all-trans-Phytofluene (BioDeep_00000003705)
Main id: BioDeep_00000027847
Secondary id: BioDeep_00000364621
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C40H62 (542.4851)
中文名称: 15-顺式-八氢番茄红素
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: CC(=CCCC(=CCCC(=CCCC(=CC=CC=C(C)C=CC=C(C)CCC=C(C)CCC=C(C)C)C)C)C)C
InChI: InChI=1S/C40H62/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15,19-22,25,27-30H,13-14,16-18,23-24,26,31-32H2,1-10H3/b12-11+,25-15+,35-21+,36-22+,37-27+,38-28+,39-29+,40-30+
描述信息
all-trans-Phytofluene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396).
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
7,7,8,8,11,12-Hexahydro-Carotene is a carotenoid found in human fluids.
同义名列表
18 个代谢物同义名
(6E,10E,12E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene; (12E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene; 7,7,8,8,11,11,12,12-Hexahydro-psi,psi-Carotene; 7,8,11,12,7,8-hexahydro-psi,psi-carotene; 7,7,8,8,11,12-hexahydro-psi,psi-carotene; 7,7’,8,8’,11,12-Hexahydro-ψ,ψ-carotene; 7,7,8,8,11,12-Hexahydro-ψ,ψ-carotene; 7,7’,8,8’,11,12-Hexahydrolycopene; 7,7,8,8,11,12-Hexahydrolycopene; Phytofluene, (cis)-isomer; all-trans-phytofluene; all-(E)-Phytofluene; (cis)-phytofluene; phytofluene; (6E,10E,12E,14E,16E,18E,22Z,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene; 9-cis-phytofluene; phytofluenes; all-trans-Phytofluene
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:28129
- KEGG: C05414
- PubChem: 6436722
- PubChem: 94171
- HMDB: HMDB0002272
- Metlin: METLIN53823
- Metlin: METLIN213
- MetaCyc: CPD-7408
- KNApSAcK: C00000913
- foodb: FDB022937
- chemspider: 4941340
- CAS: 540-05-6
- CAS: 27664-65-9
- PMhub: MS000011042
- PubChem: 7780
- LipidMAPS: LMPR01070084
- 3DMET: B00774
- NIKKAJI: J6.385A
- KNApSAcK: 28129
- LOTUS: LTS0269894
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
代谢反应
76 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(10)
- β-carotene biosynthesis (engineered):
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- trans-lycopene biosynthesis I:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
INOH(0)
PlantCyc(63)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- β-carotene biosynthesis (engineered):
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- trans-lycopene biosynthesis I:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
15-cis-phytoene + A ⟶ all-trans phytofluene + A(H2)
- neurosporene biosynthesis:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
184 个相关的物种来源信息
- 506 - Alcaligenaceae: LTS0269894
- 507 - Alcaligenes: LTS0269894
- 28211 - Alphaproteobacteria: LTS0269894
- 4890 - Ascomycota: LTS0269894
- 4210 - Asteraceae: LTS0269894
- 21563 - Averrhoa: LTS0269894
- 28974 - Averrhoa carambola: 10.1016/S0031-9422(00)84040-6
- 28974 - Averrhoa carambola: LTS0269894
- 2 - Bacteria: LTS0269894
- 5204 - Basidiomycota: LTS0269894
- 28216 - Betaproteobacteria: LTS0269894
- 41495 - Calendula: LTS0269894
- 41496 - Calendula officinalis: 10.1042/BJ0580090
- 41496 - Calendula officinalis: LTS0269894
- 4071 - Capsicum: LTS0269894
- 4072 - Capsicum annuum: 10.1016/0031-9422(83)80183-6
- 4072 - Capsicum annuum: 10.1021/JF00024A012
- 4072 - Capsicum annuum: LTS0269894
- 4305 - Celastraceae: LTS0269894
- 85180 - Celastrus: LTS0269894
- 85181 - Celastrus orbiculatus: 10.1016/J.PHYTOCHEM.2009.04.018
