Chrysoeriol (BioDeep_00000000663)
Secondary id: BioDeep_00000398641
human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C16H12O6 (300.06338519999997)
中文名称: 金圣草(黄)素
谱图信息:
最多检出来源 Homo sapiens(feces) 0.24%
分子结构信息
SMILES: c1(cc(c2c(c1)oc(cc2=O)c1cc(c(cc1)O)OC)O)O
InChI: InChI=1S/C16H12O6/c1-21-14-4-8(2-3-10(14)18)13-7-12(20)16-11(19)5-9(17)6-15(16)22-13/h2-7,17-19H,1H3
描述信息
Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods.
4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-).
Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available.
See also: Acai (part of); Acai fruit pulp (part of).
Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa.
The 3-O-methyl derivative of luteolin.
Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].
同义名列表
33 个代谢物同义名
3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone; 5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-; 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-one; 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one; 2-(5-methoxy,4-hydroxyphenyl)5,7-dihydroxy-benzpyran-4-one; 5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-benzopyrone; 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one; Chryseriol;3-Methoxyapigenin;Luteolin 3-methyl ether; 2-(5-methoxy,7-dihydroxy-benzpyran-4-one; FLAVONE, 4,5,7-TRIHYDROXY-3-METHOXY-; 5,7,4’-Trihydroxy-3’-methoxyflavone; 3?-METHOXY-4?,5,7-TRIHYDROXYFLAVONE; 3’-Methoxy-4’,5,7-trihydroxyflavone; 4,5,7-Trihydroxy-3-methoxy-Flavone; 5,7,4-Trihydroxy-3-methoxyflavone; 4,5,7-trihydroxy-3-methoxyflavone; 3-Methoxy-4,5,7-trihydroxyflavone; SCZVLDHREVKTSH-UHFFFAOYSA-N; Luteolin 3’-methyl ether; Luteolin 3-methyl ether; 3’-O-Methylluteolin; 3’-Methoxyapigenin; 3-O-Methylluteolin; 3-Methoxyapigenin; 3-O-Methyluteolin; 8-chrysoeriol; Chrysoeriol; Chryseriol; Chrysoeril; Chrysoriol; Scoparol; CRESOROL
数据库引用编号
23 个数据库交叉引用编号
- ChEBI: CHEBI:16514
- KEGG: C04293
- PubChem: 5280666
- HMDB: HMDB0030667
- Metlin: METLIN49229
- DrugBank: DB17283
- ChEMBL: CHEMBL214321
- Wikipedia: Chrysoeriol
- LipidMAPS: LMPK12110799
- MeSH: chrysoeriol
- ChemIDplus: 0000491714
- MetaCyc: 574-TRIHYDROXY-3-METHOXYFLAVONE
- KNApSAcK: C00001029
- foodb: FDB002579
- chemspider: 4444263
- CAS: 491-71-4
- medchemexpress: HY-121471
- PMhub: MS000010314
- MetaboLights: MTBLC16514
- PubChem: 6953
- 3DMET: B00699
- NIKKAJI: J90.397C
- RefMet: Chrysoeriol
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
225 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(225)
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
SAM + luteolin ⟶ Chryseriol + SAH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
SAM + luteolin ⟶ Chryseriol + SAH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
2OG + Oxygen + naringenin ⟶ H2O + SUCCA + apigenin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Tricin biosynthesis:
SAM + luteolin ⟶ Chryseriol + SAH
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Tricin biosynthesis:
Oxygen + TPNH + apigenin ⟶ H2O + TPN + luteolin
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
194 个相关的物种来源信息
- 282740 - Achillea holosericea: 10.1016/0305-1978(95)00044-U
- 746492 - Achyrocline flaccida:
- 2773062 - Ageratina areolaris: 10.1021/NP50046A052
- 1475093 - Aglaia foveolata: 10.1002/CHIN.200438214
- 230223 - Agnorhiza ovata: 10.1016/S0031-9422(00)84740-8
- 3813 - Albizia julibrissin: 10.1248/CPB.60.129
- 2082031 - Alchemilla tianschanica: 10.1007/BF00629947
- 557622 - Allagopappus canariensis: 10.1021/NP50117A014
- 56513 - Allagopappus dichotomus: 10.1021/NP50117A014
- 925377 - Aloysia citrodora: 10.1055/S-2006-962505
- 1873154 - Ambrosia salsola: 10.1515/ZNC-1983-7-826
- 4045 - Apium graveolens: 10.1021/NP900117V
- 3818 - Arachis hypogaea: 10.1248/YAKUSHI1947.103.9_997
- 436195 - Arnica chamissonis: 10.2298/HEMIND0704272R
- 344073 - Arnica cordifolia: 10.1016/0305-1978(84)90032-2
- 149410 - Arnica longifolia: 10.1016/S0031-9422(00)89581-3
- 72333 - Artemisia afra: 10.1002/PTR.1066
- 1227615 - Artemisia alba: 10.1515/ZNC-1995-5-604
- 35608 - Artemisia annua:
- 72386 - Artemisia arborescens: 10.1055/S-2006-958064
- 259893 - Artemisia argyi: 10.1021/JF9906679
- 1227617 - Artemisia assoana: 10.1016/S0031-9422(00)83891-1
- 205362 - Artemisia austriaca: 10.1055/S-2006-958150
- 265783 - Artemisia capillaris: 10.1016/S0968-0896(00)00225-X
- 927720 - Artemisia copa: 10.1055/S-2005-873177
- 1287603 - Artemisia diffusa: 10.1515/ZNC-1995-5-604
- 401898 - Artemisia gmelinii: 10.1515/ZNC-1995-5-604
- 265784 - Artemisia iwayomogi: 10.1515/ZNC-1995-5-604
- 205369 - Artemisia judaica: 10.1016/S0031-9422(00)84593-8
- 86312 - Artemisia ludoviciana: 10.1016/0031-9422(82)80045-9
- 1287615 - Artemisia mesatlantica: 10.1016/0031-9422(82)83200-7
- 1227633 - Artemisia minor:
