Pyruvic acid (BioDeep_00000002915)

 

Secondary id: BioDeep_00000406172, BioDeep_00000864603

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019


代谢物信息卡片


alpha-Ketopropanoic acid

化学式: C3H4O3 (88.016)
中文名称: 丙酮酸
谱图信息: 最多检出来源 Homo sapiens(blood) 32%

Reviewed

Last reviewed on 2024-07-01.

Cite this Page

Pyruvic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/pyruvic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000002915). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=O)(C(=O)O)C
InChI: InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)

描述信息

Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB).
Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963).

Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

同义名列表

34 个代谢物同义名

alpha-Ketopropanoic acid; alpha-Ketopropionic acid; alpha-Oxopropionsaeure; alpha-Ketopropionate; 2-Ketopropionic acid; α-Ketopropanoic acid; a-Ketopropionic acid; Α-ketopropionic acid; 2-Oxopropionic acid; 2-Oxopropanoic acid; Brenztraubensaeure; 2-Oxopropionsaeure; Α-oxopropionsaeure; a-Oxopropionsaeure; Acetylformic acid; 2-Oxopropansaeure; a-Ketopropionate; Α-ketopropionate; Pyroracemic acid; 2-Ketopropionate; Acide pyruvique; 2-Oxopropanoate; Sodium pyruvate; 2-Oxopropionate; Acid, pyruvic; Acetylformate; Pyroracemate; Pyruvic acid; CH3COCOOH; Pyruvate; BTS; Pyruvic acid; Pyruvic acid; Pyruvate



数据库引用编号

36 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(3)

BioCyc(9)

PlantCyc(0)

代谢反应

2247 个相关的代谢反应过程信息。

Reactome(99)

BioCyc(26)

WikiPathways(12)

Plant Reactome(1738)

INOH(18)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(354)

PharmGKB(0)

