Moupinamide (BioDeep_00000000493)
human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C18H19NO4 (313.1314014)
中文名称: N-反式阿魏酰酪胺, N-反式-阿魏酰酪胺
谱图信息:
最多检出来源 Viridiplantae(plant) 0.12%
分子结构信息
SMILES: COC1=C(C=CC(=C1)/C=C/C(=O)NCCC2=CC=C(C=C2)O)O
InChI: InChI=1S/C18H19NO4/c1-23-17-12-14(4-8-16(17)21)5-9-18(22)19-11-10-13-2-6-15(20)7-3-13/h2-9,12,20-21H,10-11H2,1H3,(H,19,22)/b9-5+
描述信息
N-feruloyltyramine is a member of tyramines. It has a role as a metabolite.
Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available.
See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of).
Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper.
Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru
CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001
CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002
N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].
N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].
同义名列表
36 个代谢物同义名
(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid; 2-Propenamide, 3-(4-hydroxy-3-methoxyphenyl)-N-(2-(4-hydroxyphenyl)ethyl)-, (2E)-; (2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]-2-propenamide; (E)-3-(4-hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; (2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; (E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; (E)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxy-phenyl)-ethyl]-acrylamide; 2-Propenamide, 3-(4-hydroxy-3-methoxyphenyl)-N-(2-(4-hydroxyphenyl)ethyl)-; (E)-3-(4-HYDROXY-3-METHOXYPHENYL)-N-(4-HYDROXYPHENETHYL)ACRYLAMIDE; (2,3)trans-N-(p-Hydroxyphenethyl)ferulamide; N-P-TRANS-HYDROXYPHENETHYL FERULAMINE; Moupinamide, >=95\\% (LC/MS-ELSD); N-feruloyltyramine; Moupinamide; feruloyltyramine, (E)-isomer; feruloyltyramine, (Z)-isomer; N-Trans-Feruloyl Tyramine; N-trans-Feruloyltyramine; N-[(E)-feruloyl]tyramine; trans-N-Feruloyltyramine; N-Transferuloyl Tyramine; N-Trans-feruloyltramine; (e)-n-feruloyltyramine; N-E-FERULOYL TYRAMINE; (E)-Feruloyltyramine; N-feruloyltyramine; N-FERYROYLTYRAMINE; feruloyl tyramine; feruloyltyramine; UNII-WC99S6JM5Y; MEGxp0_000693; ACon1_001233; moupinamide; Alfrutamide; WC99S6JM5Y; N-Feruloyltyramine; Moupinamide
数据库引用编号
26 个数据库交叉引用编号
- ChEBI: CHEBI:17818
- KEGG: C02717
- PubChem: 5280537
- PubChem: 125213
- HMDB: HMDB0029365
- Metlin: METLIN65816
- ChEMBL: CHEMBL206555
- MeSH: feruloyltyramine
- ChemIDplus: 0065646266
- MetaCyc: CPD-440
- KNApSAcK: C00000660
- foodb: FDB000432
- chemspider: 4444168
- CAS: 640235-90-1
- CAS: 66648-43-9
- CAS: 65646-26-6
- MoNA: MSJ00001
- MoNA: MSJ00002
- medchemexpress: HY-N11021
- medchemexpress: HY-N2410
- PMhub: MS000009849
- MetaboLights: MTBLC17818
- PubChem: 5680
- 3DMET: B00488
- NIKKAJI: J326.122K
- KNApSAcK: 17818
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
130 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(4)
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- hydroxycinnamic acid tyramine amides biosynthesis:
(E)-4-coumaroyl-CoA + tyramine ⟶ H+ + coenzyme A + p-coumaroyltyramine
- suberin monomers biosynthesis:
feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin biosynthesis:
phe ⟶ trans-cinnamate + H+ + ammonia
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Suberin biosynthesis:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
INOH(0)
PlantCyc(123)
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-oxo-docosanoyl-CoA + H2O + NADP+ ⟶ 22-carboxy-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
22-hydroxy-docosanoyl-CoA + NADP+ ⟶ 22-oxo-docosanoyl-CoA + H+ + NADPH
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
- suberin monomers biosynthesis:
18-hydroxyoleate + NADP+ ⟶ 18-oxo-oleate + H+ + NADPH
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- hydroxycinnamic acid tyramine amides biosynthesis:
(E)-4-coumaroyl-CoA + tyramine ⟶ H+ + coenzyme A + p-coumaroyltyramine
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- hydroxycinnamic acid tyramine amides biosynthesis:
H+ + tyr ⟶ CO2 + tyramine
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- hydroxycinnamic acid tyramine amides biosynthesis:
cinnamoyl-CoA + tyramine ⟶ H+ + cinnamoyltyramine + coenzyme A
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- hydroxycinnamic acid tyramine amides biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
trans-feruloyl-CoA + tyramine ⟶ N-feruloyltyramine + H+ + coenzyme A
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + oleate ⟶ 18-hydroxyoleate + H2O + an oxidized [NADPH-hemoprotein reductase]
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
H2O + oleoyl-CoA ⟶ H+ + coenzyme A + oleate
- suberin monomers biosynthesis:
18-oxo-oleate + H2O + NADP+ ⟶ α,ω-9Z-octadecenedioate + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
