Tephrosin (BioDeep_00000003779)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


(1R,14R)-14-hydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one

化学式: C23H22O7 (410.1365)
中文名称: 灰叶草素, 羟基鱼藤素, 灰叶草素, 羟基鱼藤素
谱图信息: 最多检出来源 Viridiplantae(plant) 26.63%

分子结构信息

SMILES: c(c21)([C@](O)(C3=O)[C@](Oc(c54)c(ccc4OC(C=C5)(C)C)3)(CO2)[H])cc(c(OC)c1)OC
InChI: InChI=1S/C23H22O7/c1-22(2)8-7-12-15(30-22)6-5-13-20(12)29-19-11-28-16-10-18(27-4)17(26-3)9-14(16)23(19,25)21(13)24/h5-10,19,25H,11H2,1-4H3/t19-,23-/m1/s1

描述信息

Tephrosin is a member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities. It has a role as a pesticide, an antineoplastic agent and a metabolite. It is an organic heteropentacyclic compound, an aromatic ether, a cyclic ketone and a member of rotenones.
Tephrosin is a natural product found in Millettia ferruginea, Tephrosia vogelii, and other organisms with data available.
A member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities.

同义名列表

19 个代谢物同义名

(1R,14R)-14-hydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.03,12.04,9.015,20]docosa-3(12),4(9),5,10,15,17,19-heptaen-13-one; 3H-Bis(1)benzopyrano(3,4-b:6,5-e)pyran-7(7aH)-one, 13,13a-dihydro-7a-hydroxy-9,10-dimethoxy-3,3-dimethyl-, (7aR,13aR)-; 3H-Bis(1)benzopyrano(3,4-b:6,5-e)pyran-7(7aH)-one, 13,13a-dihydro-7a-hydroxy-9,10-dimethoxy-3,3-dimethyl-, (7aR-cis)-; (7aR,13aR)-7a-hydroxy-9,10-dimethoxy-3,3-dimethyl-13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one; (7aR,13aR)-13,13a-dihydro-7a-hydroxy-9,10-dimethoxy-3,3-dimethyl-3H-bis(1)benzopyrano(3,4-b:6,5-e)pyran-7(7aH)-one; (7aR,13aR)-7a-Hydroxy-9,10-dimethoxy-3,3-dimethyl-13,13a-dihydro-3H-pyrano[2,3-c:6,5-f]dichromen-7(7aH)-one; Tephrosin, >=95\\% (LC/MS-ELSD); Deguelinol I;Hydroxydeguelin; hydroxydeguelin; UNII-9C081V83CC; TEPHROSIN [MI]; (-)-TEPHROSIN; MEGxp0_001258; deguelinol I; 9C081V83CC; Tephrosin; 13,13a-Dihydro-7a-hydroxy-9,10-dimethoxy-3,3-dimethyl-3H-bis [1] benzopyrano [3,4-b:6,5-e] pyran-7 (7aH) -one; AKOS032948428; Tephrosin