94 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 CASP3, CAT, G6PD, GAPDH, HMGB1, LDHA, PC, PKM, XDH
Peripheral membrane protein 4 G6PD, GORASP1, HK2, HMGB1
Endoplasmic reticulum membrane 1 TKT
Nucleus 5 CASP3, GAPDH, HMGB1, LDHA, PKM
cytosol 13 CASP3, CAT, G6PD, GAPDH, GPT, HK2, LDHA, LIPE, PC, PGK1, PKM, TKT, XDH
nuclear body 1 TKT
centrosome 1 HK2
nucleoplasm 4 ATP2B1, CASP3, HMGB1, TKT
Cell membrane 5 ATP2B1, HMGB1, LIPE, TKT, TNF
Cytoplasmic side 1 GORASP1
Multi-pass membrane protein 1 ATP2B1
Golgi apparatus membrane 1 GORASP1
Synapse 1 ATP2B1
cell surface 2 HMGB1, TNF
glutamatergic synapse 2 ATP2B1, CASP3
Golgi apparatus 1 GORASP1
Golgi membrane 2 GORASP1, INS
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 4 G6PD, GAPDH, HK2, LIPE
endosome 1 HMGB1
plasma membrane 6 ATP2B1, GAPDH, GCG, HMGB1, TKT, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 8 ATP2B1, CAT, G6PD, GAPDH, HK2, LDHA, LIPE, PGK1
apical plasma membrane 1 TKT
axon 1 CCK
basolateral plasma membrane 1 ATP2B1
caveola 1 LIPE
extracellular exosome 9 ATP2B1, CAT, G6PD, GAPDH, GPT, LDHA, PGK1, PKM, TKT
endoplasmic reticulum 1 HMGB1
extracellular space 7 CCK, GCG, HMGB1, INS, PGK1, TNF, XDH
perinuclear region of cytoplasm 1 GAPDH
mitochondrion 5 CAT, HK2, LDHA, PC, PKM
protein-containing complex 1 CAT
intracellular membrane-bounded organelle 5 ATP2B1, CAT, G6PD, GAPDH, HK2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TKT
Secreted 5 CCK, GCG, HK2, HMGB1, INS
extracellular region 7 CAT, CCK, GCG, HMGB1, INS, PKM, TNF
cytoplasmic side of plasma membrane 1 G6PD
Mitochondrion outer membrane 1 HK2
mitochondrial outer membrane 1 HK2
Mitochondrion matrix 1 PC
mitochondrial matrix 2 CAT, PC
Extracellular side 1 HMGB1
centriolar satellite 1 G6PD
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 GAPDH
external side of plasma membrane 1 TNF
Extracellular vesicle 1 PKM
actin cytoskeleton 1 TKT
microtubule cytoskeleton 1 GAPDH
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 3 GAPDH, PKM, TKT
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 2 PGK1, TNF
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 2 CAT, TKT
cis-Golgi network 1 GORASP1
Peroxisome 3 CAT, TKT, XDH
sarcoplasmic reticulum 2 HK2, XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 PKM
lateral plasma membrane 1 ATP2B1
receptor complex 1 TKT
cilium 1 PKM
cell projection 1 ATP2B1
phagocytic cup 1 TNF
Chromosome 1 HMGB1
cytoskeleton 1 GAPDH
Basolateral cell membrane 1 ATP2B1
endosome lumen 1 INS
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
Presynaptic cell membrane 1 ATP2B1
ficolin-1-rich granule lumen 3 CAT, HMGB1, PKM
secretory granule lumen 5 CAT, GCG, HMGB1, INS, PKM
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 GCG, INS
transcription repressor complex 1 HMGB1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
immunological synapse 1 ATP2B1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
ribonucleoprotein complex 1 GAPDH
endoplasmic reticulum-Golgi intermediate compartment 1 HMGB1
death-inducing signaling complex 1 CASP3
Rough endoplasmic reticulum 1 PKM
condensed chromosome 1 HMGB1
GAIT complex 1 GAPDH
oxidoreductase complex 1 LDHA
[Glucagon-like peptide 1]: Secreted 1 GCG
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
alphav-beta3 integrin-HMGB1 complex 1 HMGB1
photoreceptor ribbon synapse 1 ATP2B1
[Isoform M2]: Cytoplasm 1 PKM
[Isoform M1]: Cytoplasm 1 PKM
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Alexander S Shashkov, Natalia V Potekhina, Elena M Tul'skaya, Andrey S Dmitrenok, Sof'ya N Senchenkova, Vladimir I Torgov, Lubov V Dorofeeva, Lyudmila I Evtushenko. New lactate- and pyruvate-containing polysaccharide and rhamnomannan with xylose residues from the cell wall of Rathayibacter oskolensis VKM Ac-2121T. Carbohydrate research. 2024 Jun; 540(?):109145. doi: 10.1016/j.carres.2024.109145. [PMID: 38759341]
  • Anne Jahn, Maike Petersen. Hydroxy(phenyl)pyruvic acid reductase in Actaea racemosa L.: a putative enzyme in cimicifugic and fukinolic acid biosynthesis. Planta. 2024 Mar; 259(5):102. doi: 10.1007/s00425-024-04382-6. [PMID: 38549005]
  • Linshuang Wang, Fengxue Qu, Xueyun Yu, Sixia Yang, Binbin Zhao, Yaojing Chen, Pengbo Li, Zhanjun Zhang, Junying Zhang, Xuejie Han, Dongfeng Wei. Cortical lipid metabolic pathway alteration of early Alzheimer's disease and candidate drugs screen. European journal of medical research. 2024 Mar; 29(1):199. doi: 10.1186/s40001-024-01730-w. [PMID: 38528586]
  • Elton T Montrazi, Keren Sasson, Lilach Agemy, Avigdor Scherz, Lucio Frydman. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies. Science advances. 2024 Mar; 10(11):eadm8600. doi: 10.1126/sciadv.adm8600. [PMID: 38478615]
  • Sonia E Evans, Anya E Franks, Matthew E Bergman, Nasha S Sethna, Mark A Currie, Michael A Phillips. Plastid ancestors lacked a complete Entner-Doudoroff pathway, limiting plants to glycolysis and the pentose phosphate pathway. Nature communications. 2024 Feb; 15(1):1102. doi: 10.1038/s41467-024-45384-y. [PMID: 38321044]
