Bromide (BioDeep_00000004668)
Secondary id: BioDeep_00001868707
human metabolite Endogenous Cytotoxicity Volatile Flavor Compounds
代谢物信息卡片
化学式: Br- (78.918336)
中文名称: 溴离子
谱图信息:
最多检出来源 Homo sapiens(blood) 0.68%
分子结构信息
SMILES: [Br-]
InChI: InChI=1S/BrH/h1H/p-1
描述信息
Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects. From cytotoxicity and mutagenicity assays, it is known that brominated organic compounds are more toxic than chlorinated organic compounds. However, only a limited number of brominated organic compounds have been regulated. (PMID: 17316744).
Bromine is a brown or red liquid with a characteristic odor. Bromine is mainly used in the manufacture of dyes, inks, flame retardants, pharmaceuticals and chemical warfare agents. Occupational exposure to bromine may occur during the production and the application of bromine compounds and during other industrial activities. This compound is adsorbed into the human body through the respiratory tract, skin (occupational exposure) and alimentary tract (general population). Physiologically, bromine exists as an ion in the body. Slight eye irritation occurs as a consequence of chronic exposure to bromine vapors at concentration of 1 mg/m3. Higher concentrations increase this effect and cause nasal and skin irritation. Many years observations have shown that during occupational exposure to bromine vapors at concentrations of up to 0.7 mg/m3 (0.1 ppm), there are no observed adverse effects.
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants > D001965 - Bromides
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives
同义名列表
7 个代谢物同义名
Bromine anion; BROMIDE ion; Bromine ion; Bromides; bromide; BR(-); RBr
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:15858
- KEGG: C01324
- PubChem: 259
- HMDB: HMDB0002500
- ChEMBL: CHEMBL11685
- Wikipedia: Bromide
- MeSH: Bromides
- MetaCyc: BR-
- foodb: FDB023017
- chemspider: 254
- CAS: 24959-67-9
- CAS: 7726-95-6
- PubChem: 4536
- PDB-CCD: BR
- NIKKAJI: J44.422G
- KEGG: C00720
- PubChem: 3986
- KNApSAcK: 15858
分类词条
相关代谢途径
Reactome(4)
BioCyc(9)
- alkylnitronates degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- L-asparagine degradation I
- D-glucarate degradation I
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- deacetylcephalosporin C biosynthesis
- superpathway of D-glucarate and D-galactarate degradation
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
PlantCyc(0)
代谢反应
122 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(10)
- mycothiol-mediated detoxification:
monobromobimane + mycothiol ⟶ H+ + bromide + mycothiol-bimane conjugate
- mycothiol-mediated detoxification:
monobromobimane + mycothiol ⟶ H+ + bromide + mycothiol-bimane conjugate
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- polybrominated dihydroxylated diphenyl ethers biosynthesis:
3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 3-bromo-5-(3,5-dibromo-2-hydroxyphenoxy)benzene-1,2-diol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- spongiadioxin C biosynthesis:
2,4-dibromophenol + 3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 6,6'-oxybis(2,4-dibromophenol) + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- polybrominated biphenyls and diphenyl ethers biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- superpathway of polybrominated aromatic compound biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- polybrominated phenols biosynthesis:
2,4-dibromophenol + H+ + NADPH + O2 + bromide ⟶ 2,4,6-tribromophenol + H2O + NADP+
- brominated pyrroles biosynthesis:
FADH2 + O2 + a 4,5-dibromo-1H-pyrrole-2-carbonyl-[Bmp1 prolyl-carrier protein] + bromide ⟶ FAD + H2O + a 3,4,5-tribromo-1H-pyrrole-2-carbonyl-[Bmp1 prolyl-carrier protein]
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(112)
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + chloride ⟶ SAH + methyl chloride
- methylhalides biosynthesis (plants):
SAM + iodide ⟶ SAH + methyl iodide
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tatyana I Rokitskaya, Roman S Kirsanov, Ljudmila S Khailova, Alisa A Panteleeva, Konstantin G Lyamzaev, Galina A Korshunova, Elena A Kotova, Yuri N Antonenko. Methylation of Phenyl Rings in Ester-Stabilized Phosphorus Ylides Vastly Enhances Their Protonophoric Activity.
Chembiochem : a European journal of chemical biology.
2024 Apr; 25(7):e202300848. doi:
10.1002/cbic.202300848
. [PMID: 38353515] - Christopher W Rogers, Juliet M Marshall, Margaret Moll, Cynthia Curl. Crop bromide concentrations following methyl bromide fumigation for pale cyst nematode in southeastern Idaho.
Journal of environmental quality.
2024 Jan; 53(1):47-56. doi:
10.1002/jeq2.20529
. [PMID: 37939688] - Conghao Lin, Fang Luan, Shengjia Su, Aili Jiang, Wenqiang Tan, Zhanyong Guo. Water-soluble fluorine-functionalized chitooligosaccharide derivatives: Synthesis, characterization and antimicrobial activity.
Carbohydrate research.
2023 Nov; 533(?):108935. doi:
10.1016/j.carres.2023.108935
. [PMID: 37717482] - Yoshiyuki Hattori, Min Tang, Aya Aoki, Momoka Ezaki, Hana Sakai, Kei-Ichi Ozaki. Effect of the combination of cationic lipid and phospholipid on gene-knockdown using siRNA lipoplexes in breast tumor cells and mouse lungs.
