Alisol (BioDeep_00000000435)

 

Secondary id: BioDeep_00000398473

PANOMIX_OTCML-2023


代谢物信息卡片


Dammar-13(17)-en-3-one, 24,25-epoxy-11,23-dihydroxy-,(8a,9b,11b,14b,23S,24R)-

化学式: C30H48O4 (472.3552)
中文名称: 泽泻醇 B, 泽泻醇B
谱图信息: 最多检出来源 Astragalus membranaceus(otcml) 62.5%

分子结构信息

SMILES: CC(CC(C1C(O1)(C)C)O)C2=C3CC(C4C5(CCC(=O)C(C5CCC4(C3(CC2)C)C)(C)C)C)O
InChI: InChI=1S/C30H48O4/c1-17(15-21(32)25-27(4,5)34-25)18-9-13-29(7)19(18)16-20(31)24-28(6)12-11-23(33)26(2,3)22(28)10-14-30(24,29)8/h17,20-22,24-25,31-32H,9-16H2,1-8H3

描述信息

Alisol B is a triterpenoid.
Alisol B is a natural product found in Alisma, Alisma plantago-aquatica, and other organisms with data available.
Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo:
Alisol B is a potentially novel therapeutic compound for bone disorders by targeting the differentiation of osteoclasts as well as their functions. IC50 Value: Target: In vitro: The in vitro cultured human renal tubular epithelial HK-2 cells were intervened with 5 ng/mL transforming growth factor-beta (TGF-beta), 0.1 micromol C3a, and 0.1 micromol C3a + 10 micromol alisol B, respectively. Exogenous C3a could induce renal tubular EMT. Alisol B was capable of suppressing C3a induced EMT [1]. Alisol-B strongly inhibited RANKL-induced osteoclast formation when added during the early stage of cultures, suggesting that alisol-B acts on osteoclast precursors to inhibit RANKL/RANK signaling. Among the RANK signaling pathways, alisol-B inhibited the phosphorylation of JNK, which are upregulated in response to RANKL in bone marrow macrophages, alisol-B also inhibited RANKL-induced expression of NFATc1 and c-Fos, which are key transcription factors for osteoclastogenesis. In addition, alisol-B suppressed the pit-forming activity and disrupted the actin ring formation of mature osteoclasts [2]. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, it was showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase [3]. In vivo:

同义名列表

7 个代谢物同义名

Dammar-13(17)-en-3-one, 24,25-epoxy-11,23-dihydroxy-,(8a,9b,11b,14b,23S,24R)-; CID 15558617; Alisol B; Alisol-B; AlisolB; Alisol; Alisol B