  • Shuying Gu, Taju Wu, Junqi Zhao, Tao Sun, Zhen Zhao, Lu Zhang, Jingen Li, Chaoguang Tian. Rewiring metabolic flux to simultaneously improve malate production and eliminate by-product succinate accumulation by Myceliophthora thermophila. Microbial biotechnology. 2024 Jan; ?(?):e14410. doi: 10.1111/1751-7915.14410. [PMID: 38298109]
  • María-Graciela Delgado, Ricardo Delgado. Transient Synaptic Enhancement Triggered by Exogenously Supplied Monocarboxylate in Drosophila Motoneuron Synapse. Neuroscience. 2024 Jan; 539(?):66-75. doi: 10.1016/j.neuroscience.2024.01.003. [PMID: 38220128]
  • Josepheena Joseph, Sanjib Bal Samant, Kapuganti Jagadis Gupta. Mitochondrial alternative oxidase pathway helps in nitrooxidative stress tolerance in germinating chickpea. Journal of biosciences. 2024; 49(?):. doi: ". [PMID: 38726824]
  • João Vitor Alcantara da Silva, Jessica Ispada, Ricardo Perecin Nociti, Aldcejam Martins da Fonseca Junior, Camila Bruna De Lima, Erika Cristina Dos Santos, Marcos Roberto Chiaratti, Marcella Pecora Milazzotto. The central role of pyruvate metabolism on the epigenetic maturation and transcriptional profile of bovine oocytes. Reproduction (Cambridge, England). 2024 Jan; ?(?):. doi: 10.1530/rep-23-0181. [PMID: 38271822]
  • Elton T Montrazi, Keren Sasson, Lilach Agemy, Dana C Peters, Ori Brenner, Avigdor Scherz, Lucio Frydman. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models. Scientific reports. 2023 11; 13(1):19998. doi: 10.1038/s41598-023-47301-7. [PMID: 37968574]
  • Toshiharu Onodera, May-Yun Wang, Joseph M Rutkowski, Stanislaw Deja, Shiuhwei Chen, Michael S Balzer, Dae-Seok Kim, Xuenan Sun, Yu A An, Bianca C Field, Charlotte Lee, Ei-Ichi Matsuo, Monika Mizerska, Ina Sanjana, Naoto Fujiwara, Christine M Kusminski, Ruth Gordillo, Laurent Gautron, Denise K Marciano, Ming Chang Hu, Shawn C Burgess, Katalin Susztak, Orson W Moe, Philipp E Scherer. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nature communications. 2023 10; 14(1):6531. doi: 10.1038/s41467-023-42188-4. [PMID: 37848446]
  • Jiang Wenjing, Jiang Huaying, Yuan Lihua, S A Yuanhong, Xiao Jimei, Sun Hongqi, Song Jingyan, Sun Zhengao. Xiaoyi Yusi decoction improves fertilization and embryo transfer outcomes in patients with endometriosis. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan. 2023 10; 43(5):1026-1033. doi: 10.19852/j.cnki.jtcm.2023.05.006. [PMID: 37679991]
  • Amal S Othman, Nashwa A Ahmed, Mona S Elneklawi, Mansour M Hassan, Mahmoud Abd El-Mongy. Generation of green electricity from sludge using photo-stimulated bacterial consortium as a sustainable technology. Microbial cell factories. 2023 Sep; 22(1):183. doi: 10.1186/s12934-023-02187-y. [PMID: 37715250]
  • Lili Ren, Hongxia Zhang, Jiao Zhou, Yajing Wu, Bo Liu, Shuping Wang, Xin Liu, Xin Hao, Lilin Zhao. Unique and generic crossed metabolism in response to four sub-lethal environmental stresses in the oriental fruit fly, Bactrocera dorsalis Hendel. Ecotoxicology and environmental safety. 2023 Sep; 264(?):115434. doi: 10.1016/j.ecoenv.2023.115434. [PMID: 37690174]
  • Hira Shakoor, Jaleel Kizhakkayil, Mariyam Khalid, Amar Mahgoub, Carine Platat. Effect of Moderate-Intense Training and Detraining on Glucose Metabolism, Lipid Profile, and Liver Enzymes in Male Wistar Rats: A Preclinical Randomized Study. Nutrients. 2023 Aug; 15(17):. doi: 10.3390/nu15173820. [PMID: 37686852]
  • An-Hui Jin, Yi-Fan Qian, Jiong Ren, Jin-Gang Wang, Fang Qiao, Mei-Ling Zhang, Zhen-Yu Du, Yuan Luo. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation. Fish & shellfish immunology. 2023 Jul; 140(?):108969. doi: 10.1016/j.fsi.2023.108969. [PMID: 37488039]
  • Yanping Zhao, Xu Geng, Xiaoling Zhou, Li Xu, Shuai Li, Zhengqiang Li, Yi Guo, Chen Li. A novel high-stability bioelectrochemical sensor based on sol-gel immobilization of lactate dehydrogenase and AuNPs-rGO signal enhancement for serum pyruvate detection. Analytica chimica acta. 2023 Jul; 1265(?):341335. doi: 10.1016/j.aca.2023.341335. [PMID: 37230575]
  • Ju-Yi Hsieh, Kun-Chi Chen, Chun-Hsiung Wang, Guang-Yaw Liu, Jie-An Ye, Yu-Tung Chou, Yi-Chun Lin, Cheng-Jhe Lyu, Rui-Ying Chang, Yi-Liang Liu, Yen-Hsien Li, Mau-Rong Lee, Meng-Chiao Ho, Hui-Chih Hung. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Communications biology. 2023 May; 6(1):548. doi: 10.1038/s42003-023-04930-y. [PMID: 37217557]
  • Ning Zhang, Sisheng Wang, Simin Zhao, Daiying Chen, Hongyan Tian, Jia Li, Lingran Zhang, Songgang Li, Lu Liu, Chaonan Shi, Xiaodong Yu, Yan Ren, Feng Chen. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate. Science advances. 2023 05; 9(19):eadg1012. doi: 10.1126/sciadv.adg1012. [PMID: 37163591]
  • Timothy R Koves, Guo-Fang Zhang, Michael T Davidson, Alec B Chaves, Scott B Crown, Jordan M Johnson, Dorothy H Slentz, Paul A Grimsrud, Deborah M Muoio. Pyruvate-supported flux through medium-chain ketothiolase promotes mitochondrial lipid tolerance in cardiac and skeletal muscles. Cell metabolism. 2023 Apr; ?(?):. doi: 10.1016/j.cmet.2023.03.016. [PMID: 37060901]