- 72347 - Artemisia molinieri: 10.1515/ZNC-1995-5-604
- 86317 - Artemisia rupestris:
- 205374 - Artemisia rutifolia: 10.1007/BF00579497
- 4220 - Artemisia vulgaris: 10.1021/JF9801264
- 155124 - Aspalathus linearis:
- 1133552 - Asphodeline damascena: 10.1016/0031-9422(85)80028-5
- 1497607 - Asphodelus fistulosus: 10.1076/PHBI.35.4.274.13311
- 427666 - Baccharis salicifolia: 10.1515/ZNC-1986-1-214
- 191145 - Bahiopsis laciniata: 10.1016/0305-1978(89)90096-3
- 230198 - Balsamorhiza deltoidea: 10.1016/0305-1978(87)90102-5
- 210340 - Bischofia javanica: 10.15625/0866-708X/55/2/8608
- 319147 - Bridelia ferruginea: 10.1211/0022357011775893
- 240931 - Calceolaria chelidonioides: 10.1515/ZNC-2000-1-203
- 133540 - Calceolaria mexicana: 10.1515/ZNC-2000-1-203
- 240967 - Calceolaria pavonii: 10.1515/ZNC-2000-1-203
- 240996 - Calceolaria tripartita: 10.1515/ZNC-2000-1-203
- 3483 - Cannabis sativa:
- 626690 - Caragana pygmaea: 10.1007/BF00714926
- 363412 - Centaurea alexandrina: 10.1055/S-2007-969314
- 64995 - Cheirolophus intybaceus: 10.1016/S0031-9422(00)89537-0
- 228520 - Cheniella glauca: 10.1016/J.BMCL.2015.05.089
- 297476 - Cirsium oleraceum: 10.1007/BF00569015
- 335179 - Cistus laurifolius:
- 1077932 - Cleome amblyocarpa: 10.1016/0031-9422(94)00848-N
- 54221 - Clerodendrum mandarinorum: 10.1055/S-2006-957923
- 2743239 - Combretum leprosum: 10.1016/S0031-9422(00)95005-2
- 41839 - Conocephalum conicum: 10.1016/S0031-9422(00)89072-X
- 198761 - Cratoxylum formosum: 10.1071/CH10193
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 2918710 - Daphne aurantiaca: 10.1248/CPB.59.653
- 2753873 - Daphne feddei: 10.1007/S10600-011-0071-6
- 4039 - Daucus carota: 10.1055/S-2008-1074990
- 298346 - Dictamnus albus: 10.1021/NP50066A020
- 4163 - Digitalis: 10.1007/BF00567716
- 38791 - Digitalis grandiflora: 10.1055/S-2007-969735
- 305854 - Digitalis lamarckii: 10.1055/S-2007-969735
- 49450 - Digitalis lanata: 10.1055/S-2007-969735
- 306087 - Digitalis trojana: 10.1055/S-2007-969735
- 2840027 - Distephanus glutinosus: 10.4268/CJCMM20112213
- 39296 - Dracocephalum moldavica: 10.1007/S10600-008-9065-4
- 240045 - Dysphania botrys: 10.1007/BF00563912
- 41571 - Echinops ritro: 10.1002/RECL.19000191104
- 372416 - Encelia asperifolia: 10.1055/S-2006-962543
- 183026 - Encelia californica: 10.1055/S-2006-962543
- 372422 - Encelia laciniata: 10.1055/S-2006-962543
- 191184 - Encelia ventorum: 10.1055/S-2006-962543
- 253616 - Epimedium sagittatum: 10.1021/NP9601925
- 1569397 - Eremanthus elaeagnus: 10.5935/0103-5053.19930007
- 4132 - Eriodictyon californicum:
- 1469178 - Erymophyllum tenellum: 10.1016/0031-9422(89)80045-7
- 115466 - Euterpe oleracea: 10.1021/JF801792N
- 13533 - Fouquieria splendens: 10.1515/ZNC-1994-9-1022
- 572113 - Galeopsis bifida: 10.1016/0031-9422(92)83452-5
- 147456 - Genista sessilifolia: 10.1007/S10600-009-9248-7
- 74613 - Glycyrrhiza uralensis: 10.3987/COM-04-10150
- 3381 - Gnetum montanum: 10.1016/S0367-326X(01)00370-7
- 648866 - Grona styracifolia: 10.1016/J.PHYTOCHEM.2007.02.015
- 199516 - Gutierrezia sarothrae: 10.1515/ZNC-1987-1-212
- 1573924 - Gutierrezia wrightii: 10.1021/NP50046A053
- 2676169 - Gymnanthemum myrianthum: 10.1016/0031-9422(94)85023-2
- 1006079 - Haplophyllum ramosissimum: 10.1016/S0031-9422(00)83563-3
- 112357 - Helichrysum aureum: 10.1515/ZNC-1997-3-401
- 112363 - Helichrysum odoratissimum: 10.1021/NP50063A025
- 2907093 - Heterotheca canescens: 10.1021/NP50021A021
- 9606 - Homo sapiens: -
- 1504648 - Isodon oresbius: 10.1016/0031-9422(96)00084-2
- 1310066 - Lagotis yunnanensis:
- 53160 - Lamium amplexicaule: 10.1007/S10600-008-9063-6
- 39329 - Lavandula angustifolia: 10.1016/S0031-9422(00)80692-5
- 483811 - Leucas aspera: 10.1248/CPB.51.595
- 694368 - Leucosceptrum: 10.1248/YAKUSHI1947.109.3_175
- 105884 - Lonicera japonica Thunb.: -
- 118937 - Lotus maritimus: 10.1016/S0031-9422(00)94254-7
- 3873 - Lupinus luteus: 10.1007/BF00570687
- 672196 - Lycopodium japonicum: 10.3987/COM-04-10314
- 2291707 - Marrubium velutinum:
- 41230 - Marrubium vulgare:
- 70950 - Medicago intertexta: 10.1016/0305-1978(82)90048-5
- 66815 - Medicago marina: 10.1016/0305-1978(82)90048-5
- 3879 - Medicago sativa: 10.1016/0305-1978(82)90048-5
- 672825 - Meehania urticifolia: 10.1007/S11418-010-0501-Y
- 294739 - Mentha pulegium: 10.1016/S0031-9422(97)01042-X
- 38860 - Mentha suaveolens: 10.1016/S0031-9422(97)01042-X
- 1227330 - Microliabum polymnioides: 10.1016/0305-1978(94)00093-V
- 306386 - Micromeria cristata: 10.1016/0305-1978(91)90088-H
- 751838 - Micromeria croatica: 10.1016/0305-1978(91)90088-H
- 306391 - Micromeria graeca: 10.1016/0305-1978(91)90088-H
- 306395 - Micromeria juliana:
- 1424733 - Mirabilis viscosa: 10.1016/S0305-1978(96)00081-6
- 659048 - Morinda morindoides:
- 1053371 - Myoporum tenuifolium: 10.1016/J.BSE.2014.02.015
- 211924 - Newbouldia laevis: 10.1016/J.PHYTOCHEM.2005.12.019
- 92913 - Notobasis syriaca: 10.21608/BFSA.1998.67958
- 1616377 - Nymphaea nouchali var. caerulea: 10.5586/ASBP.1991.011
- 204149 - Ocimum tenuiflorum: 10.1248/CPB.57.245
- 3951 - Oenothera odorata: 10.1111/J.1438-8677.1994.TB00414.X
- 75642 - Oligochaeta divaricata: 10.15228/2012.V02.I01.P04
- 92915 - Onopordum acanthium: 10.1055/S-2006-962793
- 196747 - Onopordum acaulon: 10.1016/0031-9422(92)83742-H
- 554543 - Onosma heterophylla: 10.1021/NP50096A023
- 39352 - Origanum vulgare:
- 73980 - Pallenis hierochuntica: 10.21608/BFSA.1995.69671
- 58886 - Parkinsonia aculeata: 10.1016/0031-9422(91)83679-F
- 159421 - Passiflora foetida: 10.1021/NP50019A012
- 340645 - Passiflora palmeri: 10.1021/NP50032A028
- 321410 - Pedicularis rex: 10.1515/ZNB-2007-1117
- 119176 - Pentanema britannicum: 10.1515/ZNC-1997-3-401
- 48386 - Perilla frutescens:
- 151328 - Perilla frutescens var. frutescens:
- 316258 - Phlomis purpurea: 10.1016/0031-9422(92)83452-5
- 997739 - Phlomis samia: 10.1021/NP010128+
- 92917 - Picnomon acarna: 10.1055/S-2006-962332
- 3349 - Pinus sylvestris: 10.1007/BF00713335
- 33090 - Plants: -
- 1138119 - Pseudodictamnus hirsutus: 10.1016/0031-9422(92)83452-5
- 3726 - Raphanus sativus: 10.3390/NU11020402
- 1813207 - Rhamnus nakaharae:
- 280022 - Rhamnus prinoides: 10.1002/(SICI)1099-1565(199903/04)10:2<69::AID-PCA447>3.0.CO;2-4
- 1577577 - Rhamnus taquetii: 10.1007/BF00563641
- 2950952 - Rhaponticoides africana: 10.1016/J.PHYTOL.2009.03.002
- 122650 - Riella americana: 10.1016/S0031-9422(00)89073-1
- 75085 - Rubus phoenicolasius: 10.1515/ZNC-1993-11-1221
- 268896 - Salvia candidissima: 10.1016/0031-9422(95)00245-3
- 207754 - Salvia dorrii: 10.1515/ZNC-1992-9-1025
- 1571167 - Salvia mirzayanii: 10.1515/ZNC-1992-9-1025
- 268920 - Salvia palaestina:
- 546409 - Satureja cuneifolia: 10.3109/13880208709055202
- 508984 - Schnella guianensis:
- 127615 - Schouwia purpurea: 10.1016/J.BMCL.2006.06.011
- 1513831 - Schouwia thebaica: 10.1016/J.BMCL.2006.06.011
- 88036 - Selaginella moellendorffii: 10.1016/J.FITOTE.2009.09.007
- 346985 - Senna obtusifolia: 10.1248/CPB.42.2588
- 362788 - Senna tora: 10.1248/CPB.42.2588
- 1391945 - Sideritis leucantha: 10.1016/S0031-9422(00)81116-4
- 155257 - Sideritis pumila: 10.1016/S0031-9422(00)90809-4
- 50192 - Sonchus arvensis: 10.1007/BF00713340
- 381734 - Sonchus mauritanicus: 10.1007/BF00713340
- 1391947 - Stachys aegyptiaca: 10.1016/S0031-9422(00)95197-5
- 193336 - Stachys chrysantha: 10.1248/BPB.23.47
- 145831 - Stizolophus coronopifolius: 10.1007/BF00563832
- 1883 - Streptomyces: 10.1515/ZNB-2003-0713
- 4170 - Striga asiatica: 10.1021/NP50039A027
- 127999 - Tanacetum parthenium:
- 2072400 - Tanacetum sinaicum: 10.21608/BFSA.2001.65917
- 128002 - Tanacetum vulgare:
- 50225 - Taraxacum officinale: 10.1016/0031-9422(95)00865-9
- 69904 - Tecoma stans: 10.1016/J.JEP.2016.03.014
- 114322 - Thermopsis macrophylla:
- 2805045 - Thermopsis mollis:
- 61122 - Thermopsis rhombifolia:
- 114325 - Thermopsis villosa:
- 285591 - Tinospora crispa: 10.1016/J.BMC.2015.04.053
- 76515 - Trichophorum cespitosum: 10.1016/0031-9422(80)85088-6
- 57577 - Trifolium pratense: 10.1021/JF991002+
- 2072606 - Verbascum sinaiticum: 10.1016/0031-9422(93)85369-3
- 1224803 - Vernonanthura chamaedrys:
- 2067325 - Vernonanthura nudiflora: 10.1016/0031-9422(92)90045-R
- 413483 - Vitex limonifolia: 10.1515/ZNC-2008-5-611
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 152196 - Xerochrysum bracteatum: 10.1515/ZNC-1997-3-401
- 4577 - Zea mays: 10.1248/CPB.55.153
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Amit Gupta, Tapan Behl, Sukhbir Singh, Madhukar Garg, Ennus Tajuddin Tamboli, Sridevi Chigurupati, Shatha Ghazi Felemban, Ali Albarrati, Mohammed Albratty, Abdulkarim M Meraya. Quantification of Luteolin, Apigenin and Chrysoeriol in Tecoma stans by RP-HPLC Method.
Journal of chromatographic science.
2023 Mar; ?(?):. doi:
10.1093/chromsci/bmad022
. [PMID: 36951424] - Yu-Xi Liu, Ying-Jie Chen, Bo-Wen Xu, Xiu-Qiong Fu, Wen-Jun Ding, Sze-Man Amy Li, Xiao-Qi Wang, Jia-Ying Wu, Ying Wu, Xiaobing Dou, Bin Liu, Zhi-Ling Yu. Inhibition of STAT3 signaling contributes to the anti-melanoma effects of chrysoeriol.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jan; 109(?):154572. doi:
10.1016/j.phymed.2022.154572
. [PMID: 36610164] - Jia-Ying Wu, Ying-Jie Chen, Xiu-Qiong Fu, Jun-Kui Li, Ji-Yao Chou, Cheng-Le Yin, Jing-Xuan Bai, Ying Wu, Xiao-Qi Wang, Amy Sze-Man Li, Lut Yi Wong, Zhi-Ling Yu. Chrysoeriol suppresses hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes and inhibits JAK2/STAT3 signaling.
BMC complementary medicine and therapies.