Molecular medicine reports.
2023 Oct; 28(4):. doi:
10.3892/mmr.2023.13067
. [PMID: 37594053] - Tamar Shamai Yamin, Moran Madmon, Ariel Hindi, Avital Shifrovich, Hagit Prihed, Merav Blanca, Avi Weissberg. Enhanced LC-ESI-MS/MS Sensitivity by Cationic Derivatization of Organophosphorus Acids.
Molecules (Basel, Switzerland).
2023 Aug; 28(16):. doi:
10.3390/molecules28166090
. [PMID: 37630342] - Nasrollah Sepehrnia, Mohsen Gorakifard, Paul D Hallett, Mohammad Ali Hajabbasi, Nima Shokri, Mark Coyne. Contrasting transport and fate of hydrophilic and hydrophobic bacteria in wettable and water-repellent porous media: Straining or attachment?.
Colloids and surfaces. B, Biointerfaces.
2023 Aug; 228(?):113433. doi:
10.1016/j.colsurfb.2023.113433
. [PMID: 37392521] - Bo Zhao, Jiali Wang, Na Sun, Chunguang Liu. Low concentration of bromide ions improves sulfadiazine phytoremoval and attenuates its phytotoxicity.
The Science of the total environment.
2023 Jun; ?(?):164857. doi:
10.1016/j.scitotenv.2023.164857
. [PMID: 37321499] - Che Yanhui, Yao Tongtong, Wang Hongrui, Liu Xiaoqian, Zhang Zhe, Wang Zihan, Zhang Hongbo, Yuan Ye, He Guoqiang, Sun Guangyu, Zhang Huihui. Abscisic acid plays a key role in the mechanism of photosynthetic and physiological response effect of Tetrabromobisphenol A on tobacco.
Journal of hazardous materials.
2023 04; 447(?):130792. doi:
10.1016/j.jhazmat.2023.130792
. [PMID: 36669407] - Jiaxin Ma, Yijun Shi, Dong An, Yanan Chen, Jun Guo, Yunkun Qian, Sheng Wang, Jinrong Lu. Inactivation mechanism of E. coli in water by enhanced photocatalysis under visible light irradiation.
The Science of the total environment.
2023 Mar; 866(?):161450. doi:
10.1016/j.scitotenv.2023.161450
. [PMID: 36623654] - Svetlana Malysheva, Vladimir Kuimov, Lyudmila Belovezhets, Natalia Belogorlova, Marina Borovskaya, Gennadii Borovskii. Phosphine chalcogenides and their derivatives from red phosphorus and functionalized pyridines, imidazoles, pyrazoles and their antimicrobial and cytostatic activity.
Bioorganic chemistry.
2023 Mar; 132(?):106363. doi:
10.1016/j.bioorg.2023.106363
. [PMID: 36702003] - Xiaohui Zhu, Xingyue Min, Yutong Zhu, Xiping Ma, Xuelian Meng, Chengbin Xu. Effects of [Cnpy]Br (n=3,5) on the growth and physiology of rape seedlings.
Environmental science and pollution research international.
2023 Mar; 30(12):34741-34749. doi:
10.1007/s11356-022-24759-y
. [PMID: 36520292] - Li-Jie Gu, Chao-Yang Li, Xin-Yue Niu, Xiong-Li Liu, Zhan-Wei Bu, Qi-Lin Wang. Organophosphine as an Alkyl Transfer Shuttle for the Direct β-Alkylation of Chalcones Using Alkyl Halides.
The Journal of organic chemistry.
2023 01; 88(1):534-539. doi:
10.1021/acs.joc.2c02505
. [PMID: 36534447] - Gabriela F M Lopes, Willam G Lima, Felipe R S Santos, Damiana A F Nunes, Maria J F Passos, Simone O A Fernandes, José C de Magalhães, Luciana L Dos Santos, Jaqueline M S Ferreira. Anti-Mayaro virus activity of a hydroethanolic extract from Fridericia chica (Bonpl.) L. G. Lohmann leaves.
Journal of ethnopharmacology.
2022 Dec; 299(?):115685. doi:
10.1016/j.jep.2022.115685
. [PMID: 36067840] - Xiaowei Ding, Lingyu Zhao, Imran Mahmood Khan, Lin Yue, Yin Zhang, Zhouping Wang. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application.
Carbohydrate polymers.
2022 Dec; 297(?):120011. doi:
10.1016/j.carbpol.2022.120011
. [PMID: 36184166] - Jing Zhang, Yang Shi, Zhenyang Yu. Balances among reproduction, antioxidant responses and lipid metabolism underlying the multi-generational effects of N-butylpyridinium bromide on Caenorhabditis elegans.
The Science of the total environment.
2022 Nov; 846(?):157468. doi:
10.1016/j.scitotenv.2022.157468
. [PMID: 35868368] - Witold Stachowiak, Mikołaj Smolibowski, Damian Krystian Kaczmarek, Tomasz Rzemieniecki, Michał Niemczak. Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide.
The Science of the total environment.
2022 Nov; 845(?):157181. doi:
10.1016/j.scitotenv.2022.157181
. [PMID: 35817095] - Federica Dell'Annunziata, Carmine Sellitto, Gianluigi Franci, Maria Carla Marcotullio, Anna Piovan, Roberta Della Marca, Veronica Folliero, Massimiliano Galdiero, Amelia Filippelli, Valeria Conti, Domenico Vittorio Delfino. Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1.