- 85181 - Celastrus orbiculatus: LTS0269894
- 3071 - Chlorella: LTS0269894
- 3077 - Chlorella vulgaris: 10.1515/ZNB-1954-0705
- 3077 - Chlorella vulgaris: LTS0269894
- 35461 - Chlorellaceae: LTS0269894
- 3041 - Chlorophyta: LTS0269894
- 7711 - Chordata: LTS0269894
- 3653 - Citrullus: LTS0269894
- 3654 - Citrullus lanatus: 10.4236/AS.2013.47A003
- 3654 - Citrullus lanatus: LTS0269894
- 2706 - Citrus: LTS0269894
- 43166 - Citrus aurantium: 10.1021/JF00013A009
- 43166 - Citrus aurantium: 10.1021/JF00090A003
- 2709 - Citrus cavaleriei: 10.1007/BF00579990
- 2709 - Citrus cavaleriei: LTS0269894
- 558547 - Citrus deliciosa: 10.1016/0031-9422(83)83012-X
- 171249 - Citrus limonia: LTS0269894
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: LTS0269894
- 2711 - Citrus sinensis: 10.1007/BF00579990
- 2711 - Citrus sinensis: LTS0269894
- 37656 - Citrus × paradisi: 10.1021/JF00013A009
- 37656 - Citrus × paradisi: 10.1021/JF00090A003
- 58949 - Crocus: LTS0269894
- 82528 - Crocus sativus: 10.1016/S0031-9422(00)82412-7
- 82528 - Crocus sativus: LTS0269894
- 3655 - Cucumis: LTS0269894
- 3656 - Cucumis melo: 10.1021/JF00090A003
- 3656 - Cucumis melo: LTS0269894
- 3650 - Cucurbitaceae: LTS0269894
- 13492 - Diospyros: LTS0269894
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0269894
- 19955 - Ebenaceae: LTS0269894
- 543 - Enterobacteriaceae: LTS0269894
- 1903409 - Erwiniaceae: LTS0269894
- 2759 - Eukaryota: LTS0269894
- 3803 - Fabaceae: LTS0269894
- 49546 - Flavobacteriaceae: LTS0269894
- 117743 - Flavobacteriia: LTS0269894
- 237 - Flavobacterium: 10.1016/S0378-1119(96)00624-5
- 237 - Flavobacterium: LTS0269894
- 4751 - Fungi: LTS0269894
- 5506 - Fusarium: LTS0269894
- 5127 - Fusarium fujikuroi: 10.1016/0304-4165(88)90119-5
- 5127 - Fusarium fujikuroi: LTS0269894
- 1236 - Gammaproteobacteria: LTS0269894
- 47605 - Hibiscus: LTS0269894
- 106335 - Hibiscus syriacus: 10.1021/JF60182A030
- 106335 - Hibiscus syriacus: LTS0269894
- 9604 - Hominidae: LTS0269894
- 9605 - Homo: LTS0269894
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.3945/AJCN.112.034819
- 9606 - Homo sapiens: LTS0269894
- 45401 - Hyphomicrobiaceae: LTS0269894
- 26339 - Iridaceae: LTS0269894
- 4447 - Liliopsida: LTS0269894
- 3398 - Magnoliopsida: LTS0269894
- 3629 - Malvaceae: LTS0269894
- 40674 - Mammalia: LTS0269894
- 3877 - Medicago: LTS0269894
- 70939 - Medicago brachycarpa: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: 10.1016/0305-1978(75)90058-7
- 66810 - Medicago carstiensis: LTS0269894
- 66812 - Medicago cretacea: 10.1016/0305-1978(75)90058-7
- 70942 - Medicago daghestanica: 10.1016/0305-1978(75)90058-7
- 70942 - Medicago daghestanica: LTS0269894
- 66814 - Medicago hybrida: 10.1016/0305-1978(75)90058-7
- 66816 - Medicago pironae: 10.1016/0305-1978(75)90058-7
- 66816 - Medicago pironae: LTS0269894
- 70967 - Medicago prostrata: 10.1016/0305-1978(75)90058-7
- 70967 - Medicago prostrata: LTS0269894
- 70973 - Medicago ruthenica: 10.1016/0305-1978(75)90058-7
- 3879 - Medicago sativa: 10.1016/0305-1978(75)90058-7
- 3879 - Medicago sativa: LTS0269894
- 70933 - Medicago sativa subsp. glomerata: 10.1016/0305-1978(75)90058-7
- 70933 - Medicago sativa subsp. glomerata: LTS0269894
- 119392 - Medicago saxatilis: 10.1016/0305-1978(75)90058-7
- 119392 - Medicago saxatilis: LTS0269894