136 个相关的物种来源信息
- 681401 - Acalypha macrostachya: 10.1016/0031-9422(95)00650-8
- 55184 - Acorus gramineus: 10.1016/J.BMCL.2012.08.016
- 796729 - Actinodaphne acuminata: 10.1016/S0031-9422(00)98022-1
- 316697 - Alchornea cordifolia: 10.1016/S0367-326X(00)00131-3
- 49314 - Annona cherimola:
- 301703 - Annona glabra:
- 49857 - Annona montana: 10.1055/S-2006-958035
- 301693 - Annona squamosa:
- 301693 - Annona squamosa: 10.4268/CJCMM20111611
- 2708717 - Antidesma membranaceum: 10.1016/S0031-9422(97)00488-3
- 2306982 - Antidesma pentandrum var. barbatum: 10.1002/JCCS.200700187
- 387567 - Aristolochia acutifolia: 10.1016/S0305-1978(01)00139-9
- 143780 - Aristolochia elegans:
- 143780 - Aristolochia elegans: 10.1016/J.BMC.2003.10.031
- 431268 - Aristolochia heterophylla:
- 431268 - Aristolochia heterophylla: 10.1248/CPB.48.357
- 158550 - Aristolochia kaempferi:
- 158550 - Aristolochia kaempferi: 10.1248/CPB.48.357
- 158551 - Aristolochia kankauensis: 10.1016/S0031-9422(00)90492-8
- 325095 - Aristolochia littoralis:
- 325095 - Aristolochia littoralis: 10.1016/J.BMC.2003.10.031
- 158555 - Aristolochia manshuriensis:
- 171878 - Aristolochia zollingeriana: 10.1016/S0031-9422(00)90492-8
- 12953 - Asimina triloba: 10.1021/NP50081A011
- 886265 - Balanites aegyptiaca: 10.1016/S0367-326X(99)00149-5
- 161934 - Beta vulgaris:
- 161934 - Beta vulgaris: 10.1080/00021369.1984.10866374
- 13393 - Cananga odorata:
- 3483 - Cannabis sativa:
- 3483 - Cannabis sativa L.: -
- 3464 - Capnoides sempervirens: 10.1016/S0305-1978(02)00225-9
- 4071 - Capsicum: 10.1021/NP0305472
- 4072 - Capsicum annuum:
- 40321 - Capsicum annuum var. annuum: 10.1080/00021369.1981.10864909
- 264975 - Caroxylon tetrandrum: 10.1021/NP060222W
- 1609857 - Casearia membranacea: 10.1055/S-2003-41120
- 2054445 - Ceratostigma willmottianum:
- 2054445 - Ceratostigma willmottianum: 10.1021/NP970044U
- 385344 - Cestrum tomentosum: 10.1016/S0305-1978(00)00030-2
- 84873 - Chelonanthus albus:
- 3559 - Chenopodium album: 10.1016/S0031-9422(03)00511-9
- 1222053 - Cinnamomum reticulatum:
- 199218 - Colocasia antiquorum: 10.1021/JF100323Q
- 4460 - Colocasia esculenta: 10.1021/JF100323Q
- 2682638 - Conchocarpus gaudichaudianus: 10.3987/COM-09-11671
- 38903 - Corydalis pallida: 10.1007/BF02978202
- 666371 - Cryptocarya concinna: 10.1007/S11418-009-0368-Y
- 367483 - Dactylicapnos torulosa: 10.1016/S0031-9422(00)97106-1
- 115739 - Deprea subtriflora: 10.1021/NP030081N
- 223763 - Eriosolena composita: 10.1016/S0031-9422(00)98022-1
- 154596 - Fagopyrum megacarpum: 10.1248/CPB.54.136
- 461588 - Fibraurea tinctoria: 10.1016/J.BMC.2008.09.023
- 296847 - Fissistigma glaucescens: 10.1002/JCCS.200000172
- 1464615 - Fumaria indica: 10.1016/0031-9422(92)83649-J
- 82232 - Galanthus elwesii: 10.1016/0031-9422(95)00187-C
- 221775 - Gomphrena globosa:
- 229543 - Hibiscus cannabinus:
- 106335 - Hibiscus syriacus: 10.1055/S-2006-960841
- 1898877 - Hibiscus taiwanensis:
- 9606 - Homo sapiens: -
- 215659 - Hornstedtia reticulata:
- 4079 - Hyoscyamus niger: 10.1021/NP010073B
- 38927 - Hypecoum imberbe: 10.1016/0031-9422(80)85081-3
- 74946 - Illigera luzonensis: 10.1016/J.PHYTOCHEM.2010.12.015
- 2116407 - Kali collina: 10.1007/S10600-011-9896-2
- 2116407 - Kali collinum: 10.1007/S10600-011-9896-2
- 293752 - Limonium sinense: 10.1055/S-2000-8540
- 332435 - Lindera glauca:
- 344083 - Litsea acutivena: 10.1002/JCCS.200700071
- 453235 - Litsea hypophaea: 10.1021/NP100022S
- 337466 - Machilus zuihoensis: 10.1016/J.PHYTOCHEM.2005.03.020
- 85872 - Magnolia compressa:
- 1462929 - Marsypopetalum modestum: 10.1080/14786419.2022.2097229
- 1679250 - Mitrephora thorelii: 10.1002/HLCA.200890109
- 1489755 - Mitrephora tomentosa: 10.1002/HLCA.200890109
- 2072264 - Mollinedia gilgiana: 10.1016/S0031-9422(00)00294-6
- 765229 - Mollinedia schottiana: 10.1002/PCA.584
- 89488 - Monascus pilosus: 10.1016/J.PHYTOL.2011.09.008
- 489341 - Monocyclanthus vignei: 10.1021/NP50077A016
- 1310094 - Monoon cupulare: 10.1080/14786411003774338
- 235726 - Monoon membranifolium:
- 1747497 - Mucuna birdwoodiana: 10.1248/CPB.35.2675
- 4432 - Nelumbo nucifera: 10.1016/J.BMCL.2013.04.013
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(84)83018-6
- 100506 - OPhiopogon japonicus ( L.f) Ker-Gawl.: -
- 2708930 - Penianthus zenkeri: 10.1016/0031-9422(91)85047-4
- 2045269 - Peperomia heyneana:
- 1719525 - Peperomia humilis:
- 1719525 - Peperomia humilis: 10.1016/S0031-9422(03)00183-3
- 511531 - Peperomia leptostachya:
- 511531 - Peperomia leptostachya: 10.1016/S0031-9422(03)00183-3
- 304128 - Physalis sordida: 10.1021/NP100127K
- 405317 - Piper argyrophyllum: 10.1016/S0031-9422(96)00502-X
- 130385 - Piper auritum:
- 130391 - Piper caninum: 10.1016/J.BMC.2004.05.007