Viruses.
2022 10; 14(10):. doi:
10.3390/v14102257
. [PMID: 36298811] - Fatih Çağlar Çelikezen, Hasan Türkez, Mehmet Firat, Mehmet Enes Arslan, Sena Öner. In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells.
Neurotoxicity research.
2022 Oct; 40(5):1360-1368. doi:
10.1007/s12640-022-00537-z
. [PMID: 35867270] - Alicja Sęk, Paulina Perczyk, Aleksandra Szcześ, Rainhard Machatschek, Paweł Wydro. Studies on the interactions of tiny amounts of common ionic surfactants with unsaturated phosphocholine lipid model membranes.
Chemistry and physics of lipids.
2022 10; 248(?):105236. doi:
10.1016/j.chemphyslip.2022.105236
. [PMID: 36007625] - Yanni Wang, Chaowu Dai, Wei Huang, Tingting Ni, Jianping Cao, Jiangmei Pang, Huining Wei, Chaojie Wang. Density Functional Method Study on the Cooperativity of Intermolecular H-bonding and π-π+ Stacking Interactions in Thymine-[Cnmim]Br (n = 2, 4, 6, 8, 10) Microhydrates.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196242
. [PMID: 36234781] - Gaoqiong Deng, Hengye Chen, Qiong Shi, Lixue Ren, Ke Liang, Wanjun Long, Wei Lan, Xiaole Han, Yuanbin She, Haiyan Fu. Colorimetric assay based on peroxidase-like activity of dodecyl trimethylammonium bromide-tetramethyl zinc (4-pyridinyl) porphyrin for detection of organophosphorus pesticides.
Mikrochimica acta.
2022 09; 189(10):375. doi:
10.1007/s00604-022-05430-2
. [PMID: 36074197] - Josep Sanchís, Paula E Redondo-Hasselerharm, Cristina M Villanueva, Maria José Farré. Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples.
Chemosphere.
2022 Sep; 303(Pt 2):135087. doi:
10.1016/j.chemosphere.2022.135087
. [PMID: 35623424] - Harika Atmaca, Çisil Çamlı Pulat, Suleyman Ilhan. Synthesis of silver nanoparticles using Alpinia officinarum rhizome extract induces apoptosis through down-regulating Bcl-2 in human cancer cells.
Biologia futura.
2022 Sep; 73(3):327-334. doi:
10.1007/s42977-022-00132-5
. [PMID: 35943700] - Sukanda Chaiyong, Nataya Sutthanont, Apaporn Menakongka. Evaluation of In Vitro Cytotoxic Property Against Cholangiocarcinoma Cell Line and GC/MS Analysis from Leaf of Erythrophleum succirubrum Gagnep.
Asian Pacific journal of cancer prevention : APJCP.
2022 Sep; 23(9):3187-3194. doi:
10.31557/apjcp.2022.23.9.3187
. [PMID: 36172683] - Boying Xu, Jinquan Ding, Adriano Caliari, Nan Lu, Fuhai Han, Yang Xia, Jian Xu, Tetsuya Yomo. Photoinducible Azobenzene trimethylammonium bromide (AzoTAB)-mediated giant vesicle fusion compatible with synthetic protein translation reactions.
Biochemical and biophysical research communications.
2022 08; 618(?):113-118. doi:
10.1016/j.bbrc.2022.06.035
. [PMID: 35717905] - Megyn B Rugh, Stanley B Grant, Wei-Cheng Hung, Jennifer A Jay, Emily A Parker, Marina Feraud, Dong Li, Sumant Avasarala, Patricia A Holden, Haizhou Liu, Megan A Rippy, Laurie C Van De Werfhorst, Timnit Kefela, Jian Peng, Stella Shao, Katherine E Graham, Alexandria B Boehm, Samuel Choi, Sanjay K Mohanty, Yiping Cao. Highly variable removal of pathogens, antibiotic resistance genes, conventional fecal indicators and human-associated fecal source markers in a pilot-scale stormwater biofilter operated under realistic stormflow conditions.
Water research.
2022 Jul; 219(?):118525. doi:
10.1016/j.watres.2022.118525
. [PMID: 35533621] - Yan-Zhen Chen, Jian-Guo Fu, Xiao-Ming Ji, Shu-Sheng Zhang, Chen-Guo Feng. Palladium-catalyzed cross-coupling of unreactive C(sp3)-H bonds with azole C(sp2)-H bonds by using bromide as a traceless directing group.
Chemical communications (Cambridge, England).
2022 Jun; 58(46):6661-6664. doi:
10.1039/d2cc01944b
. [PMID: 35593262] - Md Tareq Aziz, Caroline O Granger, Danielle C Westerman, Samuel P Putnam, John L Ferry, Susan D Richardson. Microseira wollei and Phormidium algae more than doubles DBP concentrations and calculated toxicity in drinking water.
Water research.
2022 Jun; 216(?):118316. doi:
10.1016/j.watres.2022.118316
. [PMID: 35367941] - Irina Shtangeeva, Matti Niemelä, Paavo Perämäki, Alexander Popov, Ilkka Vesavaara, Ronja Suvela. Response of wheat and barley seedlings on soil contamination with bromides.
Environmental geochemistry and health.