数据库引用编号

45 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

83 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ABCB1, CASP3, CAT, EGFR, FRS2, HPGDS, LPO, NQO1, ODC1, PTGS1, PTGS2, XDH, XIAP
Peripheral membrane protein 3 ACHE, PTGS1, PTGS2
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 3 EGFR, PTGS1, PTGS2
Mitochondrion membrane 1 ABCG2
Nucleus 5 ACHE, CASP3, EGFR, NQO1, XIAP
cytosol 9 CASP3, CAT, FRS2, GSR, HPGDS, NQO1, ODC1, XDH, XIAP
dendrite 1 NQO1
mitochondrial membrane 1 ABCG2
nucleoplasm 4 ABCG2, CASP3, HPGDS, XIAP
Cell membrane 5 ABCB1, ABCG2, ACHE, EGFR, TNF
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 ABCB1, ABCG2
Synapse 2 ACHE, NQO1
cell junction 1 EGFR
cell surface 4 ABCB1, ACHE, EGFR, TNF
glutamatergic synapse 2 CASP3, EGFR
Golgi apparatus 2 ACHE, PTGS1
Golgi membrane 2 EGFR, INS
lysosomal membrane 1 GAA
neuromuscular junction 1 ACHE
neuronal cell body 3 CASP3, NQO1, TNF
Cytoplasm, cytosol 1 NQO1
Lysosome 1 GAA
endosome 1 EGFR
plasma membrane 8 ABCB1, ABCG2, ACHE, CSF2, EGFR, FRS2, GAA, TNF
Membrane 8 ABCB1, ABCG2, ACHE, CAT, EGFR, FRS2, GAA, NQO1
apical plasma membrane 3 ABCB1, ABCG2, EGFR
basolateral plasma membrane 2 EGFR, LPO
caveola 1 PTGS2
extracellular exosome 6 ABCB1, CAT, GAA, GSR, LPO, PTGS1
Lysosome membrane 1 GAA
endoplasmic reticulum 1 PTGS2
extracellular space 7 ACHE, CSF2, EGFR, INS, LPO, TNF, XDH
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 2 ACHE, EGFR
adherens junction 1 FRS2
mitochondrion 2 CAT, GSR
protein-containing complex 3 CAT, EGFR, PTGS2
intracellular membrane-bounded organelle 5 CAT, CSF2, GAA, HPGDS, PTGS1
Microsome membrane 2 PTGS1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 EGFR
Secreted 5 ACHE, CSF2, GAA, INS, LPO
extracellular region 7 ACHE, CAT, CSF2, GAA, INS, LPO, TNF
mitochondrial matrix 2 CAT, GSR
Extracellular side 1 ACHE
photoreceptor outer segment 1 PTGS1
nuclear membrane 1 EGFR
external side of plasma membrane 2 GSR, TNF
cell-cell junction 1 FRS2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 2 ABCB1, ABCG2
Membrane raft 3 ABCG2, EGFR, TNF
focal adhesion 2 CAT, EGFR
Peroxisome 2 CAT, XDH
basement membrane 1 ACHE
intracellular vesicle 1 EGFR
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
receptor complex 1 EGFR
neuron projection 2 PTGS1, PTGS2
phagocytic cup 1 TNF
brush border membrane 1 ABCG2
Lipid-anchor, GPI-anchor 1 ACHE
Endomembrane system 2 FRS2, PTGS1
endosome lumen 1 INS
tertiary granule membrane 1 GAA
side of membrane 1 ACHE
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
clathrin-coated endocytic vesicle membrane 1 EGFR
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 GAA
external side of apical plasma membrane 2 ABCB1, ABCG2
death-inducing signaling complex 1 CASP3
granulocyte macrophage colony-stimulating factor receptor complex 1 CSF2
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
autolysosome lumen 1 GAA
[Isoform H]: Cell membrane 1 ACHE
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Aziza H Said, Anita Solhaug, Morten Sandvik, Flower E Msuya, Margareth S Kyewalyanga, Aviti J Mmochi, Jan L Lyche, Selma Hurem. Isolation of the Tephrosia vogelii extract and rotenoids and their toxicity in the RTgill-W1 trout cell line and in zebrafish embryos. Toxicon : official journal of the International Society on Toxinology. 2020 Aug; 183(?):51-60. doi: 10.1016/j.toxicon.2020.05.013. [PMID: 32454059]