- 538264 - Piper eucalyptifolium:
- 130401 - Piper hispidum: 10.1002/CHIN.200541203
- 247689 - Piper lolot: 10.1021/JF071963L
- 13216 - Piper nigrum:
- 511552 - Piper sanctum:
- 405319 - Piper sarmentosum: 10.1021/JF071963L
- 405345 - Piper sylvaticum:
- 130418 - Piper umbellatum:
- 130418 - Piper umbellatum: 10.1016/J.PHYTOCHEM.2008.02.018
- 363212 - Pisonia aculeata: 10.1021/NP1008575
- 33090 - Plants: -
- 105757 - Polyalthia suberosa: 10.1016/S0031-9422(99)00535-X
- 46147 - Portulaca oleracea: 10.1016/J.TALANTA.2013.11.067
- 525237 - Salsola collina: 10.1007/S10600-011-9896-2
- 360633 - Schizanthus litoralis: 10.1016/0031-9422(96)00308-1
- 108357 - Sida acuta: 10.1007/BF02976704
- 152363 - Sinomenium acutum: 10.1016/0031-9422(93)85525-V
- 63813 - Siparuna brasiliensis: 10.1016/S0031-9422(00)00222-3
- 267265 - Solanum aculeatissimum:
- 205540 - Solanum citrullifolium: 10.1016/S0305-1978(00)00030-2
- 227722 - Solanum lasiocarpum: 10.1021/NP010186V
- 4111 - Solanum melongena: 10.1080/00021369.1978.10863028
- 267268 - Solanum myriacanthum:
- 4112 - Solanum nigrum: 10.5012/BKCS.2010.31.01.199
- 4113 - Solanum tuberosum: 10.1021/NP010186V
- 329803 - Solanum violaceum: 10.1021/NP010186V
- 152367 - Stephania cephalantha: 10.1248/CPB.45.470
- 3743 - Synsepalum dulcificum: 10.1007/S10600-010-9639-9
- 183267 - Talipariti tiliaceum: 10.1055/S-2006-931604
- 354522 - Tetradium glabrifolium: 10.1016/0031-9422(95)00248-6
- 285590 - Tinospora cordifolia:
- 285591 - Tinospora crispa:
- 210369 - Tribulus terrestris:
- 210369 - Tribulus terrestris: -
- 210369 - Tribulus terrestris: 10.1055/S-2006-957535
- 548845 - Vitex tripinnata: 10.1016/S0031-9422(98)00411-7
- 576365 - Xanthium sibiricum: 10.1080/14786419.2010.539182
- 318068 - Xanthium strumarium: 10.1080/14786419.2010.539182
- 1317910 - Xylopia aethiopica: 10.1016/0031-9422(95)92653-P
- 1056465 - Zanthoxylum beecheyanum: 10.1002/JCCS.200400159
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Oscar Galarce-Bustos, Camilo Obregón, Alejandro Vallejos-Almirall, Christian Folch, Francisca Acevedo. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill.
Phytochemical analysis : PCA.
2023 Jul; ?(?):. doi:
10.1002/pca.3265
. [PMID: 37488746] - Ye Chang, Ming Bai, Xin Zhang, Shuai Shen, Jiao-Yang Hou, Guo-Dong Yao, Xiao-Xiao Huang, Shao-Jiang Song. Neuroprotective and acetylcholinesterase inhibitory activities of alkaloids from Solanum lyratum Thunb.: An in vitro and in silico analyses.
Phytochemistry.
2023 May; 209(?):113623. doi:
10.1016/j.phytochem.2023.113623
. [PMID: 36842735] - Li-Jun Yang, Zhong-Duo Yang, Zhi-Jie Li, Shu-Hong Yang, Zong-Mei Shu. Stephtetrandrine A-D, bisbenzylisoquinoline alkaloids from Stephania tetrandra.
Natural product research.
2023 Jan; 37(2):204-215. doi:
10.1080/14786419.2021.1961135
. [PMID: 34348525] - Seung-Hee Lee, Vimal Veeriah, Fred Levine. Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist.
Cell death & disease.
2021 06; 12(6):603. doi:
10.1038/s41419-021-03862-x
. [PMID: 34117215] - InWha Park, Hee Sun Byun, Gang Min Hur, MinKyun Na. Tulipiferamide A, an Alkamide from Liriodendron tulipifera, Exhibits an Anti-Inflammatory Effect via Targeting IKKβ Phosphorylation.
Journal of natural products.
2021 05; 84(5):1598-1606. doi:
10.1021/acs.jnatprod.1c00146
. [PMID: 33939429] - Yuan-Kun Zheng, Bao-Jun Su, Ya-Qi Wang, Heng-Shan Wang, Hai-Bing Liao, Dong Liang. New Tyramine- and Aporphine-Type Alkamides with NO Release Inhibitory Activities from Piper puberulum.
Journal of natural products.
2021 04; 84(4):1316-1325. doi:
10.1021/acs.jnatprod.1c00055
. [PMID: 33822610] - Zhao Xia, Tian-Qi Xu, Wei Xu, Hai-Xin Zhang, Qiu-Ping Liang, Guang-Xiong Zhou. Lyciyunin, a new dimer of feruloyltyramine and five bioactive tyramines from the root of Lycium yunnanense Kuang.
Natural product research.
2021 Feb; 35(3):447-454. doi:
10.1080/14786419.2019.1636375
. [PMID: 31282219] - Wanwan Wang, Zhuoxian Yu, Jinpeng Meng, Pengyong Zhou, Ting Luo, Jin Zhang, Jun Wu, Yonggen Lou. Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera.
Scientific reports.
2020 04; 10(1):5778. doi:
10.1038/s41598-020-62752-y
. [PMID: 32238850] - Virayu Suthiphasilp, Wisanu Maneerat, Raymond J Andersen, Piyaporn Phukhatmuen, Stephen G Pyne, Surat Laphookhieo. Dasymaschalolactams A-E, Aristolactams from a Twig Extract of Dasymaschalon dasymaschalum.
Journal of natural products.
2019 11; 82(11):3176-3180. doi:
10.1021/acs.jnatprod.9b00506
. [PMID: 31661271] - Guangxin Sun, Michael Strebl, Maximilian Merz, Robert Blamberg, Fong-Chin Huang, Kate McGraphery, Thomas Hoffmann, Wilfried Schwab. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana.
The Plant journal : for cell and molecular biology.