- 66818 - Medicago suffruticosa: 10.1016/0305-1978(75)90058-7
- 33208 - Metazoa: LTS0269894
- 162481 - Microbotryomycetes: LTS0269894
- 2212703 - Mucoromycetes: LTS0269894
- 1913637 - Mucoromycota: LTS0269894
- 3931 - Myrtaceae: LTS0269894
- 110618 - Nectriaceae: LTS0269894
- 5140 - Neurospora: LTS0269894
- 5141 - Neurospora crassa:
- 5141 - Neurospora crassa: 10.1016/0003-9861(57)90143-1
- 5141 - Neurospora crassa: LTS0269894
- 4145 - Olea: LTS0269894
- 4146 - Olea europaea: 10.1002/0471684228.EGP08791
- 4146 - Olea europaea: LTS0269894
- 4144 - Oleaceae: LTS0269894
- 3070 - Oocystaceae: LTS0269894
- 4033 - Oxalidaceae: LTS0269894
- 53335 - Pantoea: LTS0269894
- 549 - Pantoea agglomerans:
- 553 - Pantoea ananatis:
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0269894
- 3684 - Passiflora: LTS0269894
- 78168 - Passiflora edulis: 10.1021/JF9801724
- 78168 - Passiflora edulis: LTS0269894
- 3683 - Passifloraceae: LTS0269894
- 4836 - Phycomyces: LTS0269894
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(90)85164-B
- 4837 - Phycomyces blakesleeanus: LTS0269894
- 1344966 - Phycomycetaceae: LTS0269894
- 4479 - Poaceae: LTS0269894
- 3754 - Prunus: LTS0269894
- 36596 - Prunus armeniaca: 10.1021/JF00090A003
- 36596 - Prunus armeniaca: LTS0269894
- 3760 - Prunus persica: 10.1021/JF00090A003
- 3760 - Prunus persica: LTS0269894
- 120289 - Psidium: LTS0269894
- 120290 - Psidium guajava: 10.1021/JF980405R
- 120290 - Psidium guajava: LTS0269894
- 1060 - Rhodobacter: LTS0269894
- 1061 - Rhodobacter capsulatus:
- 1068 - Rhodomicrobium: LTS0269894
- 1069 - Rhodomicrobium vannielii: 10.1016/0031-9422(75)80358-X
- 1069 - Rhodomicrobium vannielii: LTS0269894
- 41295 - Rhodospirillaceae: LTS0269894
- 1081 - Rhodospirillum: LTS0269894
- 1085 - Rhodospirillum rubrum:
- 1085 - Rhodospirillum rubrum: 10.1042/BJ0560222
- 1085 - Rhodospirillum rubrum: 10.1042/BJ1160101
- 1085 - Rhodospirillum rubrum: LTS0269894
- 5533 - Rhodotorula: LTS0269894
- 5535 - Rhodotorula glutinis: 10.1135/CCCC19581987
- 5535 - Rhodotorula glutinis: LTS0269894
- 5286 - Rhodotorula toruloides: 10.1135/CCCC19581987
- 5286 - Rhodotorula toruloides: LTS0269894
- 3764 - Rosa: LTS0269894
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0269894
- 3745 - Rosaceae: LTS0269894
- 23513 - Rutaceae: LTS0269894
- 4070 - Solanaceae: LTS0269894
- 23222 - Sorbus: LTS0269894
- 36599 - Sorbus aucuparia: 10.1093/OXFORDJOURNALS.AOB.A084605
- 36599 - Sorbus aucuparia: LTS0269894
- 5148 - Sordariaceae: LTS0269894
- 147550 - Sordariomycetes: LTS0269894
- 1799696 - Sporidiobolaceae: LTS0269894
- 1883 - Streptomyces: LTS0269894
- 1911 - Streptomyces griseus:
- 1911 - Streptomyces griseus: 10.1007/BF02173971
- 1911 - Streptomyces griseus: LTS0269894
- 2062 - Streptomycetaceae: LTS0269894
- 35493 - Streptophyta: LTS0269894
- 58023 - Tracheophyta: LTS0269894
- 75966 - Trebouxiophyceae: LTS0269894
- 33090 - Viridiplantae: LTS0269894
- 3602 - Vitaceae: LTS0269894
- 3603 - Vitis: LTS0269894
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: LTS0269894
- 4575 - Zea: LTS0269894
- 4577 - Zea mays: 10.1016/S0031-9422(00)83636-5
- 4577 - Zea mays: LTS0269894
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Pedro Brivaldo Viana da Silva, Lívia Beatriz Brenelli, Lilian Regina Barros Mariutti. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis.