  • Yanbei Tu, Chuanhai Wu, Yunyao Kang, Qin Li, Chao Zhu, Yanfang Li. Bioactivity-guided identification of flavonoids with cholinesterase and β-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorganic & medicinal chemistry letters. 2019 05; 29(10):1194-1198. doi: 10.1016/j.bmcl.2019.03.024. [PMID: 30910460]
  • Yves Martial Mba Nguekeu, Maurice Ducret Awouafack, Pierre Tane, Marius Roch Nguedia Lando, Takeshi Kodama, Hiroyuki Morita. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae). Natural product research. 2017 Nov; 31(21):2520-2526. doi: 10.1080/14786419.2017.1315720. [PMID: 28403640]
  • Tsegaye Deyou, Makungu Marco, Matthias Heydenreich, Fangfang Pan, Amra Gruhonjic, Paul A Fitzpatrick, Andreas Koch, Solomon Derese, Jerry Pelletier, Kari Rissanen, Abiy Yenesew, Máté Erdélyi. Isoflavones and Rotenoids from the Leaves of Millettia oblata ssp. teitensis. Journal of natural products. 2017 07; 80(7):2060-2066. doi: 10.1021/acs.jnatprod.7b00255. [PMID: 28665590]
  • Kaitlin Deardorff, William Ray, Eric Winterstein, MacKenzie Brown, Jocelyn McCornack, Brianda Cardenas-Garcia, Kiah Jones, Sarah McNutt, Shannon Fulkerson, Daneel Ferreira, Charlotte Gény, Xiaoyan Chen, Gil Belofsky, Blaise Dondji. Phenolic Metabolites of Dalea ornata Affect Both Survival and Motility of the Human Pathogenic Hookworm Ancylostoma ceylanicum. Journal of natural products. 2016 09; 79(9):2296-303. doi: 10.1021/acs.jnatprod.6b00444. [PMID: 27584977]
  • Tsegaye Deyou, Ivan Gumula, Fangfang Pang, Amra Gruhonjic, Michael Mumo, John Holleran, Sandra Duffy, Paul A Fitzpatrick, Matthias Heydenreich, Göran Landberg, Solomon Derese, Vicky Avery, Kari Rissanen, Máté Erdélyi, Abiy Yenesew. Rotenoids, Flavonoids, and Chalcones from the Root Bark of Millettia usaramensis. Journal of natural products. 2015 Dec; 78(12):2932-9. doi: 10.1021/acs.jnatprod.5b00581. [PMID: 26651537]
  • Xueling Qu, Yunpeng Diao, Zhen Zhang, Shouyu Wang, Yujie Jia. Evaluation of anti-bacterial and wound healing activity of the fruits of Amorpha fruticosa L. African journal of traditional, complementary, and alternative medicines : AJTCAM. 2013; 10(3):458-68. doi: 10.4314/ajtcam.v10i3.12. [PMID: 24146475]
  • Steven R Belmain, Barbara A Amoah, Stephen P Nyirenda, John F Kamanula, Philip C Stevenson. Highly variable insect control efficacy of Tephrosia vogelii chemotypes. Journal of agricultural and food chemistry. 2012 Oct; 60(40):10055-63. doi: 10.1021/jf3032217. [PMID: 22970736]
  • Cheng Jiang, Shengzi Liu, Weihong He, Xiongming Luo, Si Zhang, Zhihui Xiao, Ximin Qiu, Hao Yin. A new prenylated flavanone from Derris trifoliata Lour. Molecules (Basel, Switzerland). 2012 Jan; 17(1):657-63. doi: 10.3390/molecules17010657. [PMID: 22237680]
  • Yunjin Choi, Jeong-Hyung Lee. The combination of tephrosin with 2-deoxy-D-glucose enhances the cytotoxicity via accelerating ATP depletion and blunting autophagy in human cancer cells. Cancer biology & therapy. 2011 Dec; 12(11):989-96. doi: 10.4161/cbt.12.11.18364. [PMID: 22123175]
  • Song Gao, Ya-ming Xu, Frederick A Valeriote, A A Leslie Gunatilaka. Pierreiones A-D, solid tumor selective pyranoisoflavones and other cytotoxic constituents from Antheroporum pierrei. Journal of natural products. 2011 Apr; 74(4):852-6. doi: 10.1021/np100763p. [PMID: 21452840]
