2-Hydroxy-6-pentadecylbenzoic acid (BioDeep_00000396385)

 

Secondary id: BioDeep_00000002667, BioDeep_00000869041

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


6-(8(Z),11(Z),14-pentadecatrienyl)salicylic acid

化学式: C22H36O3 (348.2664)
中文名称: 漆树酸
谱图信息: 最多检出来源 Homo sapiens(lipidomics) 14.87%

分子结构信息

SMILES: C1C=C(CCCCCCCCCCCCCCC)C(C(O)=O)=C(O)C=1
InChI: InChI=1S/C22H36O3/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-16-19-17-15-18-20(23)21(19)22(24)25/h15,17-18,23H,2-14,16H2,1H3,(H,24,25)

描述信息

Anacardic acid is a hydroxybenzoic acid that is salicylic acid substituted by a pentadecyl group at position 6. It is a major component of cashew nut shell liquid and exhibits an extensive range of bioactivities. It has a role as an EC 2.3.1.48 (histone acetyltransferase) inhibitor, an apoptosis inducer, a neuroprotective agent, an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor, an anticoronaviral agent, an antibacterial agent, an anti-inflammatory agent and a plant metabolite. It is a hydroxybenzoic acid and a hydroxy monocarboxylic acid. It is functionally related to a salicylic acid.
Anacardic acid is a natural product found in Amphipterygium adstringens, Knema elegans, and other organisms with data available.
2-Hydroxy-6-pentadecylbenzoic acid is found in cashew nut. Synthesised by immature seeds of Ginkgo biloba (ginkgo).Chemically, anacardic acid is a mixture of several closely related organic compounds. Each consists of a salicylic acid substituted with an alkyl chain that has 15 or 17 carbon atoms; anacardic acid is a mixture of saturated and unsaturated molecules. The exact mixture depends on the species of the plant and the major component is C5:3 all-Z. (Wikipedia
A hydroxybenzoic acid that is salicylic acid substituted by a pentadecyl group at position 6. It is a major component of cashew nut shell liquid and exhibits an extensive range of bioactivities.
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
Synthesised by immature seeds of Ginkgo biloba (ginkgo)
Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively.
Anacardic Acid, extracted from cashew nut shell liquid, is a histone acetyltransferase inhibitor, inhibits HAT activity of p300 and PCAF, with IC50s of ~8.5 μM and ~5 μM, respectively.

同义名列表

36 个代谢物同义名

6-(8(Z),11(Z),14-pentadecatrienyl)salicylic acid; 6-(8,11,14-pentadecatrienyl)salicylic acid; (15:0)-Anacardic acid, analytical standard; Benzoic acid, 2-hydroxy-6-pentadecyl-; 2-OXIDANYL-6-PENTADECYL-BENZOIC ACID; 2-Hydroxy-6-pentadecyl-benzoic acid; 6-Pentadecyl-2-hydroxybenzoic acid; 2-Hydroxy-6-pentadecylbenzoic acid; 2-hydroxy-6-pendadecylbenzoic acid; 2-Hydroxy-6-pentadecylbenzoicacid; 2-Hydroxy-6-pentadecylbenzoate; Salicylic acid, 6-pentadecyl-; Pentadecylsalicylic acid, 6-; 6-(Pentadecyl)Salicylic Acid; 6-pentadecyl salicylic acid; Hydrogenated anacardic acid; ADFWQBGTDJIESE-UHFFFAOYSA-N; 6-pentadecylsalicylic acid; 6-nonadecyl salicylic acid; 6-Pentadecyl salicylate; cyclogallipharic acid; (15:0)-Anacardic acid; Ginkgolic acid C15:0; Hydroginkgolic acid; 22:0-Anacardic acid; Anacardic acid A; Anacardic Acid; Anarcadic Acid; Benzoic acid,; Anacardsaure; Anacardate; 8H693KBS2W; C22H36O3; 6-PDSA; PA-9A; 6-Pentadecylsalicylic acid



