Glycitin (BioDeep_00000230241)

 

Secondary id: BioDeep_00000002604

natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


7-(?-D-Glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; Glycitein 7-O-glucoside; Glycitein 7-O-?-glucoside; Glycitein-7-?-O-glucoside; Glycitin

化学式: C22H22O10 (446.1213)
中文名称: 黄豆黄甙, 黄豆黄苷, 大豆黄苷, 黄豆黄苷(黄豆黄素-7-O-葡萄糖苷), 黄豆黄苷、黄豆黄素-7-O-葡萄糖苷
谱图信息: 最多检出来源 Viridiplantae(plant) 47.73%

分子结构信息

SMILES: COC1=C(C=C2C(=C1)C(=O)C(=CO2)C3=CC=C(C=C3)O)OC4C(C(C(C(O4)CO)O)O)O
InChI: InChI=1S/C22H22O10/c1-29-15-6-12-14(30-9-13(18(12)25)10-2-4-11(24)5-3-10)7-16(15)31-22-21(28)20(27)19(26)17(8-23)32-22/h2-7,9,17,19-24,26-28H,8H2,1H3/t17-,19-,20+,21-,22-/m1/s1

描述信息

Glycitin is a glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. It has a role as a plant metabolite. It is a methoxyisoflavone, a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside.
Glycitin is a natural product found in Sorbus cuspidata, Ziziphus spina-christi, and other organisms with data available.
A glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7.
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.
Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.

同义名列表

33 个代谢物同义名

7-(?-D-Glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; Glycitein 7-O-glucoside; Glycitein 7-O-?-glucoside; Glycitein-7-?-O-glucoside; Glycitin; 3-(4-hydroxyphenyl)-6-methoxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 3-(4-hydroxyphenyl)-6-methoxy-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one; 3-(4-hydroxyphenyl)-6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; 3-(4-hydroxyphenyl)-6-methoxy-7-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; 4H-1-Benzopyran-4-one, 7-(.beta.-D-glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-; 3-(4-hydroxyphenyl)-6-methoxy-4-oxo-4H-chromen-7-yl .beta.-D-glucopyranoside; 3-(4-hydroxyphenyl)-6-methoxy-4-oxo-4H-chromen-7-yl beta-D-glucopyranoside; Glycitin, United States Pharmacopeia (USP) Reference Standard; 4,7-dihydroxy-6-methoxyisoflavone-7-d-glucoside; GLYCITIN (CONSTITUENT OF SOY ISOFLAVONES) [DSC]; 4,7-Dihydroxy 6-methoxyisoflavone 7-O-glucoside; GLYCITEIN 7-O-.BETA.-GLUCOSIDE; GLYCITEIN-7-.BETA.-O-GLUCOSIDE; Glycitein 7-O-beta-glucoside; Glycitein-7-beta-O-glucoside; Glycitein-7-b-O-glucoside; Glycitein 7-O-b-glucoside; glycitein 7-O-glucoside; GLYCITIN [USP-RS]; UNII-G2S44P62XC; G2S44P62XC; Glycitin; 3-(4-hydroxyphenyl)-6-methoxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone; 3-(4-hydroxyphenyl)-6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; 3-(4-hydroxyphenyl)-6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-chromen-4-one; 3-(4-hydroxyphenyl)-6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-methylol-tetrahydropyran-2-yl]oxy-chromone; 40246-10-4; C16195; 7- (beta-D-Glucopyranosyloxy) -3- (4-hydroxyphenyl) -6-methoxy-4H-1-benzopyran-4-one; Glycitein 7-O-β-glucoside; Glycitin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