2022 Mar; 22(1):73. doi:
10.1186/s12906-022-03553-w
. [PMID: 35296317] - Eun-Gyeong Kim, Sopheap Yun, Jae-Ryoung Park, Yoon-Hee Jang, Muhammad Farooq, Byoung-Ju Yun, Kyung-Min Kim. Bio-Efficacy of Chrysoeriol7, a Natural Chemical and Repellent, against Brown Planthopper in Rice.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031540
. [PMID: 35163461] - Luis Fernando Méndez-López, Pierluigi Caboni, Eder Arredondo-Espinoza, Juan J J Carrizales-Castillo, Isaías Balderas-Rentería, María Del Rayo Camacho-Corona. Bioassay-Guided Identification of the Antiproliferative Compounds of Cissus trifoliata and the Transcriptomic Effect of Resveratrol in Prostate Cancer Pc3 Cells.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082200
. [PMID: 33920405] - Jia-Ying Wu, Ying-Jie Chen, Lu Bai, Yu-Xi Liu, Xiu-Qiong Fu, Pei-Li Zhu, Jun-Kui Li, Ji-Yao Chou, Cheng-Le Yin, Ya-Ping Wang, Jing-Xuan Bai, Ying Wu, Zheng-Zhi Wu, Zhi-Ling Yu. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Mar; 68(?):153173. doi:
10.1016/j.phymed.2020.153173
. [PMID: 31999977] - Jang Hoon Kim, Chang Hyun Jin. Inhibitory Activity of Flavonoids, Chrysoeriol and Luteolin-7-O-Glucopyranoside, on Soluble Epoxide Hydrolase from Capsicum chinense.
Biomolecules.
2020 01; 10(2):. doi:
10.3390/biom10020180
. [PMID: 31991570] - Tanapol Limboonreung, Patoomratana Tuchinda, Sukumal Chongthammakun. Chrysoeriol mediates mitochondrial protection via PI3K/Akt pathway in MPP+ treated SH-SY5Y cells.
Neuroscience letters.
2020 01; 714(?):134545. doi:
10.1016/j.neulet.2019.134545
. [PMID: 31622648] - Daren Qiu, Mi Zhou, Ting Lin, Junjie Chen, Guanghui Wang, Yujie Huang, Xin Jiang, Wenjing Tian, Haifeng Chen. Cytotoxic Components from Hypericum elodeoides Targeting RXRα and Inducing HeLa Cell Apoptosis through Caspase-8 Activation and PARP Cleavage.
Journal of natural products.
2019 05; 82(5):1072-1080. doi:
10.1021/acs.jnatprod.8b00680
. [PMID: 31038949] - Yuta Morishita, Kaoru Ikeda, Hiroaki Matsuno, Hideyuki Ito, Akihiro Tai. Identification of degranulation inhibitors from rooibos (Aspalathus linearis) tea in rat basophilic leukaemia cells.
Natural product research.
2019 May; 33(10):1472-1476. doi:
10.1080/14786419.2017.1416377
. [PMID: 29262735] - Fuguo Shi, Hong Pan, Yuanfu Lu, Li Ding. An HPLC-MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study.
Journal of separation science.
2018 Oct; 41(20):3830-3839. doi:
10.1002/jssc.201800585
. [PMID: 30101558] - Aimin Wang, Rensai Li, Lei Ren, Xiali Gao, Yungang Zhang, Zhimin Ma, Daifu Ma, Yonghai Luo. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam).
Food chemistry.
2018 Sep; 260(?):124-134. doi:
10.1016/j.foodchem.2018.03.125
. [PMID: 29699652] - Marcos Marçal Ferreira Queiroz, Aymeric Monteillier, Sarah Berndt, Laurence Marcourt, Eryvelton de Souza Franco, Gilles Carpentier, Samad Nejad Ebrahimi, Muriel Cuendet, Vanderlan da Silva Bolzani, Maria Bernadete Souza Maia, Emerson Ferreira Queiroz, Jean-Luc Wolfender. NF-κB and Angiogenesis Inhibitors from the Aerial Parts of Chresta martii.
Journal of natural products.
2018 08; 81(8):1769-1776. doi:
10.1021/acs.jnatprod.8b00161
. [PMID: 30067035] - Janggyoo Choi, Kee Dong Yoon, Jinwoong Kim. Chemical constituents from Taraxacum officinale and their α-glucosidase inhibitory activities.
Bioorganic & medicinal chemistry letters.
2018 02; 28(3):476-481. doi:
10.1016/j.bmcl.2017.12.014
. [PMID: 29254644] - Liping Wang, Qingwei Chen, Lijun Zhu, Qiang Li, Xuejun Zeng, Linlin Lu, Ming Hu, Xinchun Wang, Zhongqiu Liu. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats.
Drug metabolism and disposition: the biological fate of chemicals.
2017 03; 45(3):306-315. doi:
10.1124/dmd.116.073619
. [PMID: 28031430] - Barbara Tóth, Erika Liktor-Busa, Norbert Kúsz, Ádám Szappanos, Attila Mándi, Tibor Kurtán, Edit Urbán, Judit Hohmann, Fang-Rong Chang, Andrea Vasas. Phenanthrenes from Juncus inflexus with Antimicrobial Activity against Methicillin-Resistant Staphylococcus aureus.
Journal of natural products.
2016 11; 79(11):2814-2823. doi:
10.1021/acs.jnatprod.6b00581
. [PMID: 27808510] - Guillermo Ramirez, Alejandro Zamilpa, Miguel Zavala, Julia Perez, Dulce Morales, Jaime Tortoriello. Chrysoeriol and other polyphenols from Tecoma stans with lipase inhibitory activity.
Journal of ethnopharmacology.
2016 Jun; 185(?):1-8. doi:
10.1016/j.jep.2016.03.014
. [PMID: 26970570] - Mohamed A Farag, Heba Handoussa, Mostafa I Fekry, Ludger A Wessjohann. Metabolite profiling in 18 Saudi date palm fruit cultivars and their antioxidant potential via UPLC-qTOF-MS and multivariate data analyses.
Food & function.
2016 Feb; 7(2):1077-86. doi:
10.1039/c5fo01570g
. [PMID: 26781334] - Yingzhan Tang, Junhong Ling, Peng Zhang, Xiangrong Zhang, Na Zhang, Wenli Wang, Jiayuan Li, Ning Li. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).
Bioorganic & medicinal chemistry letters.
2015 Aug; 25(16):3217-20. doi:
10.1016/j.bmcl.2015.05.089
. [PMID: 26096681] - Pui Ying Lam, Hongjia Liu, Clive Lo. Completion of Tricin Biosynthesis Pathway in Rice: Cytochrome P450 75B4 Is a Unique Chrysoeriol 5'-Hydroxylase.
Plant physiology.
2015 Aug; 168(4):1527-36. doi:
10.1104/pp.15.00566
. [PMID: 26082402] - Chi-Chih Chang, Sheau Ling Ho, Shoei-Sheng Lee. Acylated glucosylflavones as α-glucosidase inhibitors from Tinospora crispa leaf.