2019 10; 100(1):20-37. doi:
10.1111/tpj.14420
. [PMID: 31124249] - Qing Lu, Hai-Bo Li, Qian-Qian Pang, Wei-Yang Zhang, Zhen-Zhen Su, Da-Bo Pan, Xin-Sheng Yao, Yang Yu. New phenylpropanoid allopyranosides from the rhizomes of Cimicifuga dahurica.
Bioorganic & medicinal chemistry letters.
2019 07; 29(14):1774-1778. doi:
10.1016/j.bmcl.2019.05.011
. [PMID: 31126853] - Yehyang Kim, Sohun Lee, Ji Hye Ryu, Kee Dong Yoon, Song Seok Shin. Effect of Aurea Helianthus stem extract on anti-melanogenesis.
Bioscience, biotechnology, and biochemistry.
2018 Nov; 82(11):1871-1879. doi:
10.1080/09168451.2018.1506311
. [PMID: 30146944] - Wongvarit Panidthananon, Tanawat Chaowasku, Boonchoo Sritularak, Kittisak Likhitwitayawuid. A New Benzophenone C-Glucoside and Other Constituents of Pseuduvaria fragrans and Their α-Glucosidase Inhibitory Activity.
Molecules (Basel, Switzerland).
2018 Jul; 23(7):. doi:
10.3390/molecules23071600
. [PMID: 30004411] - Hao-Chuan Zheng, Yan Lu, Dao-Feng Chen. Anticomplement compounds from Polygonum chinense.
Bioorganic & medicinal chemistry letters.
2018 05; 28(9):1495-1500. doi:
10.1016/j.bmcl.2018.03.079
. [PMID: 29631958] - Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.
Bioorganic & medicinal chemistry.
2018 01; 26(2):509-515. doi:
10.1016/j.bmc.2017.12.011
. [PMID: 29254897] - Johannes Knuesting, Marie Clara Brinkmann, Brenner Silva, Michael Schorsch, Jörg Bendix, Erwin Beck, Renate Scheibe. Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000 m in the tropical Andes.
PloS one.
2018; 13(8):e0202255. doi:
10.1371/journal.pone.0202255
. [PMID: 30102718] - Annalisa Lopatriello, Rosario Previtera, Simona Pace, Markus Werner, Luigi Rubino, Oliver Werz, Orazio Taglialatela-Scafati, Martino Forino. NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum.
Phytochemistry.
2017 Dec; 144(?):52-57. doi:
10.1016/j.phytochem.2017.08.016
. [PMID: 28888145] - Gerwin Louis Tapan Dela Torre, Kerstin Mariae Gonzales Ponsaran, Angelica Louise Dela Peña de Guzman, Richelle Ann Mallapre Manalo, Erna Custodio Arollado. Safety, Efficacy, and Physicochemical Characterization of Tinospora crispa Ointment: A Community-Based Formulation against Pediculus humanus capitis.
The Korean journal of parasitology.
2017 Aug; 55(4):409-416. doi:
10.3347/kjp.2017.55.4.409
. [PMID: 28877572] - Marta Novo, Cristina Silvar, Fuencisla Merino, Teresa Martínez-Cortés, Fachuang Lu, John Ralph, Federico Pomar. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb.
Plant science : an international journal of experimental plant biology.
2017 May; 258(?):12-20. doi:
10.1016/j.plantsci.2017.01.014
. [PMID: 28330555] - Batsukh Odonbayar, Toshihiro Murata, Javzan Batkhuu, Kosho Yasunaga, Rina Goto, Kenroh Sasaki. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase.
Journal of natural products.
2016 Dec; 79(12):3065-3071. doi:
10.1021/acs.jnatprod.6b00720
. [PMID: 28006914] - Lu Zhang, Zong-Cai Tu, Tao Yuan, Hui Wang, Xing Xie, Zhi-Feng Fu. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships.
Food chemistry.
2016 Oct; 208(?):61-7. doi:
10.1016/j.foodchem.2016.03.079
. [PMID: 27132824] - Thanika Promchai, Atchara Jaidee, Sarot Cheenpracha, Kongkiat Trisuwan, Roonglawan Rattanajak, Sumalee Kamchonwongpaisan, Surat Laphookhieo, Stephen G Pyne, Thunwadee Ritthiwigrom. Antimalarial Oxoprotoberberine Alkaloids from the Leaves of Miliusa cuneata.
Journal of natural products.
2016 Apr; 79(4):978-83. doi:
10.1021/acs.jnatprod.5b01054
. [PMID: 26928423] - Martino Forino, Luciana Tartaglione, Carmela Dell'Aversano, Patrizia Ciminiello. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries.
Food chemistry.
2016 Mar; 194(?):1254-9. doi:
10.1016/j.foodchem.2015.08.129
. [PMID: 26471679] - Qiulong Zhang, Tao Ma, Na Hu, Chenxi Ding, Yongxin Liang, Wencong Li, Yourui Suo, Chenxu Ding. One Step to Separate Five Alkaloids from Hypecoum leptocarpum by High-Speed Counter-Current Chromatography.
Journal of chromatographic science.
2016 Mar; 54(3):466-71. doi:
10.1093/chromsci/bmv153
. [PMID: 26499120] - Jae B Park. Bioavailability of Alfrutamide and Caffedymine and Their P-Selectin Suppression and Platelet-Leukocyte Aggregation Mechanisms in Mice.
The Journal of nutrition.
2016 Feb; 146(2):437S-443S. doi:
10.3945/jn.114.202473
. [PMID: 26764323] - Wirod Meerungrueang, Parkphoom Panichayupakaranant. A New Antibacterial Tetrahydronaphthalene Lignanamide, Foveolatamide, from the Stems of Ficusfoveolata.
Natural product communications.
2016 Jan; 11(1):91-4. doi:
. [PMID: 26996029]
- Jéssica K S Maciel, Otemberg S Chaves, Severino G Brito Filho, Yanna C F Teles, Marianne G Fernandes, Temilce S Assis, Pedro Dantas Fernandes, Alberício Pereira de Andrade, Leonardo P Felix, Tania M S Silva, Nathalia S M Ramos, Girliane R Silva, Maria de Fátima Vanderlei de Souza. New Alcamide and Anti-oxidant Activity of Pilosocereus gounellei A. Weber ex K. Schum. Bly. ex Rowl. (Cactaceae).