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 BCL2, BIRC5, CASP3, CCND1, EP300, ESR1, HDAC9, HSPA5, KAT2B, MAPK14, MAPK8, PPARG, PTGS2, TP53, VEGFA
Peripheral membrane protein 3 ACHE, ESR1, PTGS2
Endoplasmic reticulum membrane 3 BCL2, HSPA5, PTGS2
Nucleus 15 ACHE, BCL2, BIRC5, CASP3, CCND1, EP300, ESR1, HDAC9, HSPA5, KAT2B, MAPK14, MAPK8, PPARG, TP53, VEGFA
autophagosome 1 MAP1LC3A
cytosol 13 BCL2, BIRC5, CASP3, CCND1, EP300, ESR1, HSPA5, KAT2B, MAP1LC3A, MAPK14, MAPK8, PPARG, TP53
centrosome 3 CCND1, KAT2B, TP53
nucleoplasm 12 ATP2B1, BIRC5, CASP3, CCND1, EP300, ESR1, HDAC9, KAT2B, MAPK14, MAPK8, PPARG, TP53
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 4 ACHE, ATP2B1, ESR1, TNF
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 1 ESR1
Multi-pass membrane protein 1 ATP2B1
Synapse 3 ACHE, ATP2B1, MAPK8
cell surface 4 ACHE, HSPA5, TNF, VEGFA
glutamatergic synapse 4 ATP2B1, CASP3, MAP1LC3A, MAPK14
Golgi apparatus 3 ACHE, ESR1, VEGFA
Golgi membrane 1 INS
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
presynaptic membrane 1 ATP2B1
plasma membrane 5 ACHE, ATP2B1, ESR1, HSPA5, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 7 ACHE, ATP2B1, BCL2, ESR1, HSPA5, TP53, VEGFA
axon 1 MAPK8
basolateral plasma membrane 1 ATP2B1
caveola 1 PTGS2
extracellular exosome 2 ATP2B1, HSPA5
endoplasmic reticulum 5 BCL2, HSPA5, PTGS2, TP53, VEGFA
extracellular space 4 ACHE, INS, TNF, VEGFA
perinuclear region of cytoplasm 2 ACHE, PPARG
adherens junction 1 VEGFA
bicellular tight junction 1 CCND1
mitochondrion 4 BCL2, HSPA5, MAPK14, TP53
protein-containing complex 7 BCL2, BIRC5, ESR1, HSPA5, KAT2B, PTGS2, TP53
intracellular membrane-bounded organelle 4 ATP2B1, HSPA5, MAP1LC3A, PPARG
Microsome membrane 1 PTGS2
postsynaptic density 1 CASP3
Secreted 3 ACHE, INS, VEGFA
extracellular region 5 ACHE, INS, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
Extracellular side 1 ACHE
transcription regulator complex 4 EP300, ESR1, HDAC9, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 KAT2B, TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CCND1
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
microtubule cytoskeleton 1 BIRC5
nucleolus 1 TP53
midbody 2 BIRC5, HSPA5
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 MAP1LC3A, TP53
Cytoplasm, cytoskeleton, spindle 1 BIRC5
focal adhesion 1 HSPA5
microtubule 2 BIRC5, MAP1LC3A
spindle 1 BIRC5
extracellular matrix 1 VEGFA
basement membrane 1 ACHE
Nucleus, PML body 1 TP53
PML body 1 TP53
secretory granule 1 VEGFA
lateral plasma membrane 1 ATP2B1
nuclear speck 1 MAPK14
interphase microtubule organizing center 1 BIRC5
actomyosin 1 KAT2B
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Late endosome 1 MAP1LC3A
receptor complex 1 PPARG
neuron projection 1 PTGS2
chromatin 4 EP300, ESR1, PPARG, TP53
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
cell projection 1 ATP2B1
phagocytic cup 1 TNF
mitotic spindle 1 KAT2B
Chromosome 2 BIRC5, EP300
centriole 1 BIRC5
spindle pole 1 MAPK14
nuclear chromosome 1 BIRC5
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
organelle membrane 1 MAP1LC3A
site of double-strand break 1 TP53
Endomembrane system 1 MAP1LC3A