Food research international (Ottawa, Ont.).
2023 07; 169(?):112838. doi:
10.1016/j.foodres.2023.112838
. [PMID: 37254412] - Aleksandr A Ashikhmin, Anton S Benditkis, Andrey A Moskalenko, Alexander A Krasnovsky. ζ-Carotene: Generation and Quenching of Singlet Oxygen, Comparison with Phytofluene.
Biochemistry. Biokhimiia.
2022 Oct; 87(10):1169-1178. doi:
10.1134/s0006297922100108
. [PMID: 36273885] - Karolina Tkacz, Ángel Gil-Izquierdo, Sonia Medina, Igor Piotr Turkiewicz, Raúl Domínguez-Perles, Paulina Nowicka, Aneta Wojdyło. Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices.
Journal of the science of food and agriculture.
2022 Jan; 102(1):185-197. doi:
10.1002/jsfa.11345
. [PMID: 34061348] - Nancy E Moran, Jennifer M Thomas-Ahner, Jessica L Fleming, Joseph P McElroy, Rebecca Mehl, Elizabeth M Grainger, Ken M Riedl, Amanda E Toland, Steven J Schwartz, Steven K Clinton. Single Nucleotide Polymorphisms in β-Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer.
The Journal of nutrition.
2019 03; 149(3):381-397. doi:
10.1093/jn/nxy304
. [PMID: 30801647] - Paula Mapelli-Brahm, Charles Desmarchelier, Marielle Margier, Emmanuelle Reboul, Antonio J Meléndez Martínez, Patrick Borel. Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco-2 Cells, as Compared to Lycopene, and SR-BI is Involved in their Cellular Uptake.
Molecular nutrition & food research.
2018 11; 62(22):e1800703. doi:
10.1002/mnfr.201800703
. [PMID: 30192047] - David C Nieman, Courtney L Capps, Christopher R Capps, Zack L Shue, Jennifer E McBride. Effect of 4-Week Ingestion of Tomato-Based Carotenoids on Exercise-Induced Inflammation, Muscle Damage, and Oxidative Stress in Endurance Runners.
International journal of sport nutrition and exercise metabolism.
2018 May; 28(3):266-273. doi:
10.1123/ijsnem.2017-0272
. [PMID: 29091464] - Paula Mapelli-Brahm, Joana Corte-Real, Antonio J Meléndez-Martínez, Torsten Bohn. Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices.
Food chemistry.
2017 Aug; 229(?):304-311. doi:
10.1016/j.foodchem.2017.02.074
. [PMID: 28372178] - Francesca Bot, Monica Anese, M Adília Lemos, Graham Hungerford. Use of time-resolved spectroscopy as a method to monitor carotenoids present in tomato extract obtained using ultrasound treatment.
Phytochemical analysis : PCA.
2016 Jan; 27(1):32-40. doi:
10.1002/pca.2584
. [PMID: 26289117] - Jessica L Cooperstone, Robin A Ralston, Ken M Riedl, Thomas C Haufe, Ralf M Schweiggert, Samantha A King, Cynthia D Timmers, David M Francis, Gregory B Lesinski, Steven K Clinton, Steven J Schwartz. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial.
Molecular nutrition & food research.
