang, Steven M Kwasny, Jay Chauhan, Timothy J Opperman, Alexander D MacKerell, Erik P H de Leeuw. Structure-activity exploration of a small-molecule Lipid II inhibitor. Drug design, development and therapy. 2015; 9(?):2383-94. doi: 10.2147/dddt.s79504. [PMID: 25987836]
  • Emily K Butler, Wee Boon Tan, Hildy Joseph, Natividad Ruiz. Charge requirements of lipid II flippase activity in Escherichia coli. Journal of bacteriology. 2014 Dec; 196(23):4111-9. doi: 10.1128/jb.02172-14. [PMID: 25225268]
  • Yuan Qiao, Matthew D Lebar, Kathrin Schirner, Kaitlin Schaefer, Hirokazu Tsukamoto, Daniel Kahne, Suzanne Walker. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. Journal of the American Chemical Society. 2014 Oct; 136(42):14678-81. doi: 10.1021/ja508147s. [PMID: 25291014]
  • Matthew D Lebar, Janine M May, Alexander J Meeske, Sara A Leiman, Tania J Lupoli, Hirokazu Tsukamoto, Richard Losick, David Z Rudner, Suzanne Walker, Daniel Kahne. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. Journal of the American Chemical Society. 2014 Aug; 136(31):10874-7. doi: 10.1021/ja505668f. [PMID: 25036369]
  • Darren Braddick, Sandeep Sandhu, David I Roper, Michael J Chappell, Timothy D H Bugg. Observation of the time-course for peptidoglycan lipid intermediate II polymerization by Staphylococcus aureus monofunctional transglycosylase. Microbiology (Reading, England). 2014 Aug; 160(Pt 8):1628-1636. doi: 10.1099/mic.0.079442-0. [PMID: 24858082]
  • Lin-Ya Huang, Shih-Hsien Huang, Ya-Chih Chang, Wei-Chieh Cheng, Ting-Jen R Cheng, Chi-Huey Wong. Enzymatic synthesis of lipid II and analogues. Angewandte Chemie (International ed. in English). 2014 Jul; 53(31):8060-5. doi: 10.1002/anie.201402313. [PMID: 24990652]
  • Lok-To Sham, Emily K Butler, Matthew D Lebar, Daniel Kahne, Thomas G Bernhardt, Natividad Ruiz. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science (New York, N.Y.). 2014 Jul; 345(6193):220-2. doi: 10.1126/science.1254522. [PMID: 25013077]
  • Yasmine Fathy Mohamed, Miguel A Valvano. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology. 2014 Jun; 24(6):564-76. doi: 10.1093/glycob/cwu025. [PMID: 24688094]
  • Tamimount Mohammadi, Robert Sijbrandi, Mandy Lutters, Jolanda Verheul, Nathaniel I Martin, Tanneke den Blaauwen, Ben de Kruijff, Eefjan Breukink. Specificity of the transport of lipid II by FtsW in Escherichia coli. The Journal of biological chemistry. 2014 May; 289(21):14707-18. doi: 10.1074/jbc.m114.557371. [PMID: 24711460]
  • Hiroki Kinouchi, Hirokazu Arimoto, Kenzo Nishiguchi, Masako Oka, Hideki Maki, Hiroshi Kitagawa, Hiroshi Kamimori. Binding properties of antimicrobial agents to dipeptide terminal of lipid II using surface plasmon resonance. Analytical biochemistry. 2014 May; 452(?):67-75. doi: 10.1016/j.ab.2014.02.012. [PMID: 24556247]
  • Katsuhiko Mitachi, Priya Mohan, Shajila Siricilla, Michio Kurosu. One-pot protection-glycosylation reactions for synthesis of lipid II analogues. Chemistry (Weinheim an der Bergstrasse, Germany). 2014 Apr; 20(16):4554-8. doi: 10.1002/chem.201400307. [PMID: 24623584]
  • Nicolas Jacquier, Antonio Frandi, Trestan Pillonel, Patrick H Viollier, Patrick Viollier, Gilbert Greub. Cell wall precursors are required to organize the chlamydial division septum. Nature communications. 2014 Apr; 5(?):3578. doi: 10.1038/ncomms4578. [PMID: 24709914]
  • Anthony Arguelles Arias, Bernard Joris, Patrick Fickers. Dual mode of action of amylolysin: a type-B lantibiotic produced by Bacillus amyloliquefaciens GA1. Protein and peptide letters. 2014 Apr; 21(4):336-40. doi: 10.2174/09298665113206660102. [PMID: 24164268]
  • Zainab AlKhatib, Marcel Lagedroste, Iris Fey, Diana Kleinschrodt, André Abts, Sander H J Smits. Lantibiotic immunity: inhibition of nisin mediated pore formation by NisI. PloS one. 2014; 9(7):e102246. doi: 10.1371/journal.pone.0102246. [PMID: 25014359]
  • Erik P H de Leeuw. Efficacy of the small molecule inhibitor of Lipid II BAS00127538 against Acinetobacter baumannii. Drug design, development and therapy. 2014; 8(?):1061-4. doi: 10.2147/dddt.s68020. [PMID: 25143710]
  • André Zapun, Jules Philippe, Katherine A Abrahams, Luca Signor, David I Roper, Eefjan Breukink, Thierry Vernet. In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS chemical biology. 2013 Dec; 8(12):2688-96. doi: 10.1021/cb400575t. [PMID: 24044435]
  • Boris Sieger, Karin Schubert, Catriona Donovan, Marc Bramkamp. The lipid II flippase RodA determines morphology and growth in Corynebacterium glutamicum. Molecular microbiology. 2013 Dec; 90(5):966-82. doi: 10.1111/mmi.12411. [PMID: 24118443]
  • Shih-Hsien Huang, Wei-Shen Wu, Lin-Ya Huang, Wen-Feng Huang, Wei-Chen Fu, Po-Ting Chen, Jim-Min Fang, Wei-Chieh Cheng, Ting-Jen R Cheng, Chi-Huey Wong. New continuous fluorometric assay for bacterial transglycosylase using Förster resonance energy transfer. Journal of the American Chemical Society. 2013 Nov; 135(45):17078-89. doi: 10.1021/ja407985m. [PMID: 24131464]
  • Anthony W Kingston, Xiaojie Liao, John D Helmann. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Molecular microbiology. 2013 Nov; 90(3):502-18. doi: 10.1111/mmi.12380. [PMID: 23980836]
  • Jennifer Shepherd, Michael Ibba. Lipid II-independent trans editing of mischarged tRNAs by the penicillin resistance factor MurM. The Journal of biological chemistry. 2013 Sep; 288(36):25915-25923. doi: 10.1074/jbc.m113.479824. [PMID: 23867453]