Molecules (Basel, Switzerland).
2015 Dec; 21(1):E11. doi:
10.3390/molecules21010011
. [PMID: 26703549] - Feras Alali, Tamam El-Elimat, Hanan Albataineh, Qosay Al-Balas, Mohammad Al-Gharaibeh, Joseph O Falkinham, Wei-Lun Chen, Steven M Swanson, Nicholas H Oberlies. Cytotoxic Homoisoflavones from the Bulbs of Bellevalia eigii.
Journal of natural products.
2015 Jul; 78(7):1708-15. doi:
10.1021/acs.jnatprod.5b00357
. [PMID: 26147490] - Yunyao Jiang, Lingling Yu, Myeong-Hyeon Wang. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: Involvement of AP-1 and MAP kinase signalling pathways.
Chemico-biological interactions.
2015 Jun; 235(?):56-62. doi:
10.1016/j.cbi.2015.03.029
. [PMID: 25843058] - Laura Campos, Purificación Lisón, María Pilar López-Gresa, Ismael Rodrigo, Laura Zacarés, Vicente Conejero, José María Bellés. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.
Molecular plant-microbe interactions : MPMI.
2014 Oct; 27(10):1159-69. doi:
10.1094/mpmi-04-14-0104-r
. [PMID: 25014592] - Carol Arely Botello Amaro, Manasés González-Cortazar, Maribel Herrera-Ruiz, Rubén Román-Ramos, Lucia Aguilar-Santamaría, Jaime Tortoriello, Enrique Jiménez-Ferrer. Hypoglycemic and hypotensive activity of a root extract of Smilax aristolochiifolia, standardized on N-trans-feruloyl-tyramine.
Molecules (Basel, Switzerland).
2014 Jul; 19(8):11366-84. doi:
10.3390/molecules190811366
. [PMID: 25090124] - Jong Hoon Ahn, Eun Sil Kim, Chul Lee, Soonok Kim, Soo-Hyun Cho, Bang Yeon Hwang, Mi Kyeong Lee. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects.
Bioorganic & medicinal chemistry letters.
2013 Jun; 23(12):3604-8. doi:
10.1016/j.bmcl.2013.04.013
. [PMID: 23642481] - Jayaprakasam Bolleddula, William Fitch, Shaiju K Vareed, Muraleedharan G Nair. Identification of metabolites in Withania sominfera fruits by liquid chromatography and high-resolution mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2012 Jun; 26(11):1277-90. doi:
10.1002/rcm.6221
. [PMID: 22555921] - Fahimeh Moradi-Afrapoli, Nargues Yassa, Stefanie Zimmermann, Soodabeh Saeidnia, Abbas Hadjiakhoondia, Samad N Ebrahimi, Matthias Hamburger. Cinnamoylphenethyl amides from Polygonum hyrcanicum possess anti-trypanosomal activity.
Natural product communications.
2012 Jun; 7(6):753-5. doi:
. [PMID: 22816300]
- Areej Mohammad Al-Taweel, Shagufta Perveen, Azza Muhammed El-Shafae, Ghada Ahmed Fawzy, Abdul Malik, Nighat Afza, Lubna Iqbal, Mehreen Latif. Bioactive phenolic amides from Celtis africana.
Molecules (Basel, Switzerland).
2012 Mar; 17(3):2675-82. doi:
10.3390/molecules17032675
. [PMID: 22391601] - Wen Jie Li, Xian Long Cheng, Jing Liu, Rui Chao Lin, Gang Li Wang, Shu Shan Du, Zhi Long Liu. Phenolic compounds and antioxidant activities of Liriope muscari.
Molecules (Basel, Switzerland).
2012 Feb; 17(2):1797-808. doi:
10.3390/molecules17021797
. [PMID: 22328078] - L P S Pimenta, D D Mendonça. Aporphine alkaloids and feruloylamides from the bark of Xylopia benthamii R.E. Fries (Annonaceae).
Natural product research.
2012; 26(20):1948-50. doi:
10.1080/14786419.2011.628667
. [PMID: 22007762] - Stine Krogh Steffensen, Hans Albert Pedersen, Rodrigo Labouriau, Anne G Mortensen, Bente Laursen, Rosa M de Troiani, Elke J Noellemeyer, Dagmar Janovska, Helena Stavelikova, Andreu Taberner, Carsten Christophersen, Inge S Fomsgaard. Variation of polyphenols and betaines in aerial parts of young, field-grown Amaranthus genotypes.
Journal of agricultural and food chemistry.
2011 Nov; 59(22):12073-82. doi:
10.1021/jf202969e
. [PMID: 22007946] - Sung-Hee Cho, Eun-Jung Park, Eun-Ok Kim, Sang-Won Choi. Study on the hypochlolesterolemic and antioxidative effects of tyramine derivatives from the root bark of Lycium chenese Miller.
Nutrition research and practice.
2011 Oct; 5(5):412-20. doi:
10.4162/nrp.2011.5.5.412
. [PMID: 22125678] - Yu-Ting Yeh, Jin-Cherng Huang, Po-Lin Kuo, Chung-Yi Chen. Bioactive constituents from Michelia champaca.
Natural product communications.
2011 Sep; 6(9):1251-2. doi:
. [PMID: 21941890]
- Jae B Park. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme.
International journal of food sciences and nutrition.
2011 Sep; 62(6):577-84. doi:
10.3109/09637486.2011.562882
. [PMID: 21506887] - Fujiang Guo, Yuanchao Li. [Phenolic and amide constituents from Lycianthes marlipoensis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Sep; 36(18):2507-10. doi:
. [PMID: 22256755]
- Zi-Ling Hong, Jin-Cherng Huang, Soong-Yu Kuo, Chung-Yi Chen. Amides from the stems of Cinnamomum burmannii.
Natural product communications.
2011 Sep; 6(9):1297-8. doi:
"
. [PMID: 21941902] - Suqin Kan, Guangying Chen, Changri Han, Zhong Chen, Xinming Song, Ming Ren, Hong Jiang. Chemical constituents from the roots of Xanthium sibiricum.
