Humulone (BioDeep_00000003619)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(6S)-3,5,6-Trihydroxy-4,6-bis(3-methyl-2-buten-1-yl)-2-(3-methyl-1-oxobutyl)-2,4-cyclohexadien-1-one

化学式: C21H30O5 (362.2093)
中文名称: 律草酮
谱图信息: 最多检出来源 Viridiplantae(plant) 68.44%

分子结构信息

SMILES: C/C(C)=C/C[C@@]1(C(C(C(CC(C)C)=O)=C(O)C(C/C=C(C)\C)=C1O)=O)O
InChI: InChI=1S/C21H30O5/c1-12(2)7-8-15-18(23)17(16(22)11-14(5)6)20(25)21(26,19(15)24)10-9-13(3)4/h7,9,14,23-24,26H,8,10-11H2,1-6H3

描述信息

An optically active cyclic ketone consisting of 3,5,6-trihydroxycyclohexa-2,4-dien-1-one bearing two 3-methylbut-2-en-1-yl substituents at positions 4 and 6 as well as a 3-methylbutanoyl group at the 2-position.
Humulone is a natural product found in Humulus lupulus with data available.
Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3].
Humulone (α-Lupulic acid), a prenylated phloroglucinol derivative, is a potent cyclooxygenase-2 (COX-2) inhibitor. Humulone acts as a positive modulator of GABAA receptor at low micromolar concentrations. Humulone is an inhibitor of bone resorption. Humulone possesses antioxidant, anti-angiogenic and apoptosis-inducing properties[1][2][3].

同义名列表

22 个代谢物同义名

(R)-Humulone; Humulone; (6S)-3,5,6-Trihydroxy-4,6-bis(3-methyl-2-buten-1-yl)-2-(3-methyl-1-oxobutyl)-2,4-cyclohexadien-1-one; 2-Cyclohexadien-1-one, 3,5,6-trihydroxy-4,6-bis(3-methyl-2-butenyl)-2-(3-methyl-1-oxobutyl)-, 6(R)-; (6R)-3,5,6-TRIHYDROXY-4,6-BIS(3-METHYL-2-BUTENYL)-2-(3-METHYL-1-OXOBUTYL)-2,4-CYCLOHEXADIEN-1-ONE; (6R)-3,5,6-Trihydroxy-4-(3-methylbutanoyl)-2,6-bis(3-methyl-2-buten-1-yl)-2,4-cyclohexadien-1-one; (6R)-3,5,6-trihydroxy-4-(3-methylbutanoyl)-2,6-bis(3-methylbut-2-enyl)cyclohexa-2,4-dien-1-one; 3,5,6beta-Trihydroxy-2-isovaleryl-4,6alpha-bis(3-methyl-2-butenyl)-2,4-cyclohexadienon; 2,3-Dihydro-3beta,4,6-trihydroxy-3alpha,5-bis(3-methyl-2-butenyl)-2-oxoisovalerophenon; 3,5,6-trihydroxy-4-isovaleryl-2,6-bis(3-methyl-2-butenyl)-2,4-cyclohexadiene-1-one; 1,4,6-Trihydroxy-1,3-bis(2-isopentenyl)-5-isovaleryl-3,5-cyclohexadien-2-on; .alpha.-Lupulic acid; .alpha.-Bitter acid; alpha-Lupulic acid; alpha bitter acid; HUMULON [MI]; (-)-humulone; n-humulone; humulon; Humolon; α-Lupulic acid; Humulone



数据库引用编号

33 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(4)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