2015 Apr; 59(4):658-69. doi:
10.1002/mnfr.201400658
. [PMID: 25620547] - Antonio J Meléndez-Martínez, Margot Paulino, Carla M Stinco, Paula Mapelli-Brahm, Xiang-Dong Wang. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato.
Journal of agricultural and food chemistry.
2014 Dec; 62(51):12399-406. doi:
10.1021/jf5041965
. [PMID: 25426993] - Elio Fantini, Giulia Falcone, Sarah Frusciante, Leonardo Giliberto, Giovanni Giuliano. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing.
Plant physiology.
2013 Oct; 163(2):986-98. doi:
10.1104/pp.113.224733
. [PMID: 24014574] - Nikki A Ford, Amy C Elsen, John W Erdman. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulate carotenoid and lipid metabolism in mice.
Nutrition research (New York, N.Y.).
2013 Sep; 33(9):733-42. doi:
10.1016/j.nutres.2013.07.007
. [PMID: 24034573] - Thomas T Y Wang, Alison J Edwards, Beverly A Clevidence. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase 1 single nucleotide polymorphisms.
The Journal of nutritional biochemistry.
2013 Aug; 24(8):1538-46. doi:
10.1016/j.jnutbio.2013.01.001
. [PMID: 23517913] - Lauren E Conlon, Ryan D King, Nancy E Moran, John W Erdman. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).
Journal of agricultural and food chemistry.
2012 Aug; 60(34):8386-94. doi:
10.1021/jf301902k
. [PMID: 22866697] - B Y Hsu, Y S Pu, B Stephen Inbaraj, B H Chen. An improved high performance liquid chromatography-diode array detection-mass spectrometry method for determination of carotenoids and their precursors phytoene and phytofluene in human serum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2012 Jun; 899(?):36-45. doi:
10.1016/j.jchromb.2012.04.034
. [PMID: 22622065] - Bin Wu, Ying Li, Haixia Yan, Yimian Ma, Hongmei Luo, Lichai Yuan, Shilin Chen, Shanfa Lu. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea.
BMC genomics.
2012 Jan; 13(?):15. doi:
10.1186/1471-2164-13-15
. [PMID: 22233149] - Lancui Zhang, Gang Ma, Masaya Kato, Kazuki Yamawaki, Toshihiko Takagi, Yoshikazu Kiriiwa, Yoshinori Ikoma, Hikaru Matsumoto, Terutaka Yoshioka, Hirohisa Nesumi. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro.
Journal of experimental botany.
2012 Jan; 63(2):871-86. doi:
10.1093/jxb/err318
. [PMID: 21994171] - LingLin Wan, Juan Han, Min Sang, AiFen Li, Hong Wu, ShunJi Yin, ChengWu Zhang. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.
PloS one.
2012; 7(4):e35142. doi:
10.1371/journal.pone.0035142
. [PMID: 22536352] - Toshiyuki Tainaka, Yasuhito Shimada, Junya Kuroyanagi, Liqing Zang, Takehiko Oka, Yuhei Nishimura, Norihiro Nishimura, Toshio Tanaka. Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model.
Nutrition & metabolism.
2011 Dec; 8(?):88. doi:
10.1186/1743-7075-8-88
. [PMID: 22152339] - Michael S Donaldson. A carotenoid health index based on plasma carotenoids and health outcomes.
Nutrients.
2011 12; 3(12):1003-22. doi:
10.3390/nu3121003
. [PMID: 22292108] - Nancy J Engelmann, Steven K Clinton, John W Erdman. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.
Advances in nutrition (Bethesda, Md.).
2011 Jan; 2(1):51-61. doi:
10.3945/an.110.000075
. [PMID: 22211189] - Ayhan Dogukan, Mehmet Tuzcu, Can Ali Agca, Hasan Gencoglu, Nurhan Sahin, Muhittin Onderci, Ibrahim Hanifi Ozercan, Necip Ilhan, Omer Kucuk, Kazim Sahin. A tomato lycopene complex protects the kidney from cisplatin-induced injury via affecting oxidative stress as well as Bax, Bcl-2, and HSPs expression.
Nutrition and cancer.