endosome lumen 1 INS
Chromosome, centromere 1 BIRC5
Chromosome, centromere, kinetochore 1 BIRC5
I band 1 KAT2B
Melanosome 1 HSPA5
euchromatin 1 ESR1
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 HSPA5, INS, PTGS2
histone methyltransferase complex 1 HDAC9
nuclear matrix 1 TP53
transcription repressor complex 2 CCND1, TP53
platelet alpha granule lumen 1 VEGFA
kinetochore 2 BIRC5, KAT2B
histone deacetylase complex 1 HDAC9
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
chromosome, centromeric region 1 BIRC5
chromosome passenger complex 1 BIRC5
A band 1 KAT2B
endoplasmic reticulum-Golgi intermediate compartment 1 HSPA5
[Isoform 1]: Nucleus 2 ESR1, TP53
cytoplasmic microtubule 1 BIRC5
synaptic cleft 1 ACHE
SAGA complex 1 KAT2B
histone acetyltransferase complex 1 EP300
protein-DNA complex 1 EP300
spindle microtubule 1 BIRC5
survivin complex 1 BIRC5
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
ATAC complex 1 KAT2B
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
endoplasmic reticulum chaperone complex 1 HSPA5
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
[Isoform H]: Cell membrane 1 ACHE
cyclin D1-CDK6 complex 1 CCND1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jinchao Wei, Renjian Xu, Yuanyuan Zhang, Lingyu Zhao, Shumu Li, Zhenwen Zhao. Ultra-High-Performance Liquid Chromatography-Electrospray Ionization-High-Resolution Mass Spectrometry for Distinguishing the Origin of Ellagic Acid Extracts: Pomegranate Peels or Gallnuts. Molecules (Basel, Switzerland). 2024 Jan; 29(3):. doi: 10.3390/molecules29030666. [PMID: 38338410]
  • Yu Liu, Zongren Zhao, Jianqiang Guo, Yuanhao Ma, Jing Li, Huanhuan Ji, Zhongjun Chen, Jinyu Zheng. Anacardic acid improves neurological deficits in traumatic brain injury by anti-ferroptosis and anti-inflammation. Experimental neurology. 2023 Oct; 370(?):114568. doi: 10.1016/j.expneurol.2023.114568. [PMID: 37820939]
  • Emily G Hicks, Sylvie E Kandel, Jed N Lampe. Identification of Aloe-derived natural products as prospective lead scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. Bioorganic & medicinal chemistry letters. 2022 06; 66(?):128732. doi: 10.1016/j.bmcl.2022.128732. [PMID: 35427739]
  • Cigdem Sahin, Lilia Magomedova, Thais A M Ferreira, Jiabao Liu, Jens Tiefenbach, Priscilla S Alves, Fellipe J G Queiroz, Andressa S de Oliveira, Mousumi Bhattacharyya, Julie Grouleff, Patrícia C N Nogueira, Edilberto R Silveira, Daniel C Moreira, José Roberto Souza de Almeida Leite, Guilherme D Brand, David Uehling, Gennady Poda, Henry Krause, Carolyn L Cummins, Luiz A S Romeiro. Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of medicinal chemistry. 2022 02; 65(3):1961-1978. doi: 10.1021/acs.jmedchem.1c01542. [PMID: 35089724]
  • Jangho Lee, Min-Yu Chung, Sangwon Chung, Hyo-Kyoung Choi. Anacardic Acid Suppresses Adipogenesis Through Inhibition of the Hsp90/Akt Signaling Pathway in 3T3-L1 Preadipocytes. Journal of medicinal food. 2021 May; 24(5):487-496. doi: 10.1089/jmf.2020.4830. [PMID: 34009020]