  • Tobias Schwanemann, Maike Otto, Benedikt Wynands, Jan Marienhagen, Nick Wierckx. A Pseudomonas taiwanensis malonyl-CoA platform strain for polyketide synthesis. Metabolic engineering. 2023 Apr; 77(?):219-230. doi: 10.1016/j.ymben.2023.04.001. [PMID: 37031949]
  • Sang R Lee, Moeka Mukae, Kang Joo Jeong, Se Hee Park, Hi Jo Shin, Sang Woon Kim, Young Suk Won, Hyo-Jung Kwun, In-Jeoung Baek, Eui-Ju Hong. PGRMC1 Ablation Protects from Energy-Starved Heart Failure by Promoting Fatty Acid/Pyruvate Oxidation. Cells. 2023 02; 12(5):. doi: 10.3390/cells12050752. [PMID: 36899888]
  • Qian Luo, Nana Ding, Yunfeng Liu, Hailing Zhang, Yu Fang, Lianghong Yin. Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules (Basel, Switzerland). 2023 Feb; 28(3):. doi: 10.3390/molecules28031418. [PMID: 36771084]
  • R Mohammad, M Al Kattan. SMOKING JEOPARDIZED MITOCHONDRIAL FUNCTION VITIATING LIPID PROFILE. Georgian medical news. 2023 Jan; ?(334):49-51. doi: ". [PMID: 36864792]
  • Saad Alrashdi, Federica Casolari, Aziz Alabed, Kwaku Kyeremeh, Hai Deng. Chemoenzymatic Synthesis of Indole-Containing Acyloin Derivatives. Molecules (Basel, Switzerland). 2023 Jan; 28(1):. doi: 10.3390/molecules28010354. [PMID: 36615552]
  • Jingyu Ni, Hao Zhang, Xiaodan Wang, Zhihao Liu, Tong Nie, Lan Li, Jing Su, Yan Zhu, Chuanrui Ma, Yuting Huang, Jingyuan Mao, Xiumei Gao, Guanwei Fan. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy. Cell death & disease. 2022 12; 13(12):1073. doi: 10.1038/s41419-022-05516-y. [PMID: 36572672]
  • Shan Tang, Ning Guo, Qingqing Tang, Fei Peng, Yunhao Liu, Hui Xia, Shaoping Lu, Liang Guo. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. Plant biotechnology journal. 2022 12; 20(12):2406-2417. doi: 10.1111/pbi.13922. [PMID: 36056567]
  • Kuenzang Om, Nico N Arias, Chaney C Jambor, Alexandra MacGregor, Ashley N Rezachek, Carlan Haugrud, Hans-Henning Kunz, Zhonghui Wang, Pu Huang, Quan Zhang, Josh Rosnow, Thomas P Brutnell, Asaph B Cousins, Chris J Chastain. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis. Plant physiology. 2022 09; 190(2):1117-1133. doi: 10.1093/plphys/kiac333. [PMID: 35876823]
  • Faizan Abul Qais, Suliman Yousef Alomar, Mohammad Azhar Imran, Md Amiruddin Hashmi. In-Silico Analysis of Phytocompounds of Olea europaea as Potential Anti-Cancer Agents to Target PKM2 Protein. Molecules (Basel, Switzerland). 2022 Sep; 27(18):. doi: 10.3390/molecules27185793. [PMID: 36144527]
  • Evelyn Silva Moreira, Ana Paula Ames-Sibin, Carla Indianara Bonetti, Luana Eloísa Leal, Rosane Marina Peralta, Anacharis Babeto de Sá-Nakanishi, Jurandir Fernando Comar, Adelar Bracht, Lívia Bracht. The short-term effects of berberine in the liver: Narrow margins between benefits and toxicity. Toxicology letters. 2022 Sep; 368(?):56-65. doi: 10.1016/j.toxlet.2022.08.005. [PMID: 35963428]
  • Michael L Bender, Xin-Guang Zhu, Paul Falkowski, Fangfang Ma, Kevin Griffin. On the rate of phytoplankton respiration in the light. Plant physiology. 2022 08; 190(1):267-279. doi: 10.1093/plphys/kiac254. [PMID: 35652738]
  • Wei Gao, Yue Zhang, Lai Chen, Xiaoyu Liu, Kun Li, Lijun Han, Zhenwu Yu, Jinzhou Ren, Liangfu Tang, Zhijin Fan. Novel [1,2,4]-Triazolo[3,4-b]-[1,3,4]thiadizoles as Potent Pyruvate Kinase Inhibitors for Fungal Control. Journal of agricultural and food chemistry. 2022 Aug; 70(33):10170-10181. doi: 10.1021/acs.jafc.2c03758. [PMID: 35960265]
  • Jiaxin Cui, Georg Hölzl, Tobias Karmainski, Till Tiso, Sonja Kubicki, Stephan Thies, Lars M Blank, Karl-Erich Jaeger, Peter Dörmann. The Glycine-Glucolipid of Alcanivorax borkumensis Is Resident to the Bacterial Cell Wall. Applied and environmental microbiology. 2022 08; 88(16):e0112622. doi: 10.1128/aem.01126-22. [PMID: 35938787]
  • Kiran Kumar Adepu, Dipendra Bhandari, Andriy Anishkin, Sean H Adams, Sree V Chintapalli. Myoglobin-Pyruvate Interactions: Binding Thermodynamics, Structure-Function Relationships, and Impact on Oxygen Release Kinetics. International journal of molecular sciences. 2022 Aug; 23(15):. doi: 10.3390/ijms23158766. [PMID: 35955898]
  • Dorota Lechniak, Ewa Sell-Kubiak, Ewelina Warzych. The metabolic profile of bovine blastocysts is affected by in vitro culture system and the pattern of first zygotic cleavage. Theriogenology. 2022 Aug; 188(?):43-51. doi: 10.1016/j.theriogenology.2022.05.021. [PMID: 35661988]
  • Nadia Turton, Neve Cufflin, Mollie Dewsbury, Olivia Fitzpatrick, Rahida Islam, Lowidka Linares Watler, Cara McPartland, Sophie Whitelaw, Caitlin Connor, Charlotte Morris, Jason Fang, Ollie Gartland, Liv Holt, Iain P Hargreaves. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders. International journal of molecular sciences. 2022 Jul; 23(13):. doi: 10.3390/ijms23137487. [PMID: 35806492]
  • Rodney C Daniels, Mohamad H Tiba, Brandon C Cummings, Yan Rou Yap, Sardar Ansari, Brendan M McCracken, Yihan Sun, Theodore S Jennaro, Kevin R Ward, Kathleen A Stringer. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock. Shock (Augusta, Ga.). 2022 06; 57(6):282-290. doi: 10.1097/shk.0000000000001944. [PMID: 35670453]