Natural product research.
2011 Aug; 25(13):1243-9. doi:
10.1080/14786419.2010.539182
. [PMID: 21854171] - Xuchun Liu, Jianguang Luo, Lingyi Kong. Phenylethyl cinnamides as potential alpha-glucosidase inhibitors from the roots of Solanum melongena.
Natural product communications.
2011 Jun; 6(6):851-3. doi:
"
. [PMID: 21815424] - Ran Wang, Shengan Tang, Huiyuan Zhai, Hongquan Duan. [Studies on anti-tumor metastatic constituents from Lindera glauca].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2011 Apr; 36(8):1032-6. doi:
. [PMID: 21809579]
- Jae B Park. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases.
Journal of medicinal food.
2011 Mar; 14(3):226-31. doi:
10.1089/jmf.2009.0198
. [PMID: 21332401] - Daya L Chothani, H U Vaghasiya. A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity.
Pharmacognosy reviews.
2011 Jan; 5(9):55-62. doi:
10.4103/0973-7847.79100
. [PMID: 22096319] - Sang-Gyu Kim, Felipe Yon, Emmanuel Gaquerel, Jyotasana Gulati, Ian T Baldwin. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.
PloS one.
2011; 6(10):e26214. doi:
10.1371/journal.pone.0026214
. [PMID: 22028833] - Russell R King, Larry A Calhoun. A feruloyltyramine trimer isolated from potato common scab lesions.
Phytochemistry.
2010 Dec; 71(17-18):2187-9. doi:
10.1016/j.phytochem.2010.09.020
. [PMID: 21030053] - Zhenggang Yue, Jiachen Zi, Chenggen Zhu, Sheng Lin, Yongchun Yang, Jiangong Shi. [Constituents of Gymnadenia conopsea].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Nov; 35(21):2852-61. doi:
. [PMID: 21322946]
- M Iqbal Choudhary, Muhammad Ismail, Zulfiqar Ali, Khozirah Shaari, Nordin H Lajis, Atta-ur-Rahman. Alkaloidal constituents of Tinospora crispa.
Natural product communications.
2010 Nov; 5(11):1747-50. doi:
"
. [PMID: 21213972] - Kris Morreel, Oana Dima, Hoon Kim, Fachuang Lu, Claudiu Niculaes, Ruben Vanholme, Rebecca Dauwe, Geert Goeminne, Dirk Inzé, Eric Messens, John Ralph, Wout Boerjan. Mass spectrometry-based sequencing of lignin oligomers.
Plant physiology.
2010 Aug; 153(4):1464-78. doi:
10.1104/pp.110.156489
. [PMID: 20554692] - Pei-Chi Pan, Ming-Jen Cheng, Chien-Fang Peng, Hung-Yi Huang, Jih-Jung Chen, Ih-Sheng Chen. Secondary metabolites from the roots of Litsea hypophaea and their antitubercular activity.
Journal of natural products.
2010 May; 73(5):890-6. doi:
10.1021/np100022s
. [PMID: 20384293] - Hans A Pedersen, Stine K Steffensen, Carsten Christophersen, Anne G Mortensen, Lise N Jørgensen, Selene Niveyro, Rosa M de Troiani, Ricardo José Rodríguez-Enríquez, Ana Paulina Barba-de la Rosa, Inge S Fomsgaard. Synthesis and quantitation of six phenolic amides in Amaranthus spp.
Journal of agricultural and food chemistry.
2010 May; 58(10):6306-11. doi:
10.1021/jf100002v
. [PMID: 20438062] - Fera Kurniadewi, Lia D Juliawaty, Yana M Syah, Sjamsul A Achmad, Euis H Hakim, Kiyotaka Koyama, Kaoru Kinoshita, Kunio Takahashi. Phenolic compounds from Cryptocarya konishii: their cytotoxic and tyrosine kinase inhibitory properties.
Journal of natural medicines.
2010 Apr; 64(2):121-5. doi:
10.1007/s11418-009-0368-y
. [PMID: 20091134] - Peihong Fan, Lara Terrier, Anne-Emmanuelle Hay, Andrew Marston, Kurt Hostettmann. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae).
Fitoterapia.
2010 Mar; 81(2):124-31. doi:
10.1016/j.fitote.2009.08.019
. [PMID: 19698767] - Shuang Song, Yixiu Li, Ziming Feng, Jianshuang Jiang, Peicheng Zhang. Hepatoprotective constituents from the roots and stems of Erycibe hainanesis.
Journal of natural products.
2010 Feb; 73(2):177-84. doi:
10.1021/np900593q
. [PMID: 20092289] - Yunzhi Li, Zheng Gong, Chao Ma, Xiaodong Feng, Jing Huang. [Amides from Peperomia tetraphylla].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Feb; 35(4):468-9. doi:
10.4268/cjcmm20100413
. [PMID: 20450045] - Avital Adato, Tali Mandel, Shira Mintz-Oron, Ilya Venger, Dorit Levy, Merav Yativ, Eva Domínguez, Zhonghua Wang, Ric C H De Vos, Reinhard Jetter, Lukas Schreiber, Antonio Heredia, Ilana Rogachev, Asaph Aharoni. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.
PLoS genetics.
2009 Dec; 5(12):e1000777. doi:
10.1371/journal.pgen.1000777
. [PMID: 20019811] - Jae B Park. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum).
Journal of agricultural and food chemistry.
2009 Oct; 57(19):8868-72. doi:
10.1021/jf9018382
. [PMID: 19807156] - Kiyoon Kang, Munyoung Park, Sangkyu Park, Young Soon Kim, Sungbeom Lee, Seong-Gene Lee, Kyoungwhan Back. Production of plant-specific tyramine derivatives by dual expression of tyramine N-hydroxycinnamoyltransferase and 4-coumarate:coenzyme A ligase in Escherichia coli.
Biotechnology letters.
2009 Sep; 31(9):1469-75. doi:
10.1007/s10529-009-0032-3
. [PMID: 19479321] - Li-Hong Li, Feng-Zhi Ren, Shu-Hong Chen, Yue-Qi Gao. [New homoisoflavanones from Polygonatum odoratum (Mill.) Druce].