29 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKR1B1, ANG, CCL5, FDPS, HPS1, MAPK14, NFKB1, NFKBIA, NR3C1, PTGS2, VEGFA
Peripheral membrane protein 3 ACHE, GORASP1, PTGS2
Endoplasmic reticulum membrane 1 PTGS2
Nucleus 9 ACHE, ANG, JUND, MAPK14, MYB, NFKB1, NFKBIA, NR3C1, VEGFA
cytosol 12 AKR1A1, AKR1B1, AKR1B10, ANG, FDPS, HPS1, LEP, MAPK14, MYB, NFKB1, NFKBIA, NR3C1
centrosome 1 NR3C1
nucleoplasm 8 AKR1B1, FDPS, JUND, MAPK14, MYB, NFKB1, NFKBIA, NR3C1
RNA polymerase II transcription regulator complex 2 JUND, MYB
Cell membrane 1 ACHE
Cytoplasmic side 1 GORASP1
Golgi apparatus membrane 1 GORASP1
Synapse 3 ACHE, AKR1A1, NR3C1
cell surface 2 ACHE, VEGFA
glutamatergic synapse 1 MAPK14
Golgi apparatus 3 ACHE, GORASP1, VEGFA
Golgi membrane 1 GORASP1
growth cone 1 ANG
neuromuscular junction 1 ACHE
neuronal cell body 1 ANG
Cytoplasm, cytosol 1 AKR1A1
Lysosome 2 AKR1B10, HPS1
plasma membrane 2 ACHE, NFKBIA
Membrane 5 ACHE, FDPS, MYB, NR3C1, VEGFA
apical plasma membrane 1 AKR1A1
caveola 1 PTGS2
extracellular exosome 3 AKR1A1, AKR1B1, LYZ
endoplasmic reticulum 2 PTGS2, VEGFA
extracellular space 9 ACHE, AKR1A1, AKR1B1, ANG, CCL5, CXCL8, LEP, LYZ, VEGFA
perinuclear region of cytoplasm 1 ACHE
adherens junction 1 VEGFA
mitochondrion 5 AKR1B1, AKR1B10, MAPK14, NFKB1, NR3C1
protein-containing complex 2 NR3C1, PTGS2
Microsome membrane 1 PTGS2
Secreted 7 ACHE, AKR1B10, ANG, CCL5, CXCL8, LEP, VEGFA
extracellular region 10 ACHE, AKR1B10, ANG, CCL5, CXCL8, LEP, LYZ, MAPK14, NFKB1, VEGFA
mitochondrial matrix 2 FDPS, NR3C1
Extracellular side 1 ACHE
transcription regulator complex 2 JUND, NFKB1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
cytoplasmic vesicle 1 HPS1
nucleolus 1 ANG
Apical cell membrane 1 AKR1A1
Cytoplasm, cytoskeleton, spindle 1 NR3C1
spindle 1 NR3C1
cis-Golgi network 1 GORASP1
extracellular matrix 1 VEGFA
Peroxisome 1 FDPS
basement membrane 2 ACHE, ANG
secretory granule 1 VEGFA
nuclear speck 2 MAPK14, NR3C1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 3 JUND, NFKB1, NR3C1
Chromosome 2 ANG, NR3C1
Nucleus, nucleolus 1 ANG
spindle pole 1 MAPK14
Lipid-anchor, GPI-anchor 1 ACHE
Nucleus, nucleoplasm 1 NR3C1
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
side of membrane 1 ACHE
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 MAPK14, NFKB1
endoplasmic reticulum lumen 1 PTGS2
nuclear matrix 1 MYB
transcription repressor complex 1 JUND
platelet alpha granule lumen 1 VEGFA
specific granule lumen 2 LYZ, NFKB1
tertiary granule lumen 1 LYZ
endocytic vesicle 1 ANG
azurophil granule lumen 1 LYZ
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
synaptic cleft 1 ACHE
[Isoform Alpha]: Cytoplasm 1 NR3C1
transcription factor AP-1 complex 1 JUND
angiogenin-PRI complex 1 ANG
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 2 NFKB1, NFKBIA
NF-kappaB p50/p65 complex 1 NFKB1
[Isoform H]: Cell membrane 1 ACHE
BLOC-3 complex 1 HPS1