2022 Feb; 44(2):537-550. doi:
10.1007/s10653-020-00791-0
. [PMID: 33392899] - Sandeep Kumar, Markus Fischer, Navleen Kaur, Holger A Scheidt, Venus Singh Mithu. Impact of Lipid Ratio on the Permeability of Mixed Phosphatidylcholine/Phosphatidylglycerol Membranes in the Presence of 1-Dodecyl-3-methylimidazolium Bromide Ionic Liquid.
The journal of physical chemistry. B.
2022 01; 126(1):174-183. doi:
10.1021/acs.jpcb.1c06796
. [PMID: 34965130] - Yi-Xuan Zou, Zhen-Qiang Mu, Jie Wang, Shuo Tian, Yilin Li, Yanqiu Liu. Wedelolactone, a Component from Eclipta prostrata (L.) L., Inhibits the Proliferation and Migration of Head and Neck Squamous Cancer Cells through the AhR Pathway.
Current pharmaceutical biotechnology.
2022; 23(15):1883-1892. doi:
10.2174/1389201023666220307110554
. [PMID: 35255785] - Aasia Kalsoom, Awais Altaf, Muhammad Ashraf, Muhammad Muddassir Ali, Saira Aftab, Huma Sattar, Muhammad Sajjad, Amjad Islam Aqib, Tahir Maqbool. In Vitro Evaluation of Cytotoxic Potential of Caladium lindenii Extracts on Human Hepatocarcinoma HepG2 and Normal HEK293T Cell Lines.
BioMed research international.
2022; 2022(?):1279961. doi:
10.1155/2022/1279961
. [PMID: 36193312] - Eun-A Kim, Kyouk Hwang, Ji-Eun Kim, Jee-Yin Ahn, Soo Young Choi, Seung-Ju Yang, Sung-Woo Cho. Anti-inflammatory effects of N-cyclooctyl-5-methylthiazol-2-amine hydrobromide on lipopolysaccharide-induced inflammatory response through attenuation of NLRP3 activation in microglial cells.
BMB reports.
2021 Nov; 54(11):557-562. doi:
"
. [PMID: 34353430] - Beatrice-Cristina Ivan, Florea Dumitrascu, Adriana Iuliana Anghel, Robert Viorel Ancuceanu, Sergiu Shova, Denisa Dumitrescu, Constantin Draghici, Octavian Tudorel Olaru, George Mihai Nitulescu, Mihaela Dinu, Stefania-Felicia Barbuceanu. Synthesis and Toxicity Evaluation of New Pyrroles Obtained by the Reaction of Activated Alkynes with 1-Methyl-3-(cyanomethyl)benzimidazolium Bromide.
Molecules (Basel, Switzerland).
2021 Oct; 26(21):. doi:
10.3390/molecules26216435
. [PMID: 34770844] - Catharina Erbacher, Nils Flothkötter, Marcel Macke, C Derrick Quarles, Michael Sperling, Jens Müller, Uwe Karst. A fast and automated separation and quantification method for bromine speciation analyzing bromide and 5-bromo-2'-deoxyuridine in enzymatically digested DNA samples via ion chromatography-inductively coupled plasma-mass spectrometry.
Journal of chromatography. A.
2021 Aug; 1652(?):462370. doi:
10.1016/j.chroma.2021.462370
. [PMID: 34246961] - Marco Fantinati, Nathalie Priymenko, Maud Debreuque. Bromide toxicosis (bromism) secondary to a decreased chloride intake after dietary transition in a dog with idiopathic epilepsy: a case report.
BMC veterinary research.
2021 Jul; 17(1):253. doi:
10.1186/s12917-021-02959-x
. [PMID: 34294099] - Shuying Yang, Laurie A Lee, Neal Sule, Andrew Fowler, Guy Peachey. Population Pharmacokinetic Modeling of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol in Patients with Asthma, Using Data from a Phase IIIA Study (CAPTAIN).
Clinical pharmacokinetics.
2021 07; 60(7):887-896. doi:
10.1007/s40262-021-00988-1
. [PMID: 33598874] - Asmaa Biaz, Jalila Zirar, Elmehdi Elouadani, Sanae Bouhsain, Naoufal Hjira, Abdellah Dami, Samira Elmachtani-Idrissi. Pseudo-Hyperchloremia: Think about Analytical Interference with Bromides.
Clinical laboratory.
2021 Apr; 67(4):. doi:
10.7754/clin.lab.2020.200903
. [PMID: 33865253] - Manabu Niimi, Haizhao Yan, Yajie Chen, Yao Wang, Jianglin Fan. Isolation and Analysis of Plasma Lipoproteins by Ultracentrifugation.
Journal of visualized experiments : JoVE.
2021 01; ?(167):. doi:
10.3791/61790
. [PMID: 33586702] - Takenori Yamauchi, Daichi Nagashima, Shigeko Okubo, Akatsuki Kokaze, Yuko Yamano. Quantification of bromide ion in biological samples using headspace gas chromatography-mass spectrometry.
Journal of occupational health.
2021 Jan; 63(1):e12274. doi:
10.1002/1348-9585.12274
. [PMID: 34587337] - Samuel H Brodfuehrer, David G Wahman, Abdalrahman Alsulaili, Gerald E Speitel, Lynn E Katz. Role of Carbonate Species on General Acid Catalysis of Bromide Oxidation by Hypochlorous Acid (HOCl) and Oxidation by Molecular Chlorine (Cl2).
Environmental science & technology.