  • Raka Kamal, N Mathur. Rotenoids from Lablab purpureus L. and their bioefficacy against human disease vectors. Parasitology research. 2010 Nov; 107(6):1481-8. doi: 10.1007/s00436-010-2023-7. [PMID: 20803155]
  • Nguyen Tien Dat, Jeong-Hyung Lee, Kyeong Lee, Young-Soo Hong, Young Ho Kim, Jung Joon Lee. Phenolic constituents of Amorpha fruticosa that inhibit NF-kappaB activation and related gene expression. Journal of natural products. 2008 Oct; 71(10):1696-700. doi: 10.1021/np800383q. [PMID: 18841906]
  • Tsung-Hsien Chou, Ih-Sheng Chen, Tsong-Long Hwang, Tai-Chi Wang, Tzong-Huei Lee, Lin-Yang Cheng, Ya-Chih Chang, Jui-Ying Cho, Jih-Jung Chen. Phthalides from Pittosporum illicioides var. illicioides with inhibitory activity on superoxide generation and elastase release by neutrophils. Journal of natural products. 2008 Oct; 71(10):1692-5. doi: 10.1021/np8004503. [PMID: 18817445]
  • Haoyu Ye, Lijuan Chen, Yanfang Li, Aihua Peng, Afu Fu, Hang Song, Minghai Tang, Houding Luo, Youfu Luo, Yongbin Xu, Jianyou Shi, Yuquan Wei. Preparative isolation and purification of three rotenoids and one isoflavone from the seeds of Millettia pachycarpa Benth by high-speed counter-current chromatography. Journal of chromatography. A. 2008 Jan; 1178(1-2):101-7. doi: 10.1016/j.chroma.2007.11.060. [PMID: 18082754]
  • Lu-Rong Xu, Shan Li, Jun Wu, Si Zhang. [Rotenoids from Derris trifoliata]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Jun; 30(6):660-2. doi: . [PMID: 17918433]
  • Hisashi Matsuda, Kazutoshi Yoshida, Katsutoshi Miyagawa, Yasunobu Asao, Saya Takayama, Souichi Nakashima, Fengming Xu, Masayuki Yoshikawa. Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa. Bioorganic & medicinal chemistry. 2007 Feb; 15(3):1539-46. doi: 10.1016/j.bmc.2006.09.024. [PMID: 17158054]
  • Maddalena Cabizza, Alberto Angioni, Marinella Melis, Marco Cabras, Carlo V Tuberoso, Paolo Cabras. Rotenone and rotenoids in cubè resins, formulations, and residues on olives. Journal of agricultural and food chemistry. 2004 Jan; 52(2):288-93. doi: 10.1021/jf034987a. [PMID: 14733510]
  • Abiy Yenesew, Solomon Derese, Jacob O Midiwo, Matthias Heydenreich, Martin G Peter. Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti. Pest management science. 2003 Oct; 59(10):1159-61. doi: 10.1002/ps.740. [PMID: 14561074]
  • Junko Takashima, Noriko Chiba, Kaisuke Yoneda, Ayumi Ohsaki. Derrisin, a new rotenoid from Derris malaccensis plain and anti-Helicobacter pylori activity of its related constituents. Journal of natural products. 2002 Apr; 65(4):611-3. doi: 10.1021/np010126p. [PMID: 11975515]
  • T Konoshima, H Terada, M Kokumai, M Kozuka, H Tokuda, J R Estes, L Li, H K Wang, K H Lee. Studies on inhibitors of skin tumor promotion, XII. Rotenoids from Amorpha fruticosa. Journal of natural products. 1993 Jun; 56(6):843-8. doi: 10.1021/np50096a006. [PMID: 8350086]
  • L Li, H K Wang, J J Chang, A T McPhail, D R McPhail, H Terada, T Konoshima, M Kokumai, M Kozuka, J R Estes. Antitumor agents, 138. Rotenoids and isoflavones as cytotoxic constitutents from Amorpha fruticosa. Journal of natural products. 1993 May; 56(5):690-8. doi: 10.1021/np50095a005. [PMID: 8326318]