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 AIMP2, AKT1, BCL2, CD36, MAPK8, MTOR, PIK3CA, PPARG, PRKAA2, PTGS2, RARA, TP53
Peripheral membrane protein 3 GORASP1, MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 12 AIMP2, AKT1, BCL2, GABPA, HMOX1, MAPK8, MTOR, PARP1, PPARG, PRKAA2, RARA, TP53
cytosol 14 AIMP2, AKT1, BCL2, GCLC, GCLM, HMOX1, MAPK8, MTOR, PARP1, PIK3CA, PPARG, PRKAA2, RARA, TP53
dendrite 3 MTOR, PRKAA2, RARA
nuclear body 1 PARP1
phagocytic vesicle 2 CD36, MTOR
centrosome 1 TP53
nucleoplasm 10 AKT1, GABPA, HMOX1, MAPK8, MTOR, PARP1, PPARG, PRKAA2, RARA, TP53
RNA polymerase II transcription regulator complex 2 PPARG, RARA
Cell membrane 3 AKT1, CD36, TNF
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 2 AKT1, PIK3CA
Multi-pass membrane protein 1 CD36
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 2 CD36, TNF
glutamatergic synapse 1 AKT1
Golgi apparatus 3 CD36, GORASP1, PRKAA2
Golgi membrane 3 GORASP1, INS, MTOR
lysosomal membrane 1 MTOR
neuronal cell body 2 PRKAA2, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 AIMP2, PARP1
Lysosome 1 MTOR
plasma membrane 5 AKT1, CD36, PIK3CA, RARA, TNF
Membrane 9 AIMP2, AKT1, BCL2, CD36, HMOX1, MTOR, PARP1, PRKAA2, TP53
apical plasma membrane 1 CD36
axon 2 MAPK8, PRKAA2
caveola 2 CD36, PTGS2
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, TP53
extracellular space 4 CD36, HMOX1, INS, TNF
perinuclear region of cytoplasm 4 HMOX1, PIK3CA, PPARG, RARA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, GCLC, PARP1, TP53
protein-containing complex 6 AKT1, BCL2, PARP1, PTGS2, RARA, TP53
intracellular membrane-bounded organelle 1 PPARG
Microsome membrane 2 MTOR, PTGS2
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 1 INS
extracellular region 2 INS, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
transcription regulator complex 3 PARP1, RARA, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 CD36, TNF
actin cytoskeleton 1 RARA
microtubule cytoskeleton 1 AKT1
nucleolus 3 PARP1, RARA, TP53
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Apical cell membrane 1 CD36
Membrane raft 2 CD36, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
spindle 1 AKT1
cis-Golgi network 1 GORASP1
collagen trimer 1 CD36
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 2 CD36, PPARG
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 5 GABPA, PARP1, PPARG, RARA, TP53
phagocytic cup 1 TNF
cell periphery 1 CD36
Chromosome 1 PARP1
brush border membrane 1 CD36
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
site of double-strand break 2 PARP1, TP53
nuclear envelope 2 MTOR, PARP1
Endomembrane system 1 MTOR
endosome lumen 1 INS
specific granule membrane 1 CD36
cytoplasmic stress granule 1 PRKAA2
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle membrane 1 CD36
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 PARP1
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
nucleotide-activated protein kinase complex 1 PRKAA2
Cytoplasmic vesicle, phagosome 1 MTOR
platelet alpha granule membrane 1 CD36
site of DNA damage 1 PARP1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
glutamate-cysteine ligase complex 2 GCLC, GCLM
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ling Yang, Linzi Li, Qian Lu, Lingfeng Li, Chun Xie, Fakun Jiang, Hongbing Li, Ai Zhao, Qian Wang, Wenyong Xiong. Alisol B blocks the development of HFD-induced obesity by triggering the LKB1-AMPK signaling in subcutaneous adipose tissue. European journal of pharmacology. 2023 Aug; 956(?):175942. doi: 10.1016/j.ejphar.2023.175942. [PMID: 37536624]
  • Tiantian Zhang, Feng Zhang, Yani Zhang, Hongxin Li, Guanghao Zhu, Taotao Weng, Cheng Huang, Ping Wang, Yuqi He, Jing Hu, Guangbo Ge. The roles of serine hydrolases and serum albumin in alisol B 23-acetate hydrolysis in humans. Frontiers in pharmacology. 2023; 14(?):1160665. doi: 10.3389/fphar.2023.1160665. [PMID: 37089921]
  • Zhuohui Zhao, Zhen-Tao Deng, Suling Huang, Mengmeng Ning, Ying Feng, Yu Shen, Qin-Shi Zhao, Ying Leng. Alisol B Alleviates Hepatocyte Lipid Accumulation and Lipotoxicity via Regulating RARα-PPARγ-CD36 Cascade and Attenuates Non-Alcoholic Steatohepatitis in Mice. Nutrients. 2022 Jun; 14(12):. doi: 10.3390/nu14122411. [PMID: 35745142]