文献列表

  • Yasuhisa Ano, Shiho Kitaoka, Rena Ohya, Keiji Kondo, Tomoyuki Furuyashiki. Hop Bitter Acids Increase Hippocampal Dopaminergic Activity in a Mouse Model of Social Defeat Stress. International journal of molecular sciences. 2020 Dec; 21(24):. doi: 10.3390/ijms21249612. [PMID: 33348553]
  • Ali Y Benkherouf, Nora Logrén, Tamara Somborac, Maaria Kortesniemi, Sanna L Soini, Baoru Yang, Outi M H Salo-Ahen, Oskar Laaksonen, Mikko Uusi-Oukari. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABAA receptors. European journal of pharmacology. 2020 Apr; 873(?):172962. doi: 10.1016/j.ejphar.2020.172962. [PMID: 32001220]
  • Tatsuhiro Ayabe, Takafumi Fukuda, Yasuhisa Ano. Improving Effects of Hop-Derived Bitter Acids in Beer on Cognitive Functions: A New Strategy for Vagus Nerve Stimulation. Biomolecules. 2020 01; 10(1):. doi: 10.3390/biom10010131. [PMID: 31940997]
  • Abdo Mahli, Andreas Koch, Kim Fresse, Tobias Schiergens, Wolfgang Erwin Thasler, Christina Schönberger, Ina Bergheim, Anja Bosserhoff, Claus Hellerbrand. Iso-alpha acids from hops (Humulus lupulus) inhibit hepatic steatosis, inflammation, and fibrosis. Laboratory investigation; a journal of technical methods and pathology. 2018 12; 98(12):1614-1626. doi: 10.1038/s41374-018-0112-x. [PMID: 30089858]
  • Katerina Bogdanova, Magdalena Röderova, Milan Kolar, Katerina Langova, Martin Dusek, Petr Jost, Klara Kubelkova, Pavel Bostik, Jana Olsovska. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Research in microbiology. 2018 Apr; 169(3):127-134. doi: 10.1016/j.resmic.2017.12.005. [PMID: 29407045]
  • Pavel Cermak, Jana Olsovska, Alexandr Mikyska, Martin Dusek, Zuzana Kadleckova, Jiri Vanicek, Otakar Nyc, Karel Sigler, Vanda Bostikova, Pavel Bostik. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2017 Nov; 125(11):1033-1038. doi: 10.1111/apm.12747. [PMID: 28960474]
  • Wei Zhou, Yibin Zhuang, Yanfen Bai, Huiping Bi, Tao Liu, Yanhe Ma. Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microbial cell factories. 2016 Aug; 15(1):149. doi: 10.1186/s12934-016-0549-9. [PMID: 27577056]
  • Martino Forino, Simona Pace, Giuseppina Chianese, Laura Santagostini, Markus Werner, Christina Weinigel, Silke Rummler, Gelsomina Fico, Oliver Werz, Orazio Taglialatela-Scafati. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade"). Journal of natural products. 2016 Mar; 79(3):590-7. doi: 10.1021/acs.jnatprod.5b01052. [PMID: 26918635]
  • Yumie Morimoto-Kobayashi, Kazuaki Ohara, Hiroshi Ashigai, Tomoka Kanaya, Kumiko Koizumi, Fumitoshi Manabe, Yuji Kaneko, Yoshimasa Taniguchi, Mikio Katayama, Yasuyuki Kowatari, Sumio Kondo. Matured hop extract reduces body fat in healthy overweight humans: a randomized, double-blind, placebo-controlled parallel group study. Nutrition journal. 2016 Mar; 15(?):25. doi: 10.1186/s12937-016-0144-2. [PMID: 26960416]
  • Yoshimasa Taniguchi, Makiko Yamada, Harumi Taniguchi, Yasuko Matsukura, Kazutoshi Shindo. Chemical Characterization of Beer Aging Products Derived from Hard Resin Components in Hops (Humulus lupulus L.). Journal of agricultural and food chemistry. 2015 Nov; 63(46):10181-91. doi: 10.1021/acs.jafc.5b04138. [PMID: 26507444]
