L-3-Cyanoalanine (BioDeep_00000003218)

 

Secondary id: BioDeep_00001869204

natural product human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


(2S)-2-Amino-3-cyanopropionic acid

化学式: C4H6N2O2 (114.0429)
中文名称: β-氰基-L-丙氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 24.55%

分子结构信息

SMILES: C(C#N)C(C(=O)O)N
InChI: InChI=1S/C4H6N2O2/c5-2-1-3(6)4(7)8/h3H,1,6H2,(H,7,8)/t3-/m0/s1

描述信息

3-cyano-l-alanine, also known as L-beta-cyanoalanine or 3-cyanoalanine, (D)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 3-cyano-l-alanine is soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-cyano-l-alanine can be found in a number of food items such as conch, abiyuch, rubus (blackberry, raspberry), and lemon thyme, which makes 3-cyano-l-alanine a potential biomarker for the consumption of these food products. 3-cyano-l-alanine exists in all living organisms, ranging from bacteria to humans.
L-3-Cyanoalanine, also known as L-beta-cyanoalanine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha-amino acids which have the L-configuration of the alpha-carbon atom. L-3-Cyanoalanine is a very strong basic compound (based on its pKa). L-3-Cyanoalanine exists in all living organisms, ranging from bacteria to humans. Outside of the human body, L-3-cyanoalanine has been detected, but not quantified in, several different foods, such as summer savouries, orange bell peppers, red rices, mixed nuts, and green bell peppers. This could make L-3-cyanoalanine a potential biomarker for the consumption of these foods.

同义名列表

18 个代谢物同义名

(2S)-2-Amino-3-cyanopropionic acid; (2S)-2-Amino-3-cyanopropanoic acid; L-2-Amino-3-cyanopropanoic acid; L-2-Amino-3-cyanopropionic acid; 2-Amino-3-cyanopropanoic acid; 2-Amino-3-cyanopropionic acid; 3-Cyanoalanine, (L)-isomer; beta-Cyano-L-alanine; L-beta-Cyanoalanine; β-Cyano-L-alanine; 3-cyano-L-alanine; beta-Cyanoalanine; L-β-Cyanoalanine; L-b-Cyanoalanine; L-3-Cyanoalanine; 3-Cyanoalanine; β-Cyanoalanine; 3-Cyano-L-alanine



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 AKT1, ANG, ARG1, CAT, CBS, CTH, EDN1, GRK1, GUCY1A1, MAPK1, MAPK3, NIT1, NIT2, NOS3, VEGFA
Peripheral membrane protein 1 GORASP1
Nucleus 10 AKT1, ANG, ARG1, CBS, MAPK1, MAPK3, NIT1, NOS3, USP5, VEGFA
cytosol 13 AKT1, ANG, ARG1, CAT, CBS, CTH, GPT, GUCY1A1, MAPK1, MAPK3, NIT2, NOS3, USP5
centrosome 2 MAPK1, NIT2
nucleoplasm 4 AKT1, MAPK1, MAPK3, NOS3
Cell membrane 1 AKT1
Lipid-anchor 1 GRK1
Cytoplasmic side 1 GORASP1
lamellipodium 1 AKT1
Cytoplasmic granule 1 ARG1
Golgi apparatus membrane 1 GORASP1
Synapse 1 MAPK1
cell cortex 1 AKT1
cell surface 1 VEGFA
glutamatergic synapse 3 AKT1, GUCY1A1, MAPK3
Golgi apparatus 5 GORASP1, MAPK1, MAPK3, NOS3, VEGFA
Golgi membrane 2 GORASP1, NOS3
growth cone 1 ANG
neuronal cell body 1 ANG
postsynapse 1 AKT1
Lysosome 1 USP5
Presynapse 1 USP5
plasma membrane 5 AKT1, CTH, MAPK1, MAPK3, NOS3
Membrane 5 AKT1, CAT, CTH, GRK1, VEGFA
caveola 3 MAPK1, MAPK3, NOS3
extracellular exosome 4 CAT, CTH, GPT, NIT2
endoplasmic reticulum 1 VEGFA
extracellular space 6 ANG, ARG1, CXCL8, EDN1, TST, VEGFA
perinuclear region of cytoplasm 1 NOS3
adherens junction 1 VEGFA
mitochondrion 6 CAT, MAPK1, MAPK3, NIT1, NIT2, TST
protein-containing complex 2 AKT1, CAT
intracellular membrane-bounded organelle 1 CAT
Single-pass type I membrane protein 1 CTH
Secreted 4 ANG, CXCL8, EDN1, VEGFA
extracellular region 8 ANG, ARG1, CAT, CXCL8, EDN1, MAPK1, NIT2, VEGFA
basal part of cell 1 EDN1
Mitochondrion matrix 1 TST
mitochondrial matrix 2 CAT, TST
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 MAPK1
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 ANG
microtubule cytoskeleton 1 AKT1
nucleolus 1 ANG
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 2 MAPK1, MAPK3
cell-cell junction 1 AKT1
vesicle 1 AKT1
Cell junction, focal adhesion 2 MAPK1, MAPK3
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 3 CAT, MAPK1, MAPK3
spindle 2 AKT1, MAPK1
GABA-ergic synapse 1 GUCY1A1
cis-Golgi network 1 GORASP1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ANG
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
Late endosome 2 MAPK1, MAPK3
ciliary basal body 1 AKT1
mitotic spindle 1 MAPK1
Chromosome 1 ANG
cytoskeleton 3 MAPK1, MAPK3, NOS3
Cell projection, cilium, photoreceptor outer segment 1 GRK1
[Isoform 2]: Mitochondrion 1 NIT1
Nucleus, nucleolus 1 ANG
nuclear envelope 1 MAPK3
Membrane, caveola 2 MAPK1, MAPK3
Cytoplasm, Stress granule 2 ANG, NOS3
cytoplasmic stress granule 2 ANG, NOS3
pseudopodium 2 MAPK1, MAPK3
[Isoform 1]: Cytoplasm 1 NIT1
ficolin-1-rich granule lumen 2 CAT, MAPK1
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 MAPK1, MAPK3
platelet alpha granule lumen 1 VEGFA
specific granule lumen 2 ARG1, NIT2
tertiary granule lumen 1 NIT2
endocytic vesicle membrane 1 NOS3
endocytic vesicle 1 ANG
transport vesicle 1 EDN1
azurophil granule lumen 2 ARG1, MAPK1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
guanylate cyclase complex, soluble 1 GUCY1A1
photoreceptor disc membrane 1 GRK1
angiogenin-PRI complex 1 ANG
rough endoplasmic reticulum lumen 1 EDN1
catalase complex 1 CAT
Weibel-Palade body 1 EDN1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA


文献列表

  • Huoyong Jiang, Nengdang Jiang, Li Wang, Jingjing Guo, Kexin Chen, Yijun Dai. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification. Journal of applied microbiology. 2022 Aug; 133(2):311-322. doi: 10.1111/jam.15561. [PMID: 35365856]
  • Gerry Aplang Jana, Latifa Al Kharusi, Ramanjulu Sunkar, Rashid Al-Yahyai, Mahmoud W Yaish. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant signaling & behavior. 2019; 14(11):1663112. doi: 10.1080/15592324.2019.1663112. [PMID: 31505987]
  • Andani E Mulelu, Angela M Kirykowicz, Jeremy D Woodward. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Communications biology. 2019; 2(?):260. doi: 10.1038/s42003-019-0505-4. [PMID: 31341959]
  • Jan Günther, Sandra Irmisch, Nathalie D Lackus, Michael Reichelt, Jonathan Gershenzon, Tobias G Köllner. The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa. BMC plant biology. 2018 Oct; 18(1):251. doi: 10.1186/s12870-018-1478-z. [PMID: 30348089]
  • Nesa Ghasemi, Hasan Secen, Hasibe Yılmaz, Burcu Binici, Ahmet C Goren. Determination of neurotoxic agents as markers of common vetch adulteration in lentil by LC-MS/MS. Food chemistry. 2017 Apr; 221(?):2005-2009. doi: 10.1016/j.foodchem.2016.11.079. [PMID: 27979192]
  • Stefan Pentzold, Mika Zagrobelny, Bekzod Khakimov, Søren Balling Engelsen, Henrik Clausen, Bent Larsen Petersen, Jonas Borch, Birger Lindberg Møller, Søren Bak. Lepidopteran defence droplets - a composite physical and chemical weapon against potential predators. Scientific reports. 2016 Mar; 6(?):22407. doi: 10.1038/srep22407. [PMID: 26940001]
  • Nicky Wybouw, Wannes Dermauw, Luc Tirry, Christian Stevens, Miodrag Grbić, René Feyereisen, Thomas Van Leeuwen. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife. 2014 Apr; 3(?):e02365. doi: 10.7554/elife.02365. [PMID: 24843024]
  • Brendan O'Leary, Gail M Preston, Lee J Sweetlove. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Molecular plant. 2014 Jan; 7(1):231-43. doi: 10.1093/mp/sst110. [PMID: 23825089]
  • Marylou Machingura, Aissatou Sidibe, Andrew J Wood, Stephen D Ebbs. The β-cyanoalanine pathway is involved in the response to water deficit in Arabidopsis thaliana. Plant physiology and biochemistry : PPB. 2013 Feb; 63(?):159-69. doi: 10.1016/j.plaphy.2012.11.012. [PMID: 23262184]
  • Toshio Iwaki, Lining Guo, John A Ryals, Syuhei Yasuda, Takayoshi Shimazaki, Akira Kikuchi, Kazuo N Watanabe, Mie Kasuga, Kazuko Yamaguchi-Shinozaki, Takumi Ogawa, Daisaku Ohta. Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). Journal of agricultural and food chemistry. 2013 Jan; 61(4):893-900. doi: 10.1021/jf304071n. [PMID: 23286584]
  • Miyako Kusano, Pär Jonsson, Atsushi Fukushima, Jonas Gullberg, Michael Sjöström, Johan Trygg, Thomas Moritz. Metabolite Signature during Short-Day Induced Growth Cessation in Populus. Frontiers in plant science. 2011; 2(?):29. doi: 10.3389/fpls.2011.00029. [PMID: 22629261]