  • Yiru Shao, Zhiyong Xie, Shusheng Liang, Cuiying Chen, Douglas R Tocher, Li Lin, Yanhua Huang, Yuanyou Li, Dizhi Xie, Yucong Hong, Shuqi Wang, Cuihong You. Dietary calcium pyruvate could improve growth performance and reduce excessive lipid deposition in juvenile golden pompano (Trachinotus ovatus) fed a high fat diet. Fish physiology and biochemistry. 2022 Jun; 48(3):555-570. doi: 10.1007/s10695-022-01077-1. [PMID: 35461391]
  • Xuyen H Le, Chun Pong Lee, Dario Monachello, A Harvey Millar. Metabolic evidence for distinct pyruvate pools inside plant mitochondria. Nature plants. 2022 06; 8(6):694-705. doi: 10.1038/s41477-022-01165-3. [PMID: 35681019]
  • Yan-Yan Zhao, Li-Jun Zhang, Xiang-Yan Liang, Xiao-Chun Zhang, Jin-Rui Chang, Man Shi, Huan Liu, Ying Zhou, Zhuo Sun, Yu-Feng Zhao. Pyruvate Upregulates Hepatic FGF21 Expression by Activating PDE and Inhibiting cAMP-Epac-CREB Signaling Pathway. International journal of molecular sciences. 2022 May; 23(10):. doi: 10.3390/ijms23105490. [PMID: 35628302]
  • Elie R Chalhoub, Joanne M Belovich. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats. Archives of biochemistry and biophysics. 2022 03; 718(?):109148. doi: 10.1016/j.abb.2022.109148. [PMID: 35143783]
  • William K Chu, Charles K Rono, Banothile C E Makhubela. New Triazolyl N^N Bidentate Rh(III), Ir(III), Ru(II) and Os(II) Complexes: Synthesis and Characterization, Probing Possible Relations between Cytotoxicity with Transfer Hydrogenation Efficacy and Interaction with Model Biomolecules. Molecules (Basel, Switzerland). 2022 Mar; 27(7):. doi: 10.3390/molecules27072058. [PMID: 35408457]
  • Fernando Guzman-Chavez, Anibal Arce, Abhinav Adhikari, Sandra Vadhin, Jose Antonio Pedroza-Garcia, Chiara Gandini, Jim W Ajioka, Jenny Molloy, Sobeida Sanchez-Nieto, Jeffrey D Varner, Fernan Federici, Jim Haseloff. Constructing Cell-Free Expression Systems for Low-Cost Access. ACS synthetic biology. 2022 03; 11(3):1114-1128. doi: 10.1021/acssynbio.1c00342. [PMID: 35259873]
  • Jun-Sheng Tian, Wen-Ze Wu, Shao-Bo Liu, Ting Ling-Hu, Yun-Hao Zhao, Yao Gao, Xue-Mei Qin. Stable Isotope-Resolved Metabolomics Studies on Corticosteroid-Induced PC12 Cells: A Strategy for Evaluating Glucose Catabolism in an in Vitro Model of Depression. Journal of proteome research. 2022 03; 21(3):788-797. doi: 10.1021/acs.jproteome.1c00516. [PMID: 34699232]
  • Ling Wang, Meng Li, Bingting Yu, Shaojun Shi, Jiaye Liu, Ruyi Zhang, Ibrahim Ayada, Monique M A Verstegen, Luc J W van der Laan, Maikel P Peppelenbosch, Wanlu Cao, Qiuwei Pan. Recapitulating lipid accumulation and related metabolic dysregulation in human liver-derived organoids. Journal of molecular medicine (Berlin, Germany). 2022 03; 100(3):471-484. doi: 10.1007/s00109-021-02176-x. [PMID: 35059746]
  • Giulia Cisbani, Alex Koppel, Adam H Metherel, Mackenzie E Smith, Kankana N Aji, Ana C Andreazza, Romina Mizrahi, Richard P Bazinet. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study. Lipids. 2022 03; 57(2):125-140. doi: 10.1002/lipd.12336. [PMID: 35075659]
  • Henning Kirst, Bryan H Ferlez, Steffen N Lindner, Charles A R Cotton, Arren Bar-Even, Cheryl A Kerfeld. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proceedings of the National Academy of Sciences of the United States of America. 2022 02; 119(8):. doi: 10.1073/pnas.2116871119. [PMID: 35193962]
  • Sabrina Kahina Bech, Haiyun Qi, Christian Østergaard Mariager, Esben Søvsø Szocska Hansen, Efe Ilicak, Frank G Zöllner, Christoffer Laustsen. The number of glomeruli and pyruvate metabolism is not strongly coupled in the healthy rat kidney. Magnetic resonance in medicine. 2022 02; 87(2):896-903. doi: 10.1002/mrm.29025. [PMID: 34554602]
  • Kang Mao, Guwei Lu, Yanjiao Li, Yitian Zang, Xianghui Zhao, Qinghua Qiu, Mingren Qu, Kehui Ouyang. Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle. BMC veterinary research. 2022 Jan; 18(1):35. doi: 10.1186/s12917-021-03134-y. [PMID: 35033088]
  • Emine Can, Jessica A M Bastiaansen, Dominique-Laurent Couturier, Rolf Gruetter, Hikari A I Yoshihara, Arnaud Comment. [13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Communications biology. 2022 01; 5(1):10. doi: 10.1038/s42003-021-02978-2. [PMID: 35013537]
  • W W Zhang, R Xue, T Y Mi, X M Shen, J C Li, S Li, Y Zhang, Y Li, L X Wang, X L Yin, H L Wang, Y Z Zhang. Propofol ameliorates acute postoperative fatigue and promotes glucagon-regulated hepatic gluconeogenesis by activating CREB/PGC-1α and accelerating fatty acids beta-oxidation. Biochemical and biophysical research communications. 2022 01; 586(?):121-128. doi: 10.1016/j.bbrc.2021.11.073. [PMID: 34839190]
  • Ningwei Xu, Zhenxing Wu, Xiangling Li, Min Yang, Jinling Han, Bin Lu, Bingshe Lu, Jian Wang. Effects of nicosulfuron on plant growth and sugar metabolism in sweet maize (Zea mays L.). PloS one. 2022; 17(10):e0276606. doi: 10.1371/journal.pone.0276606. [PMID: 36269745]