  • Luke N Rodda, Dimitri Gerostamoulos, Olaf H Drummer. Pharmacokinetics of reduced iso-α-acids in volunteers following clear bottled beer consumption. Forensic science international. 2015 May; 250(?):37-43. doi: 10.1016/j.forsciint.2015.01.039. [PMID: 25769132]
  • Luke N Rodda, Dimitri Gerostamoulos, Olaf H Drummer. Pharmacokinetics of iso-α-acids in volunteers following the consumption of beer. Journal of analytical toxicology. 2014 Jul; 38(6):354-9. doi: 10.1093/jat/bku038. [PMID: 24778090]
  • Yoshimasa Taniguchi, Yasuko Matsukura, Hiromi Ozaki, Koichi Nishimura, Kazutoshi Shindo. Identification and quantification of the oxidation products derived from α-acids and β-acids during storage of hops ( Humulus lupulus L.). Journal of agricultural and food chemistry. 2013 Mar; 61(12):3121-30. doi: 10.1021/jf3047187. [PMID: 23469991]
  • Shawn M Clark, Vinidhra Vaitheeswaran, Stephen J Ambrose, Randy W Purves, Jonathan E Page. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC plant biology. 2013 Jan; 13(?):12. doi: 10.1186/1471-2229-13-12. [PMID: 23347725]
  • Michael Saugspier, Christoph Dorn, Barbara Czech, Manfred Gehrig, Jörg Heilmann, Claus Hellerbrand. Hop bitter acids inhibit tumorigenicity of hepatocellular carcinoma cells in vitro. Oncology reports. 2012 Oct; 28(4):1423-8. doi: 10.3892/or.2012.1925. [PMID: 22825405]
  • Yusuke Tsurumaru, Kanako Sasaki, Tatsuya Miyawaki, Yoshihiro Uto, Takayuki Momma, Naoyuki Umemoto, Masaki Momose, Kazufumi Yazaki. HlPT-1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochemical and biophysical research communications. 2012 Jan; 417(1):393-8. doi: 10.1016/j.bbrc.2011.11.125. [PMID: 22166201]
  • Xiaoming Cai, Lu Xia, Yuanshe Sun, Tong Li, Mingzhu Xia. [Analysis of six acidic components in hops extracts by high performance liquid chromatography]. Se pu = Chinese journal of chromatography. 2011 Oct; 29(10):983-7. doi: . [PMID: 22268354]
  • Ko Cattoor, Jean-Paul Remon, Koen Boussery, Jan Van Bocxlaer, Marc Bracke, Denis De Keukeleire, Dieter Deforce, Arne Heyerick. Bioavailability of hop-derived iso-α-acids and reduced derivatives. Food & function. 2011 Jul; 2(7):412-22. doi: 10.1039/c1fo10009b. [PMID: 21894329]
  • Elizabeth R Dumas, Amy E Michaud, Chantal Bergeron, Jennifer L Lafrance, Susan Mortillo, Stefan Gafner. Deodorant effects of a supercritical hops extract: antibacterial activity against Corynebacterium xerosis and Staphylococcus epidermidis and efficacy testing of a hops/zinc ricinoleate stick in humans through the sensory evaluation of axillary deodorancy. Journal of cosmetic dermatology. 2009 Sep; 8(3):197-204. doi: 10.1111/j.1473-2165.2009.00449.x. [PMID: 19735518]
  • Naoto Yamaguchi, Keiko Satoh-Yamaguchi, Mitsunori Ono. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2009 Apr; 16(4):369-76. doi: 10.1016/j.phymed.2008.12.021. [PMID: 19201179]
  • O Kornysova, Z Stanius, K Obelevicius, O Ragazinskiene, E Skrzydlewska, A Maruska. Capillary zone electrophoresis method for determination of bitter (alpha- and beta-) acids in hop (Humulus lupulus L.) cone extracts. Advances in medical sciences. 2009; 54(1):41-6. doi: 10.2478/v10039-009-0020-9. [PMID: 19581204]