2020 12; 54(24):16186-16194. doi:
10.1021/acs.est.0c04563
. [PMID: 33263389] - Xinting Li, Peng Liang, Yufeng Zhou, Xiaoqiang Qiao. [Preparation and chromatographic properties of 1-vinyl-3-dodecylimidazole bromide silica-bonded stationary phase].
Se pu = Chinese journal of chromatography.
2020 Nov; 38(11):1263-1269. doi:
10.3724/sp.j.1123.2020.02012
. [PMID: 34213096] - Barbara Ruffino, Gregory V Korshin, Mariachiara Zanetti. Use of spectroscopic indicators for the monitoring of bromate generation in ozonated wastewater containing variable concentrations of bromide.
Water research.
2020 Sep; 182(?):116009. doi:
10.1016/j.watres.2020.116009
. [PMID: 32562961] - V Lakhian, S E Dickson-Anderson. Reduction of bromate and chlorate contaminants in water using aqueous phase corona discharge.
Chemosphere.
2020 Sep; 255(?):126864. doi:
10.1016/j.chemosphere.2020.126864
. [PMID: 32402869] - Frita Yuliati, Peter J Deuss, Hero J Heeres, Francesco Picchioni. Towards Thermally Reversible Networks Based on Furan-Functionalization of Jatropha Oil.
Molecules (Basel, Switzerland).
2020 Aug; 25(16):. doi:
10.3390/molecules25163641
. [PMID: 32785147] - Cuiwen He, Wenxin Song, Thomas A Weston, Caitlyn Tran, Ira Kurtz, Jonathan E Zuckerman, Paul Guagliardo, Jeffrey H Miner, Sergey V Ivanov, Jeremy Bougoure, Billy G Hudson, Selene Colon, Paul A Voziyan, Gautam Bhave, Loren G Fong, Stephen G Young, Haibo Jiang. Peroxidasin-mediated bromine enrichment of basement membranes.
Proceedings of the National Academy of Sciences of the United States of America.
2020 07; 117(27):15827-15836. doi:
10.1073/pnas.2007749117
. [PMID: 32571911] - Yaqi Xu, Jinhua Wang, Zhongkun Du, Bing Li, Albert Juhasz, Meiying Tan, Lusheng Zhu, Jun Wang. Toxicity Evaluation of Three Imidazolium-based ionic liquids ([C6mim]R) on Vicia faba Seedlings Using an integrated biomarker response (IBR) index.
Chemosphere.
2020 Feb; 240(?):124919. doi:
10.1016/j.chemosphere.2019.124919
. [PMID: 31726585] - Chelsea Kolb, Kelly D Good, Jeanne M VanBriesen. Modeling Trihalomethane Increases Associated with Source Water Bromide Contributed by Coal-Fired Power Plants in the Monongahela River Basin.
Environmental science & technology.
2020 01; 54(2):726-734. doi:
10.1021/acs.est.9b01544
. [PMID: 31846301] - Rashmi Mehta, Colm Farrell, Siobhán Hayes, Ruby Birk, Malek Okour, David A Lipson. Population Pharmacokinetic Analysis of Fluticasone Furoate/Umeclidinium Bromide/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease.
Clinical pharmacokinetics.
2020 01; 59(1):67-79. doi:
10.1007/s40262-019-00794-w
. [PMID: 31321713] - Min-Goo Park, Jungmi Choi, Young-Seoub Hong, Chung Gyoo Park, Byoung-Gwon Kim, Se-Young Lee, Hyoun-Ju Lim, Hyoung-Ho Mo, Eunjo Lim, Wonseok Cha. Negative effect of methyl bromide fumigation work on the central nervous system.
PloS one.
2020; 15(8):e0236694. doi:
10.1371/journal.pone.0236694
. [PMID: 32745138] - Cornelius C W Willacey, Martijn Naaktgeboren, Edinson Lucumi Moreno, Agnieszka B Wegrzyn, Daan van der Es, Naama Karu, Ronan M T Fleming, Amy C Harms, Thomas Hankemeier. LC-MS/MS analysis of the central energy and carbon metabolites in biological samples following derivatization by dimethylaminophenacyl bromide.
Journal of chromatography. A.
2019 Dec; 1608(?):460413. doi:
10.1016/j.chroma.2019.460413
. [PMID: 31395359] - Darya A Kuznetsova, Gulnara A Gaynanova, Leysan A Vasileva, Guzel V Sibgatullina, Dmitry V Samigullin, Anastasiia S Sapunova, Alexandra D Voloshina, Irina V Galkina, Konstantin A Petrov, Lucia Ya Zakharova. Mitochondria-targeted cationic liposomes modified with alkyltriphenylphosphonium bromides loaded with hydrophilic drugs: preparation, cytotoxicity and colocalization assay.
Journal of materials chemistry. B.
2019 12; 7(46):7351-7362. doi:
10.1039/c9tb01853k
. [PMID: 31696196] - M D Combs, S H Edwards, J M Scherpenhuizen, E J Narayan, A E Kessell, J Ramsay, J Piltz, S R Raidal, J C Quinn. Treatment with potassium bromide mitigates ataxia and reduces tremor in lambs with perennial ryegrass toxicosis.
New Zealand veterinary journal.
2019 Nov; 67(6):287-294. doi:
10.1080/00480169.2019.1637300
. [PMID: 31248334] - Lingshan Su, Ping Tong, Lijia Zhang, Zhongbin Luo, Caili Fu, Dianping Tang, Yuyu Zhang. Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals.