2011; 63(3):427-34. doi:
10.1080/01635581.2011.535958
. [PMID: 21391123] - Gabino Ríos, Miguel A Naranjo, María-Jesús Rodrigo, Enriqueta Alós, Lorenzo Zacarías, Manuel Cercós, Manuel Talón. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants.
BMC plant biology.
2010 Dec; 10(?):276. doi:
10.1186/1471-2229-10-276
. [PMID: 21159189] - Kazim Sahin, Mehmet Tuzcu, Nurhan Sahin, Shakir Ali, Omer Kucuk. Nrf2/HO-1 signaling pathway may be the prime target for chemoprevention of cisplatin-induced nephrotoxicity by lycopene.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2010 Oct; 48(10):2670-4. doi:
10.1016/j.fct.2010.06.038
. [PMID: 20603177] - Nancy J Engelmann, Jessica K Campbell, Randy B Rogers, S Indumathie Rupassara, Peter J Garlick, Mary Ann Lila, John W Erdman. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.
Journal of agricultural and food chemistry.
2010 Sep; 58(18):9979-87. doi:
10.1021/jf101942x
. [PMID: 20731353] - Irvin L Pan, Ryan McQuinn, James J Giovannoni, Vivian F Irish. Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development.
Journal of experimental botany.
2010 Jun; 61(6):1795-806. doi:
10.1093/jxb/erq046
. [PMID: 20335407] - Avital Adato, Tali Mandel, Shira Mintz-Oron, Ilya Venger, Dorit Levy, Merav Yativ, Eva Domínguez, Zhonghua Wang, Ric C H De Vos, Reinhard Jetter, Lukas Schreiber, Antonio Heredia, Ilana Rogachev, Asaph Aharoni. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.
PLoS genetics.
2009 Dec; 5(12):e1000777. doi:
10.1371/journal.pgen.1000777
. [PMID: 20019811] - Jean Baptiste Bassene, Yann Froelicher, Claudie Dhuique-Mayer, Waffa Mouhaya, Rosa Mar Ferrer, Gema Ancillo, Raphael Morillon, Luis Navarro, Patrick Ollitrault. Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulata and C. limon: the case of pulp carotenoid biosynthesis pathway.
Plant cell reports.
2009 Nov; 28(11):1689-97. doi:
10.1007/s00299-009-0768-1
. [PMID: 19727737] - Ann G Liu, Sonja E Volker, Elizabeth H Jeffery, John W Erdman. Feeding tomato and broccoli powders enriched with bioactives improves bioactivity markers in rats.
Journal of agricultural and food chemistry.
2009 Aug; 57(16):7304-10. doi:
10.1021/jf901926b
. [PMID: 19650632] - Dirk Maass, Jacobo Arango, Florian Wüst, Peter Beyer, Ralf Welsch. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.
PloS one.
2009 Jul; 4(7):e6373. doi:
10.1371/journal.pone.0006373
. [PMID: 19636414] - Berta Alquézar, Lorenzo Zacarías, María J Rodrigo. Molecular and functional characterization of a novel chromoplast-specific lycopene beta-cyclase from Citrus and its relation to lycopene accumulation.
Journal of experimental botany.
2009; 60(6):1783-97. doi:
10.1093/jxb/erp048
. [PMID: 19325166] - Mei Zhang, Bing Yuan, Ping Leng. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit.
Journal of experimental botany.
2009; 60(6):1579-88. doi:
10.1093/jxb/erp026
. [PMID: 19246595] - Berta Alquezar, Maria J Rodrigo, Lorenzo Zacarías. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara.
Phytochemistry.
2008 Jul; 69(10):1997-2007. doi:
10.1016/j.phytochem.2008.04.020
. [PMID: 18538806] - Aviv Shaish, Ayelet Harari, Yehuda Kamari, Etienne Soudant, Dror Harats, Ami Ben-Amotz. A carotenoid algal preparation containing phytoene and phytofluene inhibited LDL oxidation in vitro.
Plant foods for human nutrition (Dordrecht, Netherlands).