Bioorganic & medicinal chemistry.
2015 Jul; 23(13):3388-96. doi:
10.1016/j.bmc.2015.04.053
. [PMID: 25999202] - Yearam Jung, Soon Young Shin, Yeonjoong Yong, Hyeryoung Jung, Seunghyun Ahn, Young Han Lee, Yoongho Lim. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships.
Chemical biology & drug design.
2015 May; 85(5):574-85. doi:
10.1111/cbdd.12445
. [PMID: 25298094] - Atsuyoshi Nishina, Motohiko Ukiya, Makoto Fukatsu, Mamoru Koketsu, Masayuki Ninomiya, Daisuke Sato, Junpei Yamamoto, Kazuo Kobayashi-Hattori, Takeshi Okubo, Hideyo Tokuoka, Hirokazu Kimura. Effects of Various 5,7-Dihydroxyflavone Analogs on Adipogenesis in 3T3-L1 Cells.
Biological & pharmaceutical bulletin.
2015; 38(11):1794-800. doi:
10.1248/bpb.b15-00489
. [PMID: 26521830] - Hua-Qing Liu, Tian-Lin Wang. [Chemical constituents from flower of Lonicera fragrantissima].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2014 Aug; 37(8):1383-5. doi:
. [PMID: 25726645]
- Daniela Ribeiro, Marisa Freitas, Sara M Tomé, Artur M S Silva, Graça Porto, Eurico J Cabrita, M Manuel B Marques, Eduarda Fernandes. Inhibition of LOX by flavonoids: a structure-activity relationship study.
European journal of medicinal chemistry.
2014 Jan; 72(?):137-45. doi:
10.1016/j.ejmech.2013.11.030
. [PMID: 24368208] - Ki-Suk Kim, Dong Jin Lim, Hea Jung Yang, Eun-Kyeong Choi, Min Hee Shin, Kwang Seok Ahn, Sang Hoon Jung, Jae Young Um, Hee-Jae Jung, Jun Hee Lee, Seok-Geun Lee, Sung-Ki Jung, Hyeung-Jin Jang. The multi-targeted effects of Chrysanthemum herb extract against Escherichia coli O157:H7.
Phytotherapy research : PTR.
2013 Sep; 27(9):1398-406. doi:
10.1002/ptr.4859
. [PMID: 23255247] - Jin Hwan Lee, Ki Hun Park, Myoung-Hee Lee, Hyun-Tae Kim, Woo Duck Seo, Jun Young Kim, In-Youl Baek, Dae Sik Jang, Tae Joung Ha. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars.
Food chemistry.
2013 Jan; 136(2):843-52. doi:
10.1016/j.foodchem.2012.08.057
. [PMID: 23122135] - Ibrahim Demirtas, Ramazan Erenler, Mahfuz Elmastas, Ahmet Goktasoglu. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction.
Food chemistry.
2013 Jan; 136(1):34-40. doi:
10.1016/j.foodchem.2012.07.086
. [PMID: 23017389] - Ayumi Uehara, Tsukasa Iwashina. Flavonoids from the Japanese monotypic genus, Nipponanthemum.
Natural product communications.
2012 Aug; 7(8):1005-6. doi:
. [PMID: 22978216]
- Xiao-Ye Sun, Hong-Hua Wu, Ai-Zhen Fu, Peng Zhang. [Chemical constituents of Trichosanthes kirilowii Maxim].
Yao xue xue bao = Acta pharmaceutica Sinica.
2012 Jul; 47(7):922-5. doi:
. [PMID: 22993858]
- Sumi Wijaya, Khoo Teng Jin, Ting Kang Nee, Christophe Wiart. In vitro 5-LOX inhibitory and antioxidant activities of extracts and compounds from the aerial parts of Lopholaena coriifolia (Sond.) E. Phillips & C.A. Sm.
Journal of complementary & integrative medicine.
2012 Jun; 9(?):Article 11. doi:
10.1515/1553-3840.1615
. [PMID: 22728459] - Astrid Obmann, Ingrid Werner, Armin Presser, Martin Zehl, Zita Swoboda, Sodnomtseren Purevsuren, Samdan Narantuya, Christa Kletter, Sabine Glasl. Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch.
Carbohydrate research.
2011 Sep; 346(13):1868-75. doi:
10.1016/j.carres.2011.04.031
. [PMID: 21640336] - Zhongjian Chen, Meng Chen, Hao Pan, Siyuan Sun, Liping Li, Su Zeng, Huidi Jiang. Role of catechol-O-methyltransferase in the disposition of luteolin in rats.
Drug metabolism and disposition: the biological fate of chemicals.
2011 Apr; 39(4):667-74. doi:
10.1124/dmd.110.037333
. [PMID: 21209248] - Federico Ferreres, Angel Gil-Izquierdo, Juliana Vinholes, Clara Grosso, Patrícia Valentão, Paula B Andrade. Approach to the study of C-glycosyl flavones acylated with aliphatic and aromatic acids from Spergularia rubra by high-performance liquid chromatography-photodiode array detection/electrospray ionization multi-stage mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2011 Mar; 25(6):700-12. doi:
10.1002/rcm.4910
. [PMID: 21337631] - Anil Pareek, Manish Suthar, Garvendra S Rathore, Vijay Bansal. Feverfew (Tanacetum parthenium L.): A systematic review.
Pharmacognosy reviews.
2011 Jan; 5(9):103-10. doi:
10.4103/0973-7847.79105
. [PMID: 22096324] - Jing Chen, Chaofeng Zhang, Mian Zhang. [Chemical constituents from aerial parts of Fallopia convolvulus].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Dec; 35(23):3165-7. doi:
. [PMID: 21355240]
- Atef A El-Hela, Hussein A Al-Amier, Taghreed A Ibrahim. Comparative study of the flavonoids of some Verbena species cultivated in Egypt by using high-performance liquid chromatography coupled with ultraviolet spectroscopy and atmospheric pressure chemical ionization mass spectrometry.
Journal of chromatography. A.
2010 Oct; 1217(41):6388-93. doi:
10.1016/j.chroma.2010.08.025
. [PMID: 20817165] - Young Ho Kim, Young Soon Lee, Eun Mi Choi. Chrysoeriol isolated from Eurya cilliata leaves protects MC3T3-E1 cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation.
Journal of applied toxicology : JAT.
2010 Oct; 30(7):666-73. doi:
10.1002/jat.1539
. [PMID: 20981859] - JinPyo Kim, IkSoo Lee, JeongJu Seo, MunyHung Jung, YoungHee Kim, NamHui Yim, KiHwan Bae. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells.