Yao xue xue bao = Acta pharmaceutica Sinica.
2009 Jul; 44(7):764-7. doi:
. [PMID: 19806917]
- Sangkyu Park, Kiyoon Kang, Young Soon Kim, Kyoungwhan Back. Endosperm-specific expression of tyramine N-hydroxycinnamoyltransferase and tyrosine decarboxylase from a single self-processing polypeptide produces high levels of tyramine derivatives in rice seeds.
Biotechnology letters.
2009 Jun; 31(6):911-5. doi:
10.1007/s10529-009-9951-2
. [PMID: 19229478] - Yan Ren, Li Shen, Shengjun Dai. [Studies on flavonoids and amides from herbs of Solanum lyratum].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Mar; 34(6):721-3. doi:
"
. [PMID: 19624014] - Fumio Matsuda, Keiko Yonekura-Sakakibara, Rie Niida, Takashi Kuromori, Kazuo Shinozaki, Kazuki Saito. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites.
The Plant journal : for cell and molecular biology.
2009 Feb; 57(3):555-77. doi:
10.1111/j.1365-313x.2008.03705.x
. [PMID: 18939963] - Kyungjin Lee, Kiyoon Kang, Munyoung Park, Young-Min Woo, Kyoungwhan Back. Endosperm-specific expression of serotonin N-hydroxycinnamoyltransferase in rice.
Plant foods for human nutrition (Dordrecht, Netherlands).
2008 Jun; 63(2):53-7. doi:
10.1007/s11130-007-0069-1
. [PMID: 18213519] - Turibio Kuiate Tabopda, Joseph Ngoupayo, Jiawei Liu, Anne-Claire Mitaine-Offer, Sheraz A Khan Tanoli, Shamsun Nahar Khan, Muhammad Shaiq Ali, Bonaventure Tchaleu Ngadjui, Etienne Tsamo, Marie-Aleth Lacaille-Dubois, Bang Luu. Bioactive aristolactams from Piper umbellatum.
Phytochemistry.
2008 May; 69(8):1726-31. doi:
10.1016/j.phytochem.2008.02.018
. [PMID: 18400239] - Anna Aksamit-Stachurska, Alina Korobczak-Sosna, Anna Kulma, Jan Szopa. Glycosyltransferase efficiently controls phenylpropanoid pathway.
BMC biotechnology.
2008 Mar; 8(?):25. doi:
10.1186/1472-6750-8-25
. [PMID: 18321380] - Ling Yuan, Teng-Fei Ji, Ai-Guo Wang, Jian-Bo Yang, Ya-Lun Su. [Studies on chemical constituents of the seeds of Allium cepa].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2008 Feb; 31(2):222-3. doi:
. [PMID: 18619265]
- Sei Kang, Kiyoon Kang, Kyungjin Lee, Kyoungwhan Back. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice.
Planta.
2007 Dec; 227(1):263-72. doi:
10.1007/s00425-007-0614-z
. [PMID: 17763868] - Laura Zacarés, María Pilar López-Gresa, Joaquin Fayos, Jaime Primo, José María Bellés, Vicente Conejero. Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae.
Molecular plant-microbe interactions : MPMI.
2007 Nov; 20(11):1439-48. doi:
10.1094/mpmi-20-11-1439
. [PMID: 17977155] - Mai Efdi, Kenji Ohguchi, Yukihiro Akao, Yoshinori Nozawa, Mamoru Koketsu, Hideharu Ishihara. N-trans-feruloyltyramine as a melanin biosynthesis inhibitor.
Biological & pharmaceutical bulletin.
2007 Oct; 30(10):1972-4. doi:
10.1248/bpb.30.1972
. [PMID: 17917275] - Zhixiu Lin, Yonghong Liao, Radhakrishnan Venkatasamy, Robert C Hider, Amala Soumyanath. Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro.
The Journal of pharmacy and pharmacology.
2007 Apr; 59(4):529-36. doi:
10.1211/jpp.59.4.0007
. [PMID: 17430636] - Marc Morant, Guillaume A Schoch, Pascaline Ullmann, Tanya Ertunç, Dawn Little, Carl Erik Olsen, Maike Petersen, Jonathan Negrel, Danièle Werck-Reichhart. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat.
Plant molecular biology.
2007 Jan; 63(1):1-19. doi:
10.1007/s11103-006-9028-8
. [PMID: 17160453] - Dhrubojyoti D Laskar, Michaël Jourdes, Ann M Patten, Gregory L Helms, Laurence B Davin, Norman G Lewis. The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification.
The Plant journal : for cell and molecular biology.
2006 Dec; 48(5):674-86. doi:
10.1111/j.1365-313x.2006.02918.x
. [PMID: 17092316] - Shugeng Cao, Andrew Norris, James S Miller, Fidy Ratovoson, Chris Birkinshaw, Rabodo Andriantsiferana, Vincent E Rasamison, Stephan Rakotonandrasana, David G I Kingston. Cytotoxic compounds of Physena madagascariensis from the Madagascar rain forest paragraph sign.
Natural product research.
2006 Nov; 20(13):1157-63. doi:
10.1080/14786410600885596
. [PMID: 17127502] - Yong Deuk Min, Sang Un Choi, Kang Ro Lee. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum.
Archives of pharmacal research.
2006 Aug; 29(8):627-32. doi:
10.1007/bf02968246
. [PMID: 16964757] - Jih-Jung Chen, Shi-Yu Huang, Chang-Yih Duh, Ih-Sheng Chen, Tai-Chi Wang, Hui-Yu Fang. A new cytotoxic amide from the stem wood of Hibiscus tiliaceus.
Planta medica.
2006 Aug; 72(10):935-8. doi:
10.1055/s-2006-931604
. [PMID: 16732539] - Sei Kang, Kiyoon Kang, Gap Chae Chung, Doil Choi, Atsushi Ishihara, Dong-Sun Lee, Kyoungwhan Back. Functional analysis of the amine substrate specificity domain of pepper tyramine and serotonin N-hydroxycinnamoyltransferases.
Plant physiology.