  • Consuelo B Castro, Lucy D Whittock, Simon P Whittock, Grey Leggett, Anthony Koutoulis. DNA sequence and expression variation of hop (Humulus lupulus) valerophenone synthase (VPS), a key gene in bitter acid biosynthesis. Annals of botany. 2008 Aug; 102(2):265-73. doi: 10.1093/aob/mcn089. [PMID: 18519445]
  • P Natarajan, S Katta, I Andrei, V Babu Rao Ambati, M Leonida, G J Haas. Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2008 Mar; 15(3):194-201. doi: 10.1016/j.phymed.2007.10.008. [PMID: 18162387]
  • Jelle De Keukeleire, Ina Janssens, Arne Heyerick, Greet Ghekiere, Joris Cambie, Isabel Roldan-Ruiz, Erik Van Bockstaele, Denis De Keukeleire. Relevance of organic farming and effect of climatological conditions on the formation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). Journal of agricultural and food chemistry. 2007 Jan; 55(1):61-6. doi: 10.1021/jf061647r. [PMID: 17199314]
  • Andreja Cerenak, Zlatko Satovic, Branka Javornik. Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome. 2006 May; 49(5):485-94. doi: 10.1139/g06-007. [PMID: 16767173]
  • Marlène Backleh-Sohrt, Perihan Ekici, Guenter Leupold, Harun Parlar. Efficiency of foam fractionation for the enrichment of nonpolar compounds from aqueous extracts of plant materials. Journal of natural products. 2005 Sep; 68(9):1386-9. doi: 10.1021/np049743e. [PMID: 16180819]
  • Stefan Hecht, Klaus Kammhuber, Josef Reiner, Adelbert Bacher, Wolfgang Eisenreich. Biosynthetic experiments with tall plants under field conditions. 18O2 incorporation into humulone from Humulus lupulus. Phytochemistry. 2004 Apr; 65(8):1057-60. doi: 10.1016/j.phytochem.2003.08.026. [PMID: 15110685]
  • Jelle De Keukeleire, Geert Ooms, Arne Heyerick, Isabel Roldan-Ruiz, Erik Van Bockstaele, Denis De Keukeleire. Formation and accumulation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.). Journal of agricultural and food chemistry. 2003 Jul; 51(15):4436-41. doi: 10.1021/jf034263z. [PMID: 12848522]
  • C I Chappel, S Y Smith, M Chagnon. Subchronic toxicity study of tetrahydroisohumulone and hexahydroisohumulone in the beagle dog. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 Nov; 36(11):915-22. doi: 10.1016/s0278-6915(98)00067-2. [PMID: 9771552]
  • Y Honma, H Tobe, M Makishima, A Yokoyama, J Okabe-Kado. Induction of differentiation of myelogenous leukemia cells by humulone, a bitter in the hop. Leukemia research. 1998 Jul; 22(7):605-10. doi: 10.1016/s0145-2126(98)00046-0. [PMID: 9680110]
  • H Tobe, Y Muraki, K Kitamura, O Komiyama, Y Sato, T Sugioka, H B Maruyama, E Matsuda, M Nagai. Bone resorption inhibitors from hop extract. Bioscience, biotechnology, and biochemistry. 1997 Jan; 61(1):158-9. doi: 10.1271/bbb.61.158. [PMID: 9028043]
  • M Tagashira, M Watanabe, N Uemitsu. Antioxidative activity of hop bitter acids and their analogues. Bioscience, biotechnology, and biochemistry. 1995 Apr; 59(4):740-2. doi: 10.1271/bbb.59.740. [PMID: 7772843]
  • W J Simpson, A R Smith. Factors affecting antibacterial activity of hop compounds and their derivatives. The Journal of applied bacteriology. 1992 Apr; 72(4):327-34. doi: 10.1111/j.1365-2672.1992.tb01843.x. [PMID: 1517174]
  • . . . . doi: . [PMID: 25564559]