The Analyst.
2019 Aug; 144(16):4880-4886. doi:
10.1039/c9an00994a
. [PMID: 31298669] - Peng Yu, Xiaoqin Zhou, Yichang Yan, Zifu Li, Tianlong Zheng. Enhanced visible-light-driven photocatalytic disinfection using AgBr-modified g-C3N4 composite and its mechanism.
Colloids and surfaces. B, Biointerfaces.
2019 Jul; 179(?):170-179. doi:
10.1016/j.colsurfb.2019.03.074
. [PMID: 30959229] - Jenny Nelson, Lawrence Pacquette, Shuofei Dong, Michiko Yamanaka. Simultaneous Analysis of Iodine and Bromine Species in Infant Formula using HPLC-ICP-MS.
Journal of AOAC International.
2019 Jul; 102(4):1199-1204. doi:
10.5740/jaoacint.18-0352
. [PMID: 30736867] - Li-Kun Huang, Ya-Yun Liao, Wei-Hua Lin, Shih-Ming Lin, Tzu-Yin Liu, Ching-Hung Lee, Rong-Long Pan. Potassium Stimulation of IAA Transport Mediated by the Arabidopsis Importer AUX1 Investigated in a Heterologous Yeast System.
The Journal of membrane biology.
2019 06; 252(2-3):183-194. doi:
10.1007/s00232-019-00065-6
. [PMID: 31053903] - Yujie Shi, Wenxiang Zhang, Yinlong Cheng, Chang Liu, Siyu Chen. Bromide alleviates fatty acid-induced lipid accumulation in mouse primary hepatocytes through the activation of PPARα signals.
Journal of cellular and molecular medicine.
2019 06; 23(6):4464-4474. doi:
10.1111/jcmm.14347
. [PMID: 31033195] - Yan-Jie Zhao, Yuya Sato, Tomohiro Inaba, Tomo Aoyagi, Tomoyuki Hori, Hiroshi Habe. Activated sludge microbial communities of a chemical plant wastewater treatment facility with high-strength bromide ions and aromatic substances.
The Journal of general and applied microbiology.
2019 May; 65(2):106-110. doi:
10.2323/jgam.2018.05.002
. [PMID: 30068857] - Rohini Kanwar, Michael Gradzielski, Sylvain Prevost, Gurpreet Kaur, Daniel Clemens, Marie-Sousai Appavou, Surinder Kumar Mehta. Effect of lipid chain length on nanostructured lipid carriers: Comprehensive structural evaluation by scattering techniques.
Journal of colloid and interface science.
2019 Jan; 534(?):95-104. doi:
10.1016/j.jcis.2018.08.066
. [PMID: 30216837] - Kelly D Good, Jeanne M VanBriesen. Coal-Fired Power Plant Wet Flue Gas Desulfurization Bromide Discharges to U.S. Watersheds and Their Contributions to Drinking Water Sources.
Environmental science & technology.
2019 01; 53(1):213-223. doi:
10.1021/acs.est.8b03036
. [PMID: 30512930] - Shreen Deeb Nusair, Mohammad Jamil Almasaleekh, Hasan Abder-Rahman, Mohammad Alkhatatbeh. Environmental exposure of humans to bromide in the Dead Sea area: Measurement of genotoxicy and apoptosis biomarkers.
Mutation research. Genetic toxicology and environmental mutagenesis.
2019 Jan; 837(?):34-41. doi:
10.1016/j.mrgentox.2018.09.006
. [PMID: 30595207] - Vadim Pedchenko, A Richard Kitching, Billy G Hudson. Goodpasture's autoimmune disease - A collagen IV disorder.
Matrix biology : journal of the International Society for Matrix Biology.
2018 10; 71-72(?):240-249. doi:
10.1016/j.matbio.2018.05.004
. [PMID: 29763670] - Noriyuki Isobe, Takehiro Komamiya, Satoshi Kimura, Ung-Jin Kim, Masahisa Wada. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold.
International journal of biological macromolecules.
2018 Oct; 117(?):625-631. doi:
10.1016/j.ijbiomac.2018.05.071
. [PMID: 29778880] - Koya Fukunaga, Hikaru Matsumoto, Michiko Wate, Karin Misawa, Miyoko Saito, Hiroshi Matsuda, Kensuke Orito. Effects of three infusion fluids with different sodium chloride contents on steady-state serum concentrations of bromide in dogs.
Journal of veterinary pharmacology and therapeutics.
2018 Oct; 41(5):684-690. doi:
10.1111/jvp.12680
. [PMID: 30020534] - Pabitra Maity, Baishakhi Saha, Gopinatha Suresh Kumar, Sanat Karmakar. Effect of Zwitterionic Phospholipid on the Interaction of Cationic Membranes with Monovalent Sodium Salts.
Langmuir : the ACS journal of surfaces and colloids.
2018 08; 34(33):9810-9817. doi:
10.1021/acs.langmuir.8b01792
. [PMID: 30056708] - Pamela J Rice, Brian P Horgan, Brian L Barber, William C Koskinen. Chemical application strategies to protect water quality.
Ecotoxicology and environmental safety.