51 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ADIG, AIMP2, CAT, CYP2E1, ELANE, MAPK8, MTOR, NFKB1, PIK3CA, SMAD2, SMAD3, SOD1, TLR4
Peripheral membrane protein 4 CYP2E1, GBA1, GORASP1, MTOR
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 CYP2E1, MTOR
Nucleus 10 ADIG, AIMP2, ESR2, JUND, MAPK8, MTOR, NFKB1, SMAD2, SMAD3, SOD1
cytosol 10 AIMP2, CAT, ELANE, MAPK8, MTOR, NFKB1, PIK3CA, SMAD2, SMAD3, SOD1
dendrite 1 MTOR
phagocytic vesicle 2 ELANE, MTOR
trans-Golgi network 1 GBA1
nucleoplasm 8 ESR2, JUND, MAPK8, MTOR, NFKB1, SMAD2, SMAD3, SOD1
RNA polymerase II transcription regulator complex 1 JUND
Cell membrane 2 TLR4, TNF
Cytoplasmic side 2 GORASP1, MTOR
lamellipodium 1 PIK3CA
Golgi apparatus membrane 2 GORASP1, MTOR
Synapse 1 MAPK8
cell surface 3 ELANE, TLR4, TNF
Golgi apparatus 2 GBA1, GORASP1
Golgi membrane 3 GORASP1, INS, MTOR
lysosomal membrane 2 GBA1, MTOR
mitochondrial inner membrane 1 CYP2E1
neuronal cell body 2 SOD1, TNF
Cytoplasm, cytosol 1 AIMP2
Lysosome 2 GBA1, MTOR
plasma membrane 4 PIK3CA, SMAD3, TLR4, TNF
Membrane 6 ADIG, AIMP2, CAT, MTOR, SMAD2, TLR4
axon 1 MAPK8
extracellular exosome 5 BMP3, CAT, ELANE, GBA1, SOD1
Lysosome membrane 2 GBA1, MTOR
Lumenal side 1 GBA1
endoplasmic reticulum 1 GBA1
extracellular space 5 BMP3, ELANE, INS, SOD1, TNF
lysosomal lumen 1 GBA1
perinuclear region of cytoplasm 2 PIK3CA, TLR4
intercalated disc 1 PIK3CA
mitochondrion 4 CAT, ESR2, NFKB1, SOD1
protein-containing complex 3 CAT, SMAD2, SOD1
intracellular membrane-bounded organelle 3 CAT, CYP2E1, ESR2
Microsome membrane 2 CYP2E1, MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 3 ADIG, BMP3, INS
extracellular region 8 ADIG, BMP3, CAT, ELANE, INS, NFKB1, SOD1, TNF
Mitochondrion outer membrane 1 MTOR
Single-pass membrane protein 1 ADIG
mitochondrial outer membrane 1 MTOR
mitochondrial matrix 2 CAT, SOD1
transcription regulator complex 4 JUND, NFKB1, SMAD2, SMAD3
external side of plasma membrane 2 TLR4, TNF
cytoplasmic vesicle 1 SOD1
axon cytoplasm 1 SOD1
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 TNF
focal adhesion 1 CAT
cis-Golgi network 1 GORASP1
Peroxisome 2 CAT, SOD1
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 1 ELANE
secretory granule 1 ELANE
nuclear inner membrane 1 SMAD3
dendrite cytoplasm 1 SOD1
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 SMAD3, TLR4
chromatin 5 ESR2, JUND, NFKB1, SMAD2, SMAD3
phagocytic cup 2 TLR4, TNF
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
Lipid droplet 1 ADIG
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 3 CAT, INS, NFKB1
Golgi lumen 1 INS
endoplasmic reticulum lumen 1 INS
transcription repressor complex 2 ELANE, JUND
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
specific granule lumen 2 ELANE, NFKB1
transport vesicle 1 INS
azurophil granule lumen 1 ELANE
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
heteromeric SMAD protein complex 2 SMAD2, SMAD3
SMAD protein complex 2 SMAD2, SMAD3
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cytoplasmic vesicle, phagosome 2 ELANE, MTOR
activin responsive factor complex 1 SMAD2
transcription factor AP-1 complex 1 JUND
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
[Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm 1 NFKB1
[Nuclear factor NF-kappa-B p50 subunit]: Nucleus 1 NFKB1
I-kappaB/NF-kappaB complex 1 NFKB1
NF-kappaB p50/p65 complex 1 NFKB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
homomeric SMAD protein complex 1 SMAD2
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • You Jin Lim, Ho Young Jeong, Chan Saem Gil, Soon-Jae Kwon, Jong Kuk Na, Chanhui Lee, Seok Hyun Eom. Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food chemistry. 2020 Jan; 303(?):125376. doi: 10.1016/j.foodchem.2019.125376. [PMID: 31442900]
  • Michaela Kopečná-Zapletalová, Kristýna Krasulová, Pavel Anzenbacher, Petr Hodek, Eva Anzenbacherová. Interaction of isoflavonoids with human liver microsomal cytochromes P450: inhibition of CYP enzyme activities. Xenobiotica; the fate of foreign compounds in biological systems. 2017 Apr; 47(4):324-331. doi: 10.1080/00498254.2016.1195028. [PMID: 27312150]