  • Michele Rossi, Michela Freschi, Luciana de Camargo Nascente, Alessandra Salerno, Sarah de Melo Viana Teixeira, Florian Nachon, Fabien Chantegreil, Ondrej Soukup, Lukáš Prchal, Marco Malaguti, Christian Bergamini, Manuela Bartolini, Cristina Angeloni, Silvana Hrelia, Luiz Antonio Soares Romeiro, Maria Laura Bolognesi. Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. Journal of medicinal chemistry. 2021 04; 64(8):4972-4990. doi: 10.1021/acs.jmedchem.1c00048. [PMID: 33829779]
  • Md Meraj Anjum, Krishna Kumar Patel, Deepa Dehari, Nidhi Pandey, Ragini Tilak, Ashish Kumar Agrawal, Sanjay Singh. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug delivery and translational research. 2021 02; 11(1):305-317. doi: 10.1007/s13346-020-00795-4. [PMID: 32519201]
  • Tran Huu Giap, Phan Minh Duc, Nguyen Van The, Milena Popova, Vassya Bankova, Cao Thi Hue, Vu Thi Kim Oanh, Nguyen Thi Minh Hang, Hung Nguyen Van, Thanh Nguyen Le. Chemical constituents and biological activities of the fruits of Knema pachycarpa de Wilde. Natural product research. 2021 Feb; 35(3):455-464. doi: 10.1080/14786419.2019.1637868. [PMID: 31282749]
  • Ramille Araújo Lima, Smyrna Luiza Ximenes de Souza, Lais Aragão Lima, Ana Larissa Ximenes Batista, Jennifer Thayanne Cavalcante de Araújo, Francisco Fábio Oliveira Sousa, Juliana Paiva Marques Lima Rolim, Tereza De Jesus Pinheiro Gomes Bandeira. Antimicrobial effect of anacardic acid-loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2020 Dec; 51(4):1623-1630. doi: 10.1007/s42770-020-00320-2. [PMID: 32562202]
  • Eric Umehara, Thais A Costa Silva, Viviane M Mendes, Rafael C Guadagnin, Patricia Sartorelli, Andre G Tempone, João Henrique G Lago. Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi - A mechanistic study. Bioorganic chemistry. 2020 09; 102(?):104068. doi: 10.1016/j.bioorg.2020.104068. [PMID: 32653609]
  • Mattia Quattrocelli, Aaron S Zelikovich, Zhen Jiang, Clara Bien Peek, Alexis R Demonbreun, Nancy L Kuntz, Grant D Barish, Saptarsi M Haldar, Joseph Bass, Elizabeth M McNally. Pulsed glucocorticoids enhance dystrophic muscle performance through epigenetic-metabolic reprogramming. JCI insight. 2019 12; 4(24):. doi: 10.1172/jci.insight.132402. [PMID: 31852847]
  • Elenilson G Alves Filho, Lorena Mara A Silva, Francisco Oiram Filho, Sueli Rodrigues, Fabiano A N Fernandes, Maria Izabel Gallão, Christopher P Mattison, Edy S de Brito. Cold plasma processing effect on cashew nuts composition and allergenicity. Food research international (Ottawa, Ont.). 2019 11; 125(?):108621. doi: 10.1016/j.foodres.2019.108621. [PMID: 31554108]
  • J N Rashida Gnanaprakasam, Elizabet Estrada-Muñiz, Libia Vega. The antineoplastic agent anacardic 6-pentadecyl salicylic acid produces immunomodulation in vivo via the activation of MAPKs. Toxicology and applied pharmacology. 2019 08; 376(?):82-92. doi: 10.1016/j.taap.2019.05.017. [PMID: 31129177]
  • George Harrison Ferreira de Carvalho, Maria Lucília Dos Santos, Rose Monnerat, Milene Aparecida Andrade, Marina Gonçalves de Andrade, Alessandra Barbosa Dos Santos, Izabela Marques Dourado Bastos, Jaime Martins de Santana. Ovicidal and Deleterious Effects of Cashew (Anacardium occidentale) Nut Shell Oil and Its Fractions on Musca domestica, Chrysomya megacephala, Anticarsia gemmatalis and Spodoptera frugiperda. Chemistry & biodiversity. 2019 May; 16(5):e1800468. doi: 10.1002/cbdv.201800468. [PMID: 30803133]