2006 Feb; 140(2):704-15. doi:
10.1104/pp.105.071514
. [PMID: 16384907] - Hyang Rim Kim, Hye-Young Min, Yeon Hee Jeong, Sang Kook Lee, Nam Sook Lee, Eun-Kyoung Seo. Cytotoxic constituents from the whole plant of Corydalis pallida.
Archives of pharmacal research.
2005 Nov; 28(11):1224-7. doi:
10.1007/bf02978202
. [PMID: 16350845] - Russell R King, Larry A Calhoun. Characterization of cross-linked hydroxycinnamic acid amides isolated from potato common scab lesions.
Phytochemistry.
2005 Oct; 66(20):2468-73. doi:
10.1016/j.phytochem.2005.07.014
. [PMID: 16137726] - Fumio Matsuda, Keiko Morino, Rieko Ano, Masaki Kuzawa, Kyo Wakasa, Hisashi Miyagawa. Metabolic flux analysis of the phenylpropanoid pathway in elicitor-treated potato tuber tissue.
Plant & cell physiology.
2005 Mar; 46(3):454-66. doi:
10.1093/pcp/pci042
. [PMID: 15695456] - Gabriel Guillet, Vincenzo De Luca. Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines.
Plant physiology.
2005 Feb; 137(2):692-9. doi:
10.1104/pp.104.050294
. [PMID: 15665252] - Pei-Lin Wu, Tian-Shung Wu, Cai-Xia He, Chia-Hao Su, Kuo-Hsiung Lee. Constituents from the stems of Hibiscus taiwanensis.
Chemical & pharmaceutical bulletin.
2005 Jan; 53(1):56-9. doi:
10.1248/cpb.53.56
. [PMID: 15635230] - Rachel Mata, Iliana Morales, Olga Pérez, Isabel Rivero-Cruz, Laura Acevedo, Isolda Enriquez-Mendoza, Robert Bye, Scott Franzblau, Barbara Timmermann. Antimycobacterial compounds from Piper sanctum.
Journal of natural products.
2004 Dec; 67(12):1961-8. doi:
10.1021/np0401260
. [PMID: 15620234] - Sun-Mi Jang, Atsushi Ishihara, Kyoungwhan Back. Production of coumaroylserotonin and feruloylserotonin in transgenic rice expressing pepper hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase.
Plant physiology.
2004 May; 135(1):346-56. doi:
10.1104/pp.103.038372
. [PMID: 15122017] - Yuan Li, Cheng Qiu, Dong-ming Zhang, Yi Di. [Studies on chemical constituents from branch of Trema angustifolia].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2004 Mar; 29(3):235-7. doi:
"
. [PMID: 15706848] - Youngleem Kim, Mi Seon Han, Ji Suk Lee, Jinwoong Kim, Young Choong Kim. Inhibitory phenolic amides on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells from Beta vulgaris var. cicla seeds.
Phytotherapy research : PTR.
2003 Sep; 17(8):983-5. doi:
10.1002/ptr.1232
. [PMID: 13680842] - Dae Sik Jang, Eun Jung Park, Young-Hwa Kang, Bao-Ning Su, Michael E Hawthorne, Jose Schunke Vigo, James G Graham, Fernando Cabieses, Harry H S Fong, Rajendra G Mehta, John M Pezzuto, A Douglas Kinghorn. Compounds obtained from sida acuta with the potential to induce quinone reductase and to inhibit 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions in a mouse mammary organ culture model.
Archives of pharmacal research.
2003 Aug; 26(8):585-90. doi:
10.1007/bf02976704
. [PMID: 12967190] - Aldwin M Anterola, Norman G Lewis. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
Phytochemistry.
2002 Oct; 61(3):221-94. doi:
10.1016/s0031-9422(02)00211-x
. [PMID: 12359514] - Mari-Anne Newman, Edda von Roepenack-Lahaye, Adrian Parr, Michael J Daniels, J Maxwell Dow. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria.
The Plant journal : for cell and molecular biology.
2002 Feb; 29(4):487-95. doi:
10.1046/j.0960-7412.2001.00233.x
. [PMID: 11846881] - T Yokozawa, T Tanaka, T Kimura. Examination of the nitric oxide production-suppressing component in Tinospora tuberculata.
Biological & pharmaceutical bulletin.
2001 Oct; 24(10):1153-6. doi:
10.1248/bpb.24.1153
. [PMID: 11642322] - W J Syu, M J Don, G H Lee, C M Sun. Cytotoxic and novel compounds from Solanum indicum.
Journal of natural products.
2001 Sep; 64(9):1232-3. doi:
10.1021/np010186v
. [PMID: 11575964] - P Tuchinda, M Pohmakotr, V Reutrakul, W Thanyachareon, S Sophasan, C Yoosook, T Santisuk, J M Pezzuto. 2-substituted furans from Polyalthia suberosa.
Planta medica.
2001 Aug; 67(6):572-5. doi:
10.1055/s-2001-16469
. [PMID: 11509987] - M A Newman, E von Roepenack-Lahaye, A Parr, M J Daniels, J M Dow. Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris, a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms.
Molecular plant-microbe interactions : MPMI.
2001 Jun; 14(6):785-92. doi:
10.1094/mpmi.2001.14.6.785
. [PMID: 11386374] - S D Sarker, Z Latif, R J Nash. Application of gradient-enhanced nuclear Overhauser effect spectroscopy GOESY) in the structure elucidation of plant secondary metabolites.
Phytochemical analysis : PCA.
2001 Jan; 12(1):23-7. doi:
10.1002/1099-1565(200101/02)12:1<23::aid-pca551>3.0.co;2-e
. [PMID: 11704958] - S D Sarker, B Bartholomew, R J Nash. Alkaloids from Balanites aegyptiaca.
Fitoterapia.
2000 Jun; 71(3):328-30. doi:
10.1016/s0367-326x(99)00149-5
. [PMID: 10844174] - M Mizutani, Y Hashidoko, S Tahara. Factors responsible for inhibiting the motility of zoospores of the phytopathogenic fungus Aphanomyces cochlioides isolated from the non-host plant Portulaca oleracea.
FEBS letters.
1998 Nov; 438(3):236-40. doi:
10.1016/s0014-5793(98)01308-8
. [PMID: 9827552]