2018 Jul; 156(?):420-427. doi:
10.1016/j.ecoenv.2018.02.030
. [PMID: 29597059] - Irina Shtangeeva, Paavo Perämäki, Matti Niemelä, Evgeny Kurashov, Yulia Krylova. Potential of wheat (Triticum aestivum L.) and pea (Pisum sativum) for remediation of soils contaminated with bromides and PAHs.
International journal of phytoremediation.
2018 May; 20(6):560-566. doi:
10.1080/15226514.2017.1405375
. [PMID: 29688054] - Kateryna O Khokhlova, Oleksandr A Zdoryk. Investigation of the Physical, Chemical, and Microbiological Stability of Oral Solutions Compounded with Herbals.
International journal of pharmaceutical compounding.
2018 May; 22(3):240-246. doi:
"
. [PMID: 29878891] - Raul T Rodrigues, Paulo V Morais, Cristina S F Nordi, Michael J Schöning, José R Siqueira, Luciano Caseli. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.
Langmuir : the ACS journal of surfaces and colloids.
2018 Mar; 34(9):3082-3093. doi:
10.1021/acs.langmuir.7b04317
. [PMID: 29397738] - Mo Han, Lilan Hao, Yuxiang Lin, Fang Li, Jian Wang, Huanming Yang, Liang Xiao, Karsten Kristiansen, Huijue Jia, Junhua Li. A novel affordable reagent for room temperature storage and transport of fecal samples for metagenomic analyses.
Microbiome.
2018 02; 6(1):43. doi:
10.1186/s40168-018-0429-0
. [PMID: 29482661] - Lakkoji Satish, Sabera Millan, Visakh Vijayalekshmi Sasidharan, Harekrushna Sahoo. Molecular level insight into the effect of triethyloctylammonium bromide on the structure, thermal stability, and activity of Bovine serum albumin.
International journal of biological macromolecules.
2018 Feb; 107(Pt A):186-193. doi:
10.1016/j.ijbiomac.2017.08.157
. [PMID: 28866018] - Kianoush B Kashani, Jon H Steuernagle Iv, Qi Qian. Spurious Hyperchloremia in the Presence of Elevated Plasma Salicylate: A Cohort Study.
Nephron.
2018; 138(3):186-191. doi:
10.1159/000484636
. [PMID: 29131112] - Yaqi Xu, Jun Wang, Lusheng Zhu, Zhongkun Du, Jinhua Wang, Kai Wei. Physiological and biochemical responses of wheat (Triticum aestivum L.) seedlings to three imidazolium-based ionic liquids in soil.
Chemosphere.
2018 Jan; 191(?):81-88. doi:
10.1016/j.chemosphere.2017.09.108
. [PMID: 29031056] - Tarek Selim, Fethi Bouksila, Yasser Hamed, Ronny Berndtsson, Akissa Bahri, Magnus Persson. Field experiment and numerical simulation of point source irrigation with multiple tracers.
PloS one.
2018; 13(1):e0190500. doi:
10.1371/journal.pone.0190500
. [PMID: 29293600] - Mohammad Hossien Bakhshaei, Abdorrahman Bahrami, Amin Mirzakhani, Hossien Mahjub, Mohammad Javad Assari. Exposure Assessment, Biological Monitoring, and Liver Function Tests of Operating Room Personnel Exposed to Halothane in Hamedan Hospitals, West of Iran.
Journal of research in health sciences.
2017 Nov; 17(4):e00397. doi:
. [PMID: 29233951]
- Kelly D Good, Jeanne M VanBriesen. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.
Environmental science & technology.
2017 Oct; 51(20):11829-11838. doi:
10.1021/acs.est.7b03003
. [PMID: 28945074] - Markus Langsa, Sebastien Allard, Ina Kristiana, Anna Heitz, Cynthia A Joll. Halogen-specific total organic halogen analysis: Assessment by recovery of total bromine.
Journal of environmental sciences (China).
2017 Aug; 58(?):340-348. doi:
10.1016/j.jes.2017.06.010
. [PMID: 28774625] - Fabian Soltermann, Christian Abegglen, Manfred Tschui, Sandro Stahel, Urs von Gunten. Options and limitations for bromate control during ozonation of wastewater.
Water research.
2017 06; 116(?):76-85. doi:
10.1016/j.watres.2017.02.026
. [PMID: 28314210] - Ianis Delpla, Manuel J Rodriguez. Variability of disinfection by-products at a full-scale treatment plant following rainfall events.
Chemosphere.
2017 Jan; 166(?):453-462. doi:
10.1016/j.chemosphere.2016.09.096
. [PMID: 27710882] - Tsubasa Yokota, Kohei Omachi, Mary Ann Suico, Haruka Kojima, Misato Kamura, Keisuke Teramoto, Shota Kaseda, Jun Kuwazuru, Tsuyoshi Shuto, Hirofumi Kai. Bromide supplementation exacerbated the renal dysfunction, injury and fibrosis in a mouse model of Alport syndrome.
PloS one.
2017; 12(9):e0183959. doi:
10.1371/journal.pone.0183959
. [PMID: 28873450] - Kelly D Good, Jeanne M VanBriesen. Current and Potential Future Bromide Loads from Coal-Fired Power Plants in the Allegheny River Basin and Their Effects on Downstream Concentrations.
Environmental science & technology.
2016 09; 50(17):9078-88. doi:
10.1021/acs.est.6b01770
. [PMID: 27538590] - He-Cai Zhang, Chang-Ying Shi, Li-Qun Sun, Fan Wang, Guang-Wen Chen. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium bromide on the antioxidant defense system of freshwater planarian, Dugesia japonica.