  • José P da Graça, Tatiana E Ueda, Tatiani Janegitz, Simone S Vieira, Mariana C Salvador, Maria C N de Oliveira, Sonia M Zingaretti, Stephen J Powers, John A Pickett, Michael A Birkett, Clara B Hoffmann-Campo. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. Phytochemistry. 2016 Nov; 131(?):84-91. doi: 10.1016/j.phytochem.2016.08.013. [PMID: 27659594]
  • Kailee A Johnson, Sravan Vemuri, Sameerh Alsahafi, Rudy Castillo, Venugopalan Cheriyath. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth. Nutrition and cancer. 2016 May; 68(4):622-33. doi: 10.1080/01635581.2016.1154578. [PMID: 27043076]
  • Mohammad Talaei, Bee L Lee, Choon N Ong, Rob M van Dam, Jian M Yuan, Woon P Koh, An Pan. Urine phyto-oestrogen metabolites are not significantly associated with risk of type 2 diabetes: the Singapore Chinese health study. The British journal of nutrition. 2016 05; 115(9):1607-15. doi: 10.1017/s0007114516000581. [PMID: 26949260]
  • Yan Zhang, Sam K C Chang. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk. Journal of food science. 2016 Mar; 81(3):C593-9. doi: 10.1111/1750-3841.13236. [PMID: 26814612]
  • Yanqing Zang, Kiharu Igarashi, Changqing Yu. Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Bioscience, biotechnology, and biochemistry. 2015; 79(1):117-23. doi: 10.1080/09168451.2014.955453. [PMID: 25209298]
  • Vera van der Velpen, Anouk Geelen, Peter C H Hollman, Evert G Schouten, Pieter van 't Veer, Lydia A Afman. Isoflavone supplement composition and equol producer status affect gene expression in adipose tissue: a double-blind, randomized, placebo-controlled crossover trial in postmenopausal women. The American journal of clinical nutrition. 2014 Nov; 100(5):1269-77. doi: 10.3945/ajcn.114.088484. [PMID: 25332325]
  • Xiong Li, Jian-fang Li, Dong Wang, Wei-ning Wang, Zheng Cui. [Isoflavone glycosides from the bark of Maackia amurensis]. Yao xue xue bao = Acta pharmaceutica Sinica. 2009 Jan; 44(1):63-8. doi: . [PMID: 19350824]
  • B Klejdus, J Vacek, L Lojková, L Benesová, V Kubán. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases. Journal of chromatography. A. 2008 Jun; 1195(1-2):52-9. doi: 10.1016/j.chroma.2008.04.069. [PMID: 18501366]
  • Seung-Hyun Lee, Young Heui Kim, Heui-Jong Yu, Nam-Suk Cho, Tae-Hyun Kim, Dong-Chool Kim, Chan-Bok Chung, Yong-Il Hwang, Ki Ho Kim. Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats. Bioscience, biotechnology, and biochemistry. 2007 Dec; 71(12):2927-33. doi: 10.1271/bbb.70296. [PMID: 18071265]
  • Kyoung Ah Kang, Rui Zhang, Mei Jing Piao, Kyoung Hwa Lee, Bum Joon Kim, So Young Kim, Hee Sun Kim, Dong Hyun Kim, Ho Jin You, Jin Won Hyun. Inhibitory effects of glycitein on hydrogen peroxide induced cell damage by scavenging reactive oxygen species and inhibiting c-Jun N-terminal kinase. Free radical research. 2007 Jun; 41(6):720-9. doi: 10.1080/10715760701241618. [PMID: 17516245]
  • Shin Yasuda, Po-Sheng Wu, Emi Hattori, Hirofumi Tachibana, Koji Yamada. Simultaneous determination of isoflavones and bisphenol A in rat serum by high-performance liquid chromatography coupled with coulometric array detection. Bioscience, biotechnology, and biochemistry. 2004 Jan; 68(1):51-8. doi: 10.1271/bbb.68.51. [PMID: 14745163]
  • A Albert, C Altabre, F Baró, E Buendía, A Cabero, M J Cancelo, C Castelo-Branco, P Chantre, M Duran, J Haya, P Imbert, D Julía, J L Lanchares, P Llaneza, M Manubens, A Miñano, F Quereda, C Ribes, F Vázquez. Efficacy and safety of a phytoestrogen preparation derived from Glycine max (L.) Merr in climacteric symptomatology: a multicentric, open, prospective and non-randomized trial. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2002 Mar; 9(2):85-92. doi: 10.1078/0944-7113-00107. [PMID: 11995954]
  • T Uesugi, T Toda, K Tsuji, H Ishida. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biological & pharmaceutical bulletin. 2001 Apr; 24(4):368-72. doi: 10.1248/bpb.24.368. [PMID: 11305597]