Phytotherapy research : PTR.
2010 Oct; 24(10):1543-8. doi:
10.1002/ptr.3186
. [PMID: 20878708] - Jeong-Ah Kim, Edward K Lau, Li Pan, Esperanza J Carcache De Blanco. NF-kappaB inhibitors from Brucea javanica exhibiting intracellular effects on reactive oxygen species.
Anticancer research.
2010 Sep; 30(9):3295-300. doi:
. [PMID: 20944100]
- Miroslav M Savić, Jelena M Kukić, Renée J Grayer, Marija M Milinković, Petar D Marin, Jovana Divljaković, Michael Van Linn, James M Cook, Silvana D Petrović. Behavioural characterization of four endemic Stachys taxa.
Phytotherapy research : PTR.
2010 Sep; 24(9):1309-16. doi:
10.1002/ptr.3106
. [PMID: 20127664] - Jun-Min Zhang, Xiao-Feng Shi, Qu-Huan Ma, Fu-Jiang He, Dong-Dong Wang, Dong-Yan Liu, Bin Fan. [Studies on the chemical constituents from pine needles of Cedrus deodara (II)].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2010 Jul; 33(7):1084-6. doi:
"
. [PMID: 21137361] - Amélia P Rauter, Alice Martins, Carlos Borges, Helder Mota-Filipe, Rui Pinto, Bruno Sepodes, Jorge Justino. Antihyperglycaemic and protective effects of flavonoids on streptozotocin-induced diabetic rats.
Phytotherapy research : PTR.
2010 Jun; 24 Suppl 2(?):S133-8. doi:
10.1002/ptr.3017
. [PMID: 20309949] - J P Yadav, Vedpriya Arya, Sanjay Yadav, Manju Panghal, Sandeep Kumar, Seema Dhankhar. Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile.
Fitoterapia.
2010 Jun; 81(4):223-30. doi:
10.1016/j.fitote.2009.09.008
. [PMID: 19796670] - Łukasz Marczak, Maciej Stobiecki, Michał Jasiński, Wiesław Oleszek, Piotr Kachlicki. Fragmentation pathways of acylated flavonoid diglucuronides from leaves of Medicago truncatula.
Phytochemical analysis : PCA.
2010 May; 21(3):224-33. doi:
10.1002/pca.1189
. [PMID: 19950391] - Katharina V Reichelt, Beate Hartmann, Berthold Weber, Jakob P Ley, Gerhard E Krammer, Karl-Heinz Engel. Identification of bisprenylated benzoic acid derivatives from yerba santa (Eriodictyon ssp.) using sensory-guided fractionation.
Journal of agricultural and food chemistry.
2010 Feb; 58(3):1850-9. doi:
10.1021/jf903286s
. [PMID: 20058867] - Hao-wu Hu, Xiao-ming Xie, Pu-zhao Zhang, Ren-geng Shu. [Study on the flavonoids from Mosla chinensis 'jiangxiangru'].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2010 Feb; 33(2):218-9. doi:
"
. [PMID: 20575414] - Xiaoyun Meng, Larissa A Munishkina, Anthony L Fink, Vladimir N Uversky. Effects of Various Flavonoids on the α-Synuclein Fibrillation Process.
Parkinson's disease.
2010 Jan; 2010(?):650794. doi:
10.4061/2010/650794
. [PMID: 20976092] - M S Prajapati, J B Patel, K Modi, M B Shah. Leucas aspera: A review.
Pharmacognosy reviews.
2010 Jan; 4(7):85-7. doi:
10.4103/0973-7847.65330
. [PMID: 22228946] - Jong Hwan Kwak, Min Woo Kang, Jong Hwa Roh, Sang Un Choi, Ok Pyo Zee. Cytotoxic phenolic compounds from Chionanthus retusus.
Archives of pharmacal research.
2009 Dec; 32(12):1681-7. doi:
10.1007/s12272-009-2203-0
. [PMID: 20162394] - Qi Wu, Xiuwei Yang, Lei Zou, Dexian Fu. [Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Sep; 34(17):2206-11. doi:
. [PMID: 19943487]
- Bui Huu Tai, Nguyen Manh Cuong, Tran Thu Huong, Eun-Mi Choi, Jeong-Ah Kim, Young Ho Kim. Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells.
Journal of Asian natural products research.
2009 Sep; 11(9):817-23. doi:
10.1080/10286020903117317
. [PMID: 20183330] - Kailan Zhou, Feng Zhao, Zhihui Liu, Yulei Zhuang, Lixia Chen, Feng Qiu. Triterpenoids and flavonoids from celery (Apium graveolens).
Journal of natural products.
2009 Sep; 72(9):1563-7. doi:
10.1021/np900117v
. [PMID: 19778086] - Li-Hong Li, Feng-Zhi Ren, Shu-Hong Chen, Yue-Qi Gao. [New homoisoflavanones from Polygonatum odoratum (Mill.) Druce].
Yao xue xue bao = Acta pharmaceutica Sinica.
2009 Jul; 44(7):764-7. doi:
. [PMID: 19806917]
- Ning-Ning Yuan, Wei-Huan Huang, Yao-Lan Li, Ying-Zhou Cen. [Studies on the chemical constituents of Blumea laciniata].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2009 Jul; 32(7):1065-6. doi:
"
. [PMID: 19873734] - An Liu, Lizhen Xu, Zhongmei Zou, Shilin Yang. [Studies on chemical constituents from leaves of Cassia alata].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Apr; 34(7):861-3. doi:
. [PMID: 19623982]
- Bharathi Avula, Yan-Hong Wang, Troy J Smillie, Wilfred Mabusela, Leszek Vincent, Frans Weitz, Ikhlas A Khan. Quantitative determination of flavonoids by column high-performance liquid chromatography with mass spectrometry and ultraviolet absorption detection in Artemisia afra and comparative studies with various species of Artemisia plants.
Journal of AOAC International.
2009 Mar; 92(2):633-44. doi:
"
. [PMID: 19485225] - Seung Hyun Kim, Sin-Duk Jang, Ki Yong Lee, Sang Hyun Sung, Young Choong Kim. Chemical constituents isolated from Polygala japonica leaves and their inhibitory effect on nitric oxide production in vitro.
Journal of enzyme inhibition and medicinal chemistry.
2009 Feb; 24(1):230-3. doi:
10.1080/14756360802051362
. [PMID: 18825536] - Jong Hwan Kwak, Hyun Jung Kim, Kwang Ho Lee, Se Chan Kang, Ok Pyo Zee. Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina.
Archives of pharmacal research.