Toxicology and industrial health.
2016 Sep; 32(9):1675-83. doi:
10.1177/0748233715573692
. [PMID: 25812565] - Helena Gallardo, Ignasi Queralt, Josefina Tapias, Lucila Candela, Eva Margui. Bromine and bromide content in soils: Analytical approach from total reflection X-ray fluorescence spectrometry.
Chemosphere.
2016 Aug; 156(?):294-301. doi:
10.1016/j.chemosphere.2016.04.136
. [PMID: 27179429] - Aiyin Jia, Chunde Wu, Yan Duan. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.
Journal of hazardous materials.
2016 May; 308(?):411-8. doi:
10.1016/j.jhazmat.2016.01.037
. [PMID: 26859617] - Fumiko Oda, Mikiko Tohyama, Akiko Murakami, Kazuhisa Kanno, Naomi Sonobe, Koji Sayama. Bromoderma mimicking pyoderma gangrenosum caused by commercial sedatives.
The Journal of dermatology.
2016 May; 43(5):564-6. doi:
10.1111/1346-8138.13162
. [PMID: 26507105] - Jing Wan, Jingjing Guo, Zhitong Miao, Xia Guo. Reverse micellar extraction of bromelain from pineapple peel--Effect of surfactant structure.
Food chemistry.
2016 Apr; 197(Pt A):450-6. doi:
10.1016/j.foodchem.2015.10.145
. [PMID: 26616974] - Tong Liu, Jinhua Wang, Jun Wang, Lusheng Zhu, Jun Zhang, Xi Sun. Growth and Physiological and Biochemical Responses of Wheat Seedlings to Imidazolium-Based Ionic Liquids 1-Octyl-3-Methylimidazolium Chloride and 1-Octyl-3-Methylimidazolium Bromide.
Bulletin of environmental contamination and toxicology.
2016 Apr; 96(4):544-9. doi:
10.1007/s00128-016-1747-1
. [PMID: 26920695] - Liang Zhang, Tianqi Wang, Fengxia Zheng, Lingyu Ma, Jingyuan Li. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings.
Ecotoxicology and environmental safety.
2016 Mar; 125(?):107-15. doi:
10.1016/j.ecoenv.2015.11.038
. [PMID: 26685782] - Tong Liu, Lusheng Zhu, Jinhua Wang, Jun Wang, Meiying Tan. Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity.
Chemosphere.
2016 Feb; 145(?):269-76. doi:
10.1016/j.chemosphere.2015.11.055
. [PMID: 26688264] - Matthew S Landis, Ali S Kamal, Kasey D Kovalcik, Carry Croghan, Gary A Norris, Amy Bergdale. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.
The Science of the total environment.
2016 Jan; 542(Pt A):505-20. doi:
10.1016/j.scitotenv.2015.10.074
. [PMID: 26520274] - J Tan, S Allard, Y Gruchlik, S McDonald, C A Joll, A Heitz. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.
The Science of the total environment.
2016 Jan; 541(?):1572-1580. doi:
10.1016/j.scitotenv.2015.10.043
. [PMID: 26490534] - Irina Shtangeeva, Matti Niemelä, Paavo Perämäki, Sergey Timofeev. Response of wheat and pea seedlings on increase of bromine concentration in the growth medium.
Environmental science and pollution research international.
2015 Dec; 22(23):19060-8. doi:
10.1007/s11356-015-5106-2
. [PMID: 26233749] - Alessandra C Leri, Bruce Ravel. Abiotic Bromination of Soil Organic Matter.
Environmental science & technology.
2015 Nov; 49(22):13350-9. doi:
10.1021/acs.est.5b03937
. [PMID: 26468620] - Tsz Hong Law, Emma S S Davies, Yuanlong Pan, Brian Zanghi, Elizabeth Want, Holger A Volk. A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy.
The British journal of nutrition.
2015 11; 114(9):1438-47. doi:
10.1017/s000711451500313x
. [PMID: 26337751] - T H Li, C Q Jing, K L Gao, W Y Yue, S F Li. Cytotoxicity of 1-dodecyl-3-methylimidazolium bromide on HepG2 cells.
Genetics and molecular research : GMR.
2015 Oct; 14(4):13342-8. doi:
10.4238/2015.october.26.31
. [PMID: 26535648] - Kathryn M Docherty, Steven W Aiello, Barbara K Buehler, Stuart E Jones, Blair R Szymczyna, Katherine A Walker. Ionic liquid biodegradability depends on specific wastewater microbial consortia.
Chemosphere.
2015 Oct; 136(?):160-6. doi:
10.1016/j.chemosphere.2015.05.016
. [PMID: 25985304] - K R Muñana, J A Nettifee-Osborne, M G Papich. Effect of chronic administration of phenobarbital, or bromide, on pharmacokinetics of levetiracetam in dogs with epilepsy.
Journal of veterinary internal medicine.
2015 Mar; 29(2):614-9. doi:
10.1111/jvim.12548
. [PMID: 25711374] - N C Finch, R Heiene, J Elliott, H M Syme, A M Peters. Determination of extracellular fluid volume in healthy and azotemic cats.
Journal of veterinary internal medicine.
2015 Jan; 29(1):35-42. doi:
10.1111/jvim.12506
. [PMID: 25406506]