  • Xuyen Le, A Harvey Millar, Chun Pong Lee. Assessing the Kinetics of Metabolite Uptake and Utilization by Isolated Mitochondria Using Selective Reaction Monitoring Mass Spectrometry (SRM-MS). Methods in molecular biology (Clifton, N.J.). 2022; 2363(?):85-100. doi: 10.1007/978-1-0716-1653-6_8. [PMID: 34545488]
  • G Godoy, P B Travassos, M M Antunes, C C Iwanaga, A B Sá-Nakanishi, R Curi, J F Comar, R B Bazotte. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2022; 55(?):e11891. doi: 10.1590/1414-431x2022e11891. [PMID: 35239782]
  • Jingjing Jia, Yang Luo, Xue Zhong, Ling He. Methicillin-Resistant Staphylococcus Aureus (MRSA) Pyruvate Kinase (PK) Inhibitors and their Antimicrobial Activities. Current medicinal chemistry. 2022; 29(5):908-923. doi: 10.2174/0929867328666210322103340. [PMID: 33749550]
  • Najma Tabussam, Rashid Mehmood Rana, Muhammad Kausar Nawaz Shah, Muhammad Sheeraz Ahmad, Muhammad Sajjad, Yongqiang Lu. Nutraceutical profiling of elite onion germplasm and breeding hybrids with improved nutraceutical quality. PloS one. 2022; 17(1):e0262705. doi: 10.1371/journal.pone.0262705. [PMID: 35045129]
  • Eleanor H Oates, Maciek R Antoniewicz. Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation. Metabolic engineering. 2022 01; 69(?):221-230. doi: 10.1016/j.ymben.2021.12.005. [PMID: 34929419]
  • Ya Zhang, Ke Gao, Chong Wang, Shuangqing Liu. A Novel Antibacterial Component and the Mechanisms of an Amaranthus tricolor Leaf Ethyl Acetate Extract against Acidovorax avenae subsp. citrulli. International journal of molecular sciences. 2021 Dec; 23(1):. doi: 10.3390/ijms23010312. [PMID: 35008738]
  • Brendan M O'Leary. Swapping acids: the ins and outs of plant mitochondrial metabolism. The Plant cell. 2021 12; 33(12):3608-3609. doi: 10.1093/plcell/koab238. [PMID: 35231126]
  • Alexander S Shashkov, Nataliya V Potekhina, Deborah Kim, Andrey S Dmitrenok, Sof'ya N Senchenkova, Lubov V Dorofeeva, Lyudmila I Evtushenko, Elena M Tul'skaya. Cell wall galactofuranan and pyruvate-containing galactomannan in the cell walls of Clavibacter strains. Carbohydrate research. 2021 Dec; 510(?):108435. doi: 10.1016/j.carres.2021.108435. [PMID: 34597981]
  • Shamil N Galimov, Julia Y Gromenko, Kirill V Bulygin, Kamil Sh Galimov, Elmira F Galimova, Mikhail Y Sinelnikov. The level of secondary messengers and the redox state of NAD+/NADH are associated with sperm quality in infertility. Journal of reproductive immunology. 2021 11; 148(?):103383. doi: 10.1016/j.jri.2021.103383. [PMID: 34534880]
  • Lauren M Smith, Conrad B Pitts, Lanette J Friesen-Waldner, Neetin H Prabhu, Katherine E Mathers, Kevin J Sinclair, Trevor P Wade, Timothy R H Regnault, Charles A McKenzie. In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1-13 C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease Development After Life-Long Western Diet Consumption. Journal of magnetic resonance imaging : JMRI. 2021 11; 54(5):1404-1414. doi: 10.1002/jmri.27677. [PMID: 33970520]
  • Lotte Bonde Bertelsen, Esben Søvsø Szocska Hansen, Thorsten Sadowski, Sven Ruf, Christoffer Laustsen. Hyperpolarized pyruvate to measure the influence of PKM2 activation on glucose metabolism in the healthy kidney. NMR in biomedicine. 2021 11; 34(11):e4583. doi: 10.1002/nbm.4583. [PMID: 34240478]
  • Jae Mo Park, Sonal Josan, Ralph E Hurd, James Graham, Peter J Havel, David Bendahan, Dirk Mayer, Youngran Chung, Daniel M Spielman, Thomas Jue. Hyperpolarized NMR study of the impact of pyruvate dehydrogenase kinase inhibition on the pyruvate dehydrogenase and TCA flux in type 2 diabetic rat muscle. Pflugers Archiv : European journal of physiology. 2021 11; 473(11):1761-1773. doi: 10.1007/s00424-021-02613-3. [PMID: 34415396]
  • Anna F Bekebrede, Thirza van Deuren, Walter J J Gerrits, Jaap Keijer, Vincent C J de Boer. Butyrate Alters Pyruvate Flux and Induces Lipid Accumulation in Cultured Colonocytes. International journal of molecular sciences. 2021 Oct; 22(20):. doi: 10.3390/ijms222010937. [PMID: 34681598]
  • Yuika Osada, Shunsaku Nakagawa, Kanako Ishibe, Shota Takao, Aimi Shimazaki, Kotaro Itohara, Satoshi Imai, Atsushi Yonezawa, Takayuki Nakagawa, Kazuo Matsubara. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice. American journal of physiology. Renal physiology. 2021 10; 321(4):F455-F465. doi: 10.1152/ajprenal.00111.2021. [PMID: 34423680]
  • Madhu Manti Patra, Poulami Ghosh, Shreya Sengupta, Sujoy K Das Gupta. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the dinB2 operon of Mycobacterium smegmatis. Microbiology (Reading, England). 2021 10; 167(10):. doi: 10.1099/mic.0.001097. [PMID: 34665112]
  • Hiromasa Tanaka, Yugo Hosoi, Kenji Ishikawa, Jun Yoshitake, Takahiro Shibata, Koji Uchida, Hiroshi Hashizume, Masaaki Mizuno, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Fumitaka Kikkawa, Masaru Hori. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Scientific reports. 2021 09; 11(1):18488. doi: 10.1038/s41598-021-98020-w. [PMID: 34531507]