2009 Feb; 32(2):207-13. doi:
10.1007/s12272-009-1137-x
. [PMID: 19280150] - Yanyan Jiang, Renbing Shi, Bin Liu, Qiuying Wang, Ying Dai. [Studies on chemical components of Lobelia chinensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Feb; 34(3):294-7. doi:
. [PMID: 19445152]
- Masao Kikuchi, Junichi Goto, Saori Noguchi, Rie Kakuda, Yasunori Yaoita. Glycosides from whole plants of Glechoma hederacea L.
Journal of natural medicines.
2008 Oct; 62(4):479-80. doi:
10.1007/s11418-008-0264-x
. [PMID: 18553179] - Abbas Delazar, Araz Sabzevari, Mahdi Mojarrab, Hossein Nazemiyeh, Solmaz Esnaashari, Lutfun Nahar, Seied Mehdi Razavi, Satyajit Dey Sarker. Free-radical-scavenging principles from Phlomis caucasica.
Journal of natural medicines.
2008 Oct; 62(4):464-6. doi:
10.1007/s11418-008-0255-y
. [PMID: 18484154] - Zeng-Liang Li, Lin Zhang, Jing-Kui Tian, Wen-Ming Zhou. [Studies on chemical constituents from leaves of Vaccinium bracteatum].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 Sep; 33(18):2087-9. doi:
"
. [PMID: 19160790] - I Irem Tatli, Zeliha S Akdemir, Erdem Yesilada, Esra Küpeli. Anti-inflammatory and antinociceptive potential of major phenolics from Verbascum salviifolium Boiss.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2008 Mar; 63(3-4):196-202. doi:
10.1515/znc-2008-3-406
. [PMID: 18533461] - I Irem Tatli, Satoshi Takamatsu, Ikhlas Khan, Zeliha S Akdemir. Screening for free radical scavenging and cell aggregation inhibitory activities by secondary metabolites from Turkish Verbascum species.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2007 Sep; 62(9-10):673-8. doi:
10.1515/znc-2007-9-1008
. [PMID: 18069239] - Bisera Janeska, Marina Stefova, Kalina Alipieva. Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD.
Acta pharmaceutica (Zagreb, Croatia).
2007 Sep; 57(3):371-7. doi:
10.2478/v10007-007-0030-8
. [PMID: 17878116] - V Kuete, K O Eyong, G N Folefoc, V P Beng, H Hussain, K Krohn, A E Nkengfack. Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from Newbouldia laevis.
Die Pharmazie.
2007 Jul; 62(7):552-6. doi:
. [PMID: 17718200]
- Esra Küpeli, F Pinar Sahin, Ihsan Caliş, Erdem Yeşilada, Nurten Ezer. Phenolic compounds of Sideritis ozturkii and their in vivo anti-inflammatory and antinociceptive activities.
Journal of ethnopharmacology.
2007 Jun; 112(2):356-60. doi:
10.1016/j.jep.2007.03.017
. [PMID: 17467209] - Iwona Kowalska, Anna Stochmal, Ireneusz Kapusta, Bogdan Janda, Cosimo Pizza, Sonia Piacente, Wieslaw Oleszek. Flavonoids from barrel medic (Medicago truncatula) aerial parts.
Journal of agricultural and food chemistry.
2007 Apr; 55(7):2645-52. doi:
10.1021/jf063635b
. [PMID: 17348681] - Anastasia Karioti, Anastasia Protopappa, Nikolaos Megoulas, Helen Skaltsa. Identification of tyrosinase inhibitors from Marrubium velutinum and Marrubium cylleneum.
Bioorganic & medicinal chemistry.
2007 Apr; 15(7):2708-14. doi:
10.1016/j.bmc.2007.01.035
. [PMID: 17287127] - Chun-Whan Choi, Hyun Ah Jung, Sam Sik Kang, Jae Sue Choi. Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae.
Archives of pharmacal research.
2007 Jan; 30(1):1-7. doi:
10.1007/bf02977770
. [PMID: 17328234] - Arif-ullah Khan, Anwarul Hassan Gilani. Selective bronchodilatory effect of Rooibos tea (Aspalathus linearis) and its flavonoid, chrysoeriol.
European journal of nutrition.
2006 Dec; 45(8):463-9. doi:
10.1007/s00394-006-0620-0
. [PMID: 17080260] - Anwarul Hassan Gilani, Arif-Ullah Khan, Muhammad N Ghayur, Syed Faizan Ali, Joachim W Herzig. Antispasmodic effects of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+ -channel activation.
Basic & clinical pharmacology & toxicology.
2006 Nov; 99(5):365-73. doi:
10.1111/j.1742-7843.2006.pto_507.x
. [PMID: 17076689] - Amani S Awaad, D J Maitland, G A Soliman. Hepatoprotective activity of Schouwia thebica webb.
Bioorganic & medicinal chemistry letters.
2006 Sep; 16(17):4624-8. doi:
10.1016/j.bmcl.2006.06.011
. [PMID: 16797983] - Catherine Koukoulitsa, Anastasia Karioti, Maria Camilla Bergonzi, Gennaro Pescitelli, Lorenzo Di Bari, Helen Skaltsa. Polar constituents from the aerial parts of Origanum vulgare L. Ssp. hirtum growing wild in Greece.
Journal of agricultural and food chemistry.
2006 Jul; 54(15):5388-92. doi:
10.1021/jf061477i
. [PMID: 16848522] - Yan Hua, Han-qing Wang. [Studies on the flavonoids from whole herbs of Seriphidium terrae-albae].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2006 May; 31(10):820-2. doi:
. [PMID: 17048665]
- Guang-Tong Chen, Hui-Yuan Gao, Jian Zheng, Bin Wu, Xiao-Ke Yang, Li-Jun Wu. [Study of chemical constituents in active parts of Mentha spicata III].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2006 Apr; 31(7):560-2. doi:
"
. [PMID: 16780158] - Valeria Moscatelli, Oksana Hnatyszyn, Cristina Acevedo, Javier Megías, María José Alcaraz, Graciela Ferraro. Flavonoids from Artemisia copa with anti-inflammatory activity.
Planta medica.
2006 Jan; 72(1):72-4. doi:
10.1055/s-2005-873177
. [PMID: 16450301] - Doo-Youn Choi, Jeong Yong Lee, Mi-Ran Kim, Eun-Rhan Woo, Yoon Gyoon Kim, Keon Wook Kang. Chrysoeriol potently inhibits the induction of nitric oxide synthase by blocking AP-1 activation.
Journal of biomedical science.
2005 Dec; 12(6):949-59. doi:
10.1007/s11373-005-9028-8
. [PMID: 16228289] - Yi-Nan Zheng, Jing Zhang, Li-Kun Han, Keizo Sekiya, Yoshiyuki Kimura, Hiromichi Okuda. Effects of compounds in leaves of Salix matsudana on arachidonic acid metabolism.
Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan.
2005 Dec; 125(12):1005-8. doi:
10.1248/yakushi.125.1005
. [PMID: 16327246] - A Delazar, S Celik, R S Göktürk, O Unal, L Nahar, S D Sarker. Two acylated flavonoid glycosides from Stachys bombycina, and their free radical scavenging activity.
Die Pharmazie.
2005 Nov; 60(11):878-80. doi:
"
. [PMID: 16320954] - Wei-Dong Xie, Ping-Lin Li, Zhong-Jian Jia. A new flavone glycoside and other constituents from Carduus crispus.
Die Pharmazie.
2005 Mar; 60(3):233-6. doi:
"
. [PMID: 15801681] - J T Doyama, H G Rodrigues, E L B Novelli, E Cereda, W Vilegas. Chemical investigation and effects of the tea of Passiflora alata on biochemical parameters in rats.
Journal of ethnopharmacology.
2005 Jan; 96(3):371-4. doi:
10.1016/j.jep.2004.06.021
. [PMID: 15619554] - Chiara Cavaliere, Patrizia Foglia, Elisabetta Pastorini, Roberto Samperi, Aldo Laganà. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2005; 19(21):3143-58. doi:
10.1002/rcm.2185
. [PMID: 16200659] - Hasan Kirmizibekmez, Ihsan Calis, Remo Perozzo, Reto Brun, Ali A Dönmez, Anthony Linden, Peter Rüedi, Deniz Tasdemir. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis.
Planta medica.
2004 Aug; 70(8):711-7. doi:
10.1055/s-2004-827200
. [PMID: 15326547] - F Pinar Sahin, Deniz Taşdemir, Peter Rüedi, Nurten Ezer, Ihsan Caliş. Three acylated flavone glycosides from Sideritis ozturkii Aytac & Aksoy.
Phytochemistry.
2004 Jul; 65(14):2095-9. doi:
10.1016/j.phytochem.2004.03.009
. [PMID: 15279978] - Alicia Marín, Federico Ferreres, Francisco A Tomás-Barberán, María I Gil. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.).
Journal of agricultural and food chemistry.
2004 Jun; 52(12):3861-9. doi:
10.1021/jf0497915
. [PMID: 15186108] - Liang-Sheng Wang, Fumio Hashimoto, Aya Shiraishi, Noriaki Aoki, Jia-Jue Li, Yusuke Sakata. Chemical taxonomy of the Xibei tree peony from China by floral pigmentation.
Journal of plant research.
2004 Feb; 117(1):47-55. doi:
10.1007/s10265-003-0130-6
. [PMID: 14685820] - Jin Hui Kim, Young Ho Cho, Sung Min Park, Kyung Eun Lee, Jeong Jae Lee, Bum Chun Lee, Hyeong Bae Pyo, Kyung Sik Song, Hum Dai Park, Yeo Pyo Yun. Antioxidants and inhibitor of matrix metalloproteinase-1 expression from leaves of Zostera marina L.
Archives of pharmacal research.
2004 Feb; 27(2):177-83. doi:
10.1007/bf02980103
. [PMID: 15022719] - Angel Gil-Izquierdo, María T Riquelme, Ignacio Porras, Federico Ferreres. Effect of the rootstock and interstock grafted in lemon tree (Citrus limon (L.) Burm.) on the flavonoid content of lemon juice.
Journal of agricultural and food chemistry.
2004 Jan; 52(2):324-31. doi:
10.1021/jf0304775
. [PMID: 14733516] - Ryuichiro Suzuki, Yoshihito Okada, Toru Okuyama. A new flavone C-glycoside from the style of Zea mays L. with glycation inhibitory activity.
Chemical & pharmaceutical bulletin.
2003 Oct; 51(10):1186-8. doi:
10.1248/cpb.51.1186
. [PMID: 14519927] - Yoshimi Ueda, Hisae Oku, Munekazu Iinuma, Kyoko Ishiguro. Effects on blood pressure decrease in response to PAF of Impatiens textori MIQ.
Biological & pharmaceutical bulletin.
2003 Oct; 26(10):1505-7. doi:
10.1248/bpb.26.1505
. [PMID: 14519965] - Dae Sik Jang, Eun Jung Park, Young-Hwa Kang, Michael E Hawthorne, Jose Schunke Vigo, James G Graham, Fernando Cabieses, Harry H S Fong, Rajendra G Mehta, John M Pezzuto, A Douglas Kinghorn. Potential cncer chemopreventive flavonoids from the stems of Tephrosia toxicaria.
Journal of natural products.
2003 Sep; 66(9):1166-70. doi:
10.1021/np0302100
. [PMID: 14510590] - Anastasia Karioti, Helen Skaltsa, Jörg Heilmann, Otto Sticher. Acylated flavonoid and phenylethanoid glycosides from Marrubium velutinum.
Phytochemistry.
2003 Sep; 64(2):655-60. doi:
10.1016/s0031-9422(03)00242-5
. [PMID: 12943791] - Beena Mishra, K Indira Priyadarsini, M Sudheer Kumar, M K Unnikrishnan, Hari Mohan. Effect of O-glycosilation on the antioxidant activity and free radical reactions of a plant flavonoid, chrysoeriol.
Bioorganic & medicinal chemistry.
2003 Jul; 11(13):2677-85. doi:
10.1016/s0968-0896(03)00232-3
. [PMID: 12788341] - Milena Nikolova, Reneta Gevrenova, Stephanka Ivancheva. External flavonoid aglycones from Veronica chamaedrys L. (Scrophulariaceae).
Acta pharmaceutica (Zagreb, Croatia).
2003 Jun; 53(2):145-9. doi:
"
. [PMID: 14764249] - Samir Kumar Sadhu, Emi Okuyama, Haruhiro Fujimoto, Masami Ishibashi. Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities.
Chemical & pharmaceutical bulletin.
2003 May; 51(5):595-8. doi:
10.1248/cpb.51.595
. [PMID: 12736464] - George R Pettit, Yanhui Meng, Clare A Stevenson, Dennis L Doubek, John C Knight, Zbigniew Cichacz, Robin K Pettit, Jean-Charles Chapuis, Jean M Schmidt. Isolation and structure of palstatin from the Amazon tree Hymeneae palustris(1).
Journal of natural products.
2003 Feb; 66(2):259-62. doi:
10.1021/np020231e
. [PMID: 12608861] - R Takeara, S Albuquerque, N P Lopes, J L C Lopes. Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae).
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2003; 10(6-7):490-3. doi:
10.1078/094471103322331430
. [PMID: 13678232]