2008 Jun; 63(2):83-6. doi:
10.1007/s11130-008-0075-y
. [PMID: 18443908] - Peter Lorenz, Melanie Berger, Julia Bertrams, Kristian Wende, Kristin Wenzel, Ulrike Lindequist, Ulrich Meyer, Florian C Stintzing. Natural wax constituents of a supercritical fluid CO(2) extract from quince (Cydonia oblonga Mill.) pomace.
Analytical and bioanalytical chemistry.
2008 May; 391(2):633-46. doi:
10.1007/s00216-008-2000-5
. [PMID: 18418588] - Maneesha Aluru, Yang Xu, Rong Guo, Zhenguo Wang, Shanshan Li, Wendy White, Kan Wang, Steve Rodermel. Generation of transgenic maize with enhanced provitamin A content.
Journal of experimental botany.
2008; 59(13):3551-62. doi:
10.1093/jxb/ern212
. [PMID: 18723758] - Alex B Lopez, Joyce Van Eck, Brian J Conlin, Dominick J Paolillo, Jennifer O'Neill, Li Li. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers.
Journal of experimental botany.
2008; 59(2):213-23. doi:
10.1093/jxb/erm299
. [PMID: 18256051] - Gianfranco Diretto, Ralf Welsch, Raffaela Tavazza, Fabienne Mourgues, Daniele Pizzichini, Peter Beyer, Giovanni Giuliano. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers.
BMC plant biology.
2007 Mar; 7(?):11. doi:
10.1186/1471-2229-7-11
. [PMID: 17335571] - Majid R Foolad. Genome mapping and molecular breeding of tomato.
International journal of plant genomics.
2007; 2007(?):64358. doi:
10.1155/2007/64358
. [PMID: 18364989] - Jessica K Campbell, Chad K Stroud, Manabu T Nakamura, Mary Ann Lila, John W Erdman. Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in F344 rats.
The Journal of nutrition.
2006 Nov; 136(11):2813-9. doi:
10.1093/jn/136.11.2813
. [PMID: 17056806] - Gianfranco Diretto, Raffaela Tavazza, Ralf Welsch, Daniele Pizzichini, Fabienne Mourgues, Velia Papacchioli, Peter Beyer, Giovanni Giuliano. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase.
BMC plant biology.
2006 Jun; 6(?):13. doi:
10.1186/1471-2229-6-13
. [PMID: 16800876] - Jessica K Campbell, Randy B Rogers, Mary Ann Lila, John W Erdman. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.
Journal of agricultural and food chemistry.
2006 Feb; 54(3):747-55. doi:
10.1021/jf0581269
. [PMID: 16448178] - Patrizia Riso, Antonella Brusamolino, Antonia Martinetti, Marisa Porrini. Effect of a tomato drink intervention on insulin-like growth factor (IGF)-1 serum levels in healthy subjects.
Nutrition and cancer.
2006; 55(2):157-62. doi:
10.1207/s15327914nc5502_6
. [PMID: 17044770] - I Marty, S Bureau, G Sarkissian, B Gouble, J M Audergon, G Albagnac. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).
Journal of experimental botany.
2005 Jul; 56(417):1877-86. doi:
10.1093/jxb/eri177
. [PMID: 15911563] - Marisa Porrini, Patrizia Riso, Antonella Brusamolino, Cristiana Berti, Serena Guarnieri, Francesco Visioli. Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection.
The British journal of nutrition.
2005 Jan; 93(1):93-9. doi:
10.1079/bjn20041315
. [PMID: 15705230] - Olivier Aust, Wilhelm Stahl, Helmut Sies, Hagen Tronnier, Ulrike Heinrich. Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2005 Jan; 75(1):54-60. doi:
10.1024/0300-9831.75.1.54
. [PMID: 15830922] - Karlis Briviba, Sabine E Kulling, Jutta Möseneder, Bernhard Watzl, Gerhard Rechkemmer, Achim Bub. Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers.
Carcinogenesis.
2004 Dec; 25(12):2373-8. doi:
10.1093/carcin/bgh249
. [PMID: 15308586] - J K Collins, B H Arjmandi, P L Claypool, P Perkins-Veazie, R A Baker, B A Clevidence. Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults.
Nutrition journal.