  • Min Yang, Jiang Li, Xiao-Meng Lv, Li-Rong Dai, Ke-Jia Wu, Bo Tu, Paul A Lawson, Yue-Qin Tang, Lei Cheng. Thermosynergistes pyruvativorans gen. nov., sp. nov., an anaerobic, pyruvate-degrading bacterium from Shengli oilfield, and proposal of Thermosynergistaceae fam. nov. in the phylum Synergistetes. International journal of systematic and evolutionary microbiology. 2021 Sep; 71(9):. doi: 10.1099/ijsem.0.005031. [PMID: 34582328]
  • Brendan M O'Leary. Playing with Pyr: alternate sources of mitochondrial pyruvate fuel plant respiration. The Plant cell. 2021 08; 33(8):2519-2520. doi: 10.1093/plcell/koab147. [PMID: 35233626]
  • Xuyen H Le, Chun-Pong Lee, A Harvey Millar. The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. The Plant cell. 2021 08; 33(8):2776-2793. doi: 10.1093/plcell/koab148. [PMID: 34137858]
  • O S Vlasova, F A Bichkaeva. Age-related changes in the parameters of carbohydrate metabolism and supply of vitamins B1, B2 in residents of two northern regions. Klinicheskaia laboratornaia diagnostika. 2021 Aug; 66(8):465-471. doi: 10.51620/0869-2084-2021-66-8-465-471. [PMID: 34388316]
  • Bohdan O Manko, Olha O Bilonoha, Dariia M Voloshyn, Anastasiia M Zub, Iryna I Ivasechko, Volodymyr V Manko. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini. Pancreas. 2021 08; 50(7):972-981. doi: 10.1097/mpa.0000000000001864. [PMID: 34629447]
  • Young-Suk Choi, Joonsung Lee, Han-Sol Lee, Jae Eun Song, Dong-Hyun Kim, Ho-Taek Song. Offset of apparent hyperpolarized 13 C lactate flux by the use of adjuvant metformin in ionizing radiation therapy in vivo. NMR in biomedicine. 2021 08; 34(8):e4561. doi: 10.1002/nbm.4561. [PMID: 34080736]
  • Shuyu Tang, Maxwell V Meng, James B Slater, Jeremy W Gordon, Daniel B Vigneron, Bradley A Stohr, Peder E Z Larson, Zhen Jane Wang. Metabolic imaging with hyperpolarized 13 C pyruvate magnetic resonance imaging in patients with renal tumors-Initial experience. Cancer. 2021 08; 127(15):2693-2704. doi: 10.1002/cncr.33554. [PMID: 33844280]
  • Yi Rao, Seth T Gammon, Margie N Sutton, Niki M Zacharias, Pratip Bhattacharya, David Piwnica-Worms. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. The Journal of biological chemistry. 2021 07; 297(1):100775. doi: 10.1016/j.jbc.2021.100775. [PMID: 34022218]
  • Sagar S Manoli, Kyle Kisor, Bradley A Webb, Diane L Barber. Ethyl isopropyl amiloride decreases oxidative phosphorylation and increases mitochondrial fusion in clonal untransformed and cancer cells. American journal of physiology. Cell physiology. 2021 07; 321(1):C147-C157. doi: 10.1152/ajpcell.00001.2021. [PMID: 34038242]
  • Gabriel Martiñón-Gutiérrez, María Luna-Castro, Rolando Hernández-Muñoz. Role of insulin/glucagon ratio and cell redox state in the hyperglycaemia induced by exposure to a 60-Hz magnetic field in rats. Scientific reports. 2021 06; 11(1):11666. doi: 10.1038/s41598-021-91228-w. [PMID: 34083675]
  • Nicholas R Perkons, Omar Johnson, Gabrielle Pilla, Terence P F Gade. Pharmacodynamics and pharmacokinetics of hyperpolarized [1-13 C]-pyruvate in a translational oncologic model. NMR in biomedicine. 2021 06; 34(6):e4502. doi: 10.1002/nbm.4502. [PMID: 33772910]
  • Wei Ye, Yan Lin, Tedros Bezabeh, Changchun Ma, Jiahao Liang, Jiayun Zhao, Ting Ouyang, Wan Tang, Renhua Wu. 1 H NMR-based metabolomics of paired esophageal tumor tissues and serum samples identifies specific serum biomarkers for esophageal cancer. NMR in biomedicine. 2021 06; 34(6):e4505. doi: 10.1002/nbm.4505. [PMID: 33783927]
  • Peter B Soeters, Alan Shenkin, Lubos Sobotka, Maarten R Soeters, Peter W de Leeuw, Robert R Wolfe. The anabolic role of the Warburg, Cori-cycle and Crabtree effects in health and disease. Clinical nutrition (Edinburgh, Scotland). 2021 05; 40(5):2988-2998. doi: 10.1016/j.clnu.2021.02.012. [PMID: 33674148]
  • Ana-Marija Vučković, Rina Venerando, Elena Tibaldi, Valentina Bosello Travain, Antonella Roveri, Luciana Bordin, Giovanni Miotto, Giorgio Cozza, Stefano Toppo, Matilde Maiorino, Fulvio Ursini. Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion. Free radical biology & medicine. 2021 05; 167(?):45-53. doi: 10.1016/j.freeradbiomed.2021.02.045. [PMID: 33711415]
  • Alexander S Shashkov, Elena M Tul'skaya, Natalia V Potekhina, Andrey S Dmitrenok, Sofia N Senchenkova, Vlad A Zaychikov, Lubov V Dorofeeva, Lyudmila I Evtushenko. D-Rhamnan and Pyruvate-Containing Teichuronic Acid from the Cell Wall of Rathayibacter sp. VKM Ac-2759. Biochemistry. Biokhimiia. 2021 Apr; 86(4):506-516. doi: 10.1134/s0006297921040118. [PMID: 33941071]
  • Keith A Michel, Mukundan Ragavan, Christopher M Walker, Matthew E Merritt, Stephen Y Lai, James A Bankson. Comparison of selective excitation and multi-echo chemical shift encoding for imaging of hyperpolarized [1-13C]pyruvate. Journal of magnetic resonance (San Diego, Calif. : 1997). 2021 04; 325(?):106927. doi: 10.1016/j.jmr.2021.106927. [PMID: 33607386]