  • Xiao-Yan Chang, Jia-Shuo Wu, Fang-Qing Zhang, Zhuang-Zhuang Li, Wei-Yi Jin, Jing-Xun Wang, Wei-Hua Wang, Yue Shi. A Strategy for Screening the Lipid-Lowering Components in Alismatis Rhizoma Decoction Based on Spectrum-Effect Analysis. Journal of analytical methods in chemistry. 2022; 2022(?):2363242. doi: 10.1155/2022/2363242. [PMID: 35028165]
  • Fei Yang, Lihua Gu, Zhuzhen Han, Zhengtao Wang. Rapid screening for natural lipase inhibitors from Alisma orientale combining high-performance thin-layer chromatography-bioautography with mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2021 Apr; 1170(?):122599. doi: 10.1016/j.jchromb.2021.122599. [PMID: 33713950]
  • Xiaomei Xu, Lisha Li, Yamin Zhang, Xuehua Lu, Wei Lin, Shuangshuang Wu, Xia Qin, Rongqing Xu, Wenjin Lin. Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PloS one. 2020; 15(10):e0240616. doi: 10.1371/journal.pone.0240616. [PMID: 33035272]
  • Hui-Fei Wu, Xiang-Yu Wang, Ji-Feng Deng, Shi-Jian Quan, Qi Wang, Wei-Rong Li. Pharmacokinetic Profiling of Butylidenephthalide and Alisol B in Danggui-Shaoyao-San in Rats. European journal of drug metabolism and pharmacokinetics. 2018 Dec; 43(6):645-653. doi: 10.1007/s13318-018-0476-8. [PMID: 29704095]
  • Fei Xu, Cai Lu, Qinan Wu, Wei Gu, Jun Chen, Fang Fang, Bo Zhao, Wenjia Du, Min You. Studies on the lipid-regulating mechanism of alisol-based compounds on lipoprotein lipase. Bioorganic chemistry. 2018 10; 80(?):347-360. doi: 10.1016/j.bioorg.2018.07.001. [PMID: 29986183]
  • Maoliang Liao, Haihua Shang, Yazhuo Li, Tian Li, Miao Wang, Yanan Zheng, Wenbin Hou, Changxiao Liu. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 Jun; 45(?):93-104. doi: 10.1016/j.phymed.2018.04.006. [PMID: 29705003]
  • Megumi Sumino, Yuko Saito, Fumio Ikegami, Takao Namiki. A simultaneous determination of principal compounds in tokishakuyakusan by high-performance liquid chromatography with diode array detector. Journal of chromatographic science. 2015 Feb; 53(2):320-4. doi: 10.1093/chromsci/bmu062. [PMID: 24981981]
  • Wen Xu, Ting Li, Jian-Fang Qiu, Shui-Sheng Wu, Ming-Qing Huang, Li-Gen Lin, Qing-Wen Zhang, Xiu-Ping Chen, Jin-Jian Lu. Anti-proliferative activities of terpenoids isolated from Alisma orientalis and their structure-activity relationships. Anti-cancer agents in medicinal chemistry. 2015; 15(2):228-35. doi: 10.2174/1871520614666140601213514. [PMID: 24893804]
  • Rui-fang Zhang, Jian-xin Wan, Yan-fang Xu. [Alisol B inhibited complement 3a-induced human renal tubular epithelial to mesenchymal transition]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2012 Oct; 32(10):1407-12. doi: . [PMID: 23163157]
  • Je Hyeong Lee, Oh Song Kwon, Hong-Guang Jin, Eun-Rhan Woo, Yeong Shik Kim, Hyun Pyo Kim. The rhizomes of Alisma orientale and alisol derivatives inhibit allergic response and experimental atopic dermatitis. Biological & pharmaceutical bulletin. 2012; 35(9):1581-7. doi: 10.1248/bpb.b110689. [PMID: 22975512]
  • Jun-Ho Lee, Yoo-Jin Lee, Seok-Woo Kang, Yangseok Kim, Minkyu Shin, Moochang Hong, Eun-Kyoung Seo, Sung-Hoon Kim, Seung-Yeol Nah, Hyunsu Bae. Effects of protostane-type triterpenoids on the 5-HT3A receptor-mediated ion current in Xenopus oocytes. Brain research. 2010 May; 1331(?):20-7. doi: 10.1016/j.brainres.2010.03.041. [PMID: 20307506]
  • Jing Zhang, Wenyu Yang, Xingfu Chen, Weiguo Liu, Shenglun Chen, Gang Du. [Variation in yield and quality of Alisma orientalis grown under different ecological climatic regions]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Nov; 34(22):2857-61. doi: ". [PMID: 20209945]
  • Qiang Liao, Wen-Yu Yang, Xing-Fu Chen, Xiong Yao. [Effects of S-3307 on the yield and main ingredients of Alisma plantago-aquatica]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Dec; 33(24):2901-4. doi: ". [PMID: 19294845]
  • Sang Myung Lee, Jong Seong Kang, Gwi Seo Hwang, Young Ho Kim, Cheal Gyu Lee, Woon Hyung Yeo, KiHwan Bae. Quality evaluation of Alismatis Rhizoma by high performance liquid chromatography. Archives of pharmacal research. 2004 Apr; 27(4):460-4. doi: 10.1007/bf02980090. [PMID: 15180314]
  • H Wen, W Li, G Peng, Y Chi. [Content variety of alisol B 23-acetate in Rhiozma Alismatis reaped at different time]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 1998 Dec; 21(12):595-6. doi: ". [PMID: 12569673]