2004 Sep; 3(?):15. doi:
10.1186/1475-2891-3-15
. [PMID: 15369594] - Alessio Conti, Simonetta Pancaldi, Marco Fambrini, Vania Michelotti, Angelo Bonora, Mariangela Salvini, Claudio Pugliesi. A deficiency at the gene coding for zeta-carotene desaturase characterizes the sunflower non dormant-1 mutant.
Plant & cell physiology.
2004 Apr; 45(4):445-55. doi:
10.1093/pcp/pch052
. [PMID: 15111719] - María-Jesús Rodrigo, José F Marcos, Fernando Alférez, M Dolores Mallent, Lorenzo Zacarías. Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content.
Journal of experimental botany.
2003 Feb; 54(383):727-38. doi:
10.1093/jxb/erg083
. [PMID: 12554716] - Frederick Khachik, Lorena Carvalho, Paul S Bernstein, Garth J Muir, Da-You Zhao, Nikita B Katz. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health.
Experimental biology and medicine (Maywood, N.J.).
2002 Nov; 227(10):845-51. doi:
10.1177/153537020222701002
. [PMID: 12424324] - Myriam Richelle, Karlheinz Bortlik, Stéphanie Liardet, Corinne Hager, Pierre Lambelet, Markus Baur, Lee A Applegate, Elizabeth A Offord. A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste.
The Journal of nutrition.
2002 Mar; 132(3):404-8. doi:
10.1093/jn/132.3.404
. [PMID: 11880563] - Ronald P Mensink, Spike Ebbing, Martijn Lindhout, Jogchum Plat, Marjolien M A van Heugten. Effects of plant stanol esters supplied in low-fat yoghurt on serum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations.
Atherosclerosis.
2002 Jan; 160(1):205-13. doi:
10.1016/s0021-9150(01)00562-7
. [PMID: 11755939] - I Neuman, H Nahum, A Ben-Amotz. Reduction of exercise-induced asthma oxidative stress by lycopene, a natural antioxidant.
Allergy.
2000 Dec; 55(12):1184-9. doi:
10.1034/j.1398-9995.2000.00748.x
. [PMID: 11117277] - I Paetau, D Rao, E R Wiley, E D Brown, B A Clevidence. Carotenoids in human buccal mucosa cells after 4 wk of supplementation with tomato juice or lycopene supplements.
The American journal of clinical nutrition.
1999 Oct; 70(4):490-4. doi:
10.1093/ajcn/70.4.490
. [PMID: 10500017] - G Sandmann, C Schneider, P Böger. A new non-radioactive assay of phytoene desaturase to evaluate bleaching herbicides.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
1996 Jul; 51(7-8):534-8. doi:
. [PMID: 8810094]
- M A Ross, L K Crosley, K M Brown, S J Duthie, A C Collins, J R Arthur, G G Duthie. Plasma concentrations of carotenoids and antioxidant vitamins in Scottish males: influences of smoking.
European journal of clinical nutrition.
1995 Nov; 49(11):861-5. doi:
NULL
. [PMID: 8557024] - N M Merkle, H Wiedeck, C Herfarth, A Grünert. [Immediate postoperative enteral tube feeding following resection of the large intestine. Experiences with a controlled clinical study].
Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.
1984 Apr; 55(4):267-74. doi:
NULL
. [PMID: 6426893] - J N Thompson. Interference from carotenoids in the fluorometric analysis of serum vitamin A in cancer studies.
European journal of cancer & clinical oncology.
1983 Nov; 19(11):1645-6. doi:
10.1016/0277-5379(83)90098-6
. [PMID: 6685646] - D A BEELER, J W PORTER. The enzymatic conversion of phytoene to phytofluene.
Biochemical and biophysical research communications.
1962 Aug; 8(?):367-71. doi:
10.1016/0006-291x(62)90009-8
. [PMID: 13866515] - L ZECHMEISTER, G KARMAKAR. The occurrence of phytofluene in green plant organs.
Archives of biochemistry and biophysics.
1953 Nov; 47(1):160-4. doi:
10.1016/0003-9861(53)90445-7
. [PMID: 13114883] - . .
.
. doi:
. [PMID: 15503129]
- . .
.
. doi:
. [PMID: 20335404]