  • Lei Chen, Haley J Abel, Indraniel Das, David E Larson, Liron Ganel, Krishna L Kanchi, Allison A Regier, Erica P Young, Chul Joo Kang, Alexandra J Scott, Colby Chiang, Xinxin Wang, Shuangjia Lu, Ryan Christ, Susan K Service, Charleston W K Chiang, Aki S Havulinna, Johanna Kuusisto, Michael Boehnke, Markku Laakso, Aarno Palotie, Samuli Ripatti, Nelson B Freimer, Adam E Locke, Nathan O Stitziel, Ira M Hall. Association of structural variation with cardiometabolic traits in Finns. American journal of human genetics. 2021 04; 108(4):583-596. doi: 10.1016/j.ajhg.2021.03.008. [PMID: 33798444]
  • Adam J Bittel, Daniel C Bittel, Bettina Mittendorfer, Bruce W Patterson, Adewole L Okunade, Nada A Abumrad, Dominic N Reeds, William Todd Cade. A Single Bout of Premeal Resistance Exercise Improves Postprandial Glucose Metabolism in Obese Men with Prediabetes. Medicine and science in sports and exercise. 2021 04; 53(4):694-703. doi: 10.1249/mss.0000000000002538. [PMID: 33044441]
  • Edward V Prochownik, Huabo Wang. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells. 2021 03; 10(4):. doi: 10.3390/cells10040762. [PMID: 33808495]
  • Louise Crovesy, Tatiana El-Bacha, Eliane Lopes Rosado. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity. Food & function. 2021 Mar; 12(5):2161-2170. doi: 10.1039/d0fo02748k. [PMID: 33565558]
  • Fayyaz Ahamed, Mark Van Criekinge, Zhen J Wang, John Kurhanewicz, Peder Larson, Renuka Sriram. Modeling hyperpolarized lactate signal dynamics in cells, patient-derived tissue slice cultures and murine models. NMR in biomedicine. 2021 03; 34(3):e4467. doi: 10.1002/nbm.4467. [PMID: 33415771]
  • Jeremy W Gordon, Hsin-Yu Chen, Nicholas Dwork, Shuyu Tang, Peder E Z Larson. Fast Imaging for Hyperpolarized MR Metabolic Imaging. Journal of magnetic resonance imaging : JMRI. 2021 03; 53(3):686-702. doi: 10.1002/jmri.27070. [PMID: 32039520]
  • Xinxin Song, Jiao Liu, Feimei Kuang, Xin Chen, Herbert J Zeh, Rui Kang, Guido Kroemer, Yangchun Xie, Daolin Tang. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell reports. 2021 02; 34(8):108767. doi: 10.1016/j.celrep.2021.108767. [PMID: 33626342]
  • Thomas Olsen, Bente Øvrebø, Cheryl Turner, Nasser E Bastani, Helga Refsum, Kathrine J Vinknes. Effects of short-term methionine and cysteine restriction and enrichment with polyunsaturated fatty acids on oral glucose tolerance, plasma amino acids, fatty acids, lactate and pyruvate: results from a pilot study. BMC research notes. 2021 Feb; 14(1):43. doi: 10.1186/s13104-021-05463-5. [PMID: 33531059]
  • Camilo Hernández-Avilés, Luisa Ramírez-Agámez, Charles C Love, Macy Friedrich, Mariah Pearson, Dale E Kelley, Anne M N Beckham, Sheila R Teague, Katrina A LaCaze, Steven P Brinsko, Dickson D Varner. The effects of metabolic substrates glucose, pyruvate, and lactate added to a skim milk-based semen extender for cooled storage of stallion sperm. Theriogenology. 2021 Feb; 161(?):83-97. doi: 10.1016/j.theriogenology.2020.11.017. [PMID: 33302166]
  • Eva M Marwali, Putri Caesa, Muhammad Rayhan, Poppy S Roebiono, Dicky Fakhri, Nikolaus A Haas, Masaki Kajimoto, Michael A Portman. The effect of oral triiodothyronine supplementation on lactate and pyruvate after paediatric cardiac surgery. Cardiology in the young. 2021 Feb; 31(2):205-211. doi: 10.1017/s1047951120003698. [PMID: 33168128]
  • Gisle Kjøsen, Kristina Rydenfelt, Rune Horneland, Einar Martin Aandahl, Pål-Dag Line, Eric Dorenberg, Audun Elnæs Berstad, Knut Brabrand, Gaute Hagen, Sören Erik Pischke, Gisli Björn Bergmann, Espen Nordheim, Trond Geir Jenssen, Tor Inge Tønnessen, Håkon Haugaa. Early detection of complications in pancreas transplants by microdialysis catheters, an observational feasibility study. PloS one. 2021; 16(3):e0247615. doi: 10.1371/journal.pone.0247615. [PMID: 33705460]
  • Beibei Zheng, Li Zhao, Xiaohan Jiang, Sylvia Cherono, JingJing Liu, Collins Ogutu, Charmaine Ntini, Xiujun Zhang, Yuepeng Han. Assessment of organic acid accumulation and its related genes in peach. Food chemistry. 2021 Jan; 334(?):127567. doi: 10.1016/j.foodchem.2020.127567. [PMID: 32707362]
  • Babar Usman, Gul Nawaz, Neng Zhao, Shanyue Liao, Baoxiang Qin, Fang Liu, Yaoguang Liu, Rongbai Li. Programmed Editing of Rice (Oryza sativa L.) OsSPL16 Gene Using CRISPR/Cas9 Improves Grain Yield by Modulating the Expression of Pyruvate Enzymes and Cell Cycle Proteins. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010249. [PMID: 33383688]
  • Matheus Pinto De Oliveira, Marc Liesa. The Role of Mitochondrial Fat Oxidation in Cancer Cell Proliferation and Survival. Cells. 2020 12; 9(12):. doi: 10.3390/cells9122600. [PMID: 33291682]
  • Michaela Veliova, Caroline M Ferreira, Ilan Y Benador, Anthony E Jones, Kiana Mahdaviani, Alexandra J Brownstein, Brandon R Desousa, Rebeca Acín-Pérez, Anton Petcherski, Essam A Assali, Linsey Stiles, Ajit S Divakaruni, Marc Prentki, Barbara E Corkey, Marc Liesa, Marcus F Oliveira, Orian S Shirihai. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO reports. 2020 12; 21(12):e49634. doi: 10.15252/embr.201949634. [PMID: 33275313]