  • Berit Ebert, Daniela Zöller, Alexander Erban, Ines Fehrle, Jürgen Hartmann, Annette Niehl, Joachim Kopka, Joachim Fisahn. Metabolic profiling of Arabidopsis thaliana epidermal cells. Journal of experimental botany. 2010 Mar; 61(5):1321-35. doi: 10.1093/jxb/erq002. [PMID: 20150518]
  • Andrew J M Howden, C Jill Harrison, Gail M Preston. A conserved mechanism for nitrile metabolism in bacteria and plants. The Plant journal : for cell and molecular biology. 2009 Jan; 57(2):243-53. doi: 10.1111/j.1365-313x.2008.03682.x. [PMID: 18786181]
  • Roland Jenrich, Inga Trompetter, Søren Bak, Carl Erik Olsen, Birger Lindberg Møller, Markus Piotrowski. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2007 Nov; 104(47):18848-53. doi: 10.1073/pnas.0709315104. [PMID: 18003897]
  • Verena Kriechbaumer, Woong June Park, Markus Piotrowski, Robert B Meeley, Alfons Gierl, Erich Glawischnig. Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. Journal of experimental botany. 2007; 58(15-16):4225-33. doi: 10.1093/jxb/erm279. [PMID: 18182427]
  • Markus Piotrowski, Julia Jutta Volmer. Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog. Plant molecular biology. 2006 May; 61(1-2):111-22. doi: 10.1007/s11103-005-6217-9. [PMID: 16786295]
  • Ying-Yuan Pamela Mok, Mohammed Shirhan Bin Mohammed Atan, Cheong Yoke Ping, Wang Zhong Jing, Madhav Bhatia, Shabbir Moochhala, Philip K Moore. Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. British journal of pharmacology. 2004 Dec; 143(7):881-9. doi: 10.1038/sj.bjp.0706014. [PMID: 15504752]
  • C Ressler, J G Tatake. Vicianin, prunasin, and beta-cyanoalanine in common vetch seed as sources of urinary thiocyanate in the rat. Journal of agricultural and food chemistry. 2001 Oct; 49(10):5075-80. doi: 10.1021/jf010343w. [PMID: 11600069]
  • M Piotrowski, S Schönfelder, E W Weiler. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. The Journal of biological chemistry. 2001 Jan; 276(4):2616-21. doi: 10.1074/jbc.m007890200. [PMID: 11060302]
  • M E Tate, D Enneking. A mess of red pottage. Nature. 1992 Oct; 359(6394):357-8. doi: 10.1038/359357a0. [PMID: 1406942]
  • R Miura, Y Miyake. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide. Journal of biochemistry. 1987 Dec; 102(6):1345-54. doi: 10.1093/oxfordjournals.jbchem.a122180. [PMID: 2896189]
  • R Miura, K Shiga, Y Miyake, H Watari, T Yamano. Studies on the reaction of D-amino acid oxidase with beta-cyano-D-alanine. Observation of an intermediary stable charge transfer complex. Journal of biochemistry. 1980 May; 87(5):1469-81. doi: 10.1093/oxfordjournals.jbchem.a132888. [PMID: 6104660]
  • C RESSLER, J NELSON, M PFEFFER. A PYRIDOXAL-BETA-CYANOALANINE RELATION IN THE RAT. Nature. 1964 Sep; 203(?):1286-7. doi: 10.1038/2031286a0. [PMID: 14230211]