  • George Harrison Ferreira de Carvalho, Milene Aparecida de Andrade, Carla Nunes de Araújo, Maria Lucília Santos, Natália Alves de Castro, Sébastien Charneau, Rose Monnerat, Jaime Martins de Santana, Izabela Marques Dourado Bastos. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environmental science and pollution research international. 2019 Feb; 26(6):5514-5523. doi: 10.1007/s11356-018-3905-y. [PMID: 30610586]
  • Miaomiao Yuan, Xiaoxia Song, Wei Lv, Qi Xin, Li Wang, Qi Gao, Guochao Zhang, Wenzhen Liao, Sen Lian, Tao Jing. Effect of anacardic acid against echinococcosis through inhibition of VEGF-induced angiogenesis. Veterinary research. 2019 Jan; 50(1):3. doi: 10.1186/s13567-019-0621-7. [PMID: 30642401]
  • Shabeeba M Ashraf, Krishnan Rathinasamy. Antibacterial and anticancer activity of the purified cashew nut shell liquid: implications in cancer chemotherapy and wound healing. Natural product research. 2018 Dec; 32(23):2856-2860. doi: 10.1080/14786419.2017.1380022. [PMID: 28934859]
  • Wenchao Lu, Huan Xiong, Yu Chen, Chen Wang, Hao Zhang, Pan Xu, Jie Han, Senhao Xiao, Hong Ding, Zhifeng Chen, Tian Lu, Jun Wang, Yuanyuan Zhang, Liyan Yue, Yu-Chih Liu, Chenhua Zhang, Yaxi Yang, Hualiang Jiang, Kaixian Chen, Bing Zhou, Cheng Luo. Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors. Bioorganic & medicinal chemistry. 2018 11; 26(20):5397-5407. doi: 10.1016/j.bmc.2018.07.048. [PMID: 30297119]
  • Marilen Queiroz de Souza, Isabella Márcia Soares Nogueira Teotônio, Fernanda Coutinho de Almeida, Gabriella Simões Heyn, Priscilla Souza Alves, Luiz Antônio Soares Romeiro, Riccardo Pratesi, Yanna Karla de Medeiros Nóbrega, Claudia B Pratesi. Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC complementary and alternative medicine. 2018 Jun; 18(1):181. doi: 10.1186/s12906-018-2247-0. [PMID: 29890972]
  • Varun Kushwah, Sameer S Katiyar, Chander Parkash Dora, Ashish Kumar Agrawal, Dimitrios A Lamprou, Ramesh C Gupta, Sanyog Jain. Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta biomaterialia. 2018 06; 73(?):424-436. doi: 10.1016/j.actbio.2018.03.057. [PMID: 29649635]
  • Fahimeh Moradi-Afrapoli, Hannes van der Merwe, Maria De Mieri, Anke Wilhelm, Marco Stadler, Pieter C Zietsman, Steffen Hering, Kenneth Swart, Matthias Hamburger. HPLC-Based Activity Profiling for GABAA Receptor Modulators in Searsia pyroides Using a Larval Zebrafish Locomotor Assay. Planta medica. 2017 Oct; 83(14-15):1169-1175. doi: 10.1055/s-0043-110768. [PMID: 28511229]
  • Suhail Muzaffar, Bharat B Chattoo. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis : an international journal on programmed cell death. 2017 Mar; 22(3):463-474. doi: 10.1007/s10495-016-1330-6. [PMID: 28012059]
  • David J Schultz, Penn Muluhngwi, Negin Alizadeh-Rad, Madelyn A Green, Eric C Rouchka, Sabine J Waigel, Carolyn M Klinge. Genome-wide miRNA response to anacardic acid in breast cancer cells. PloS one. 2017; 12(9):e0184471. doi: 10.1371/journal.pone.0184471. [PMID: 28886127]
  • Hong Ping Zhang, Lei Wang, Juan Juan Fu, Tao Fan, Zeng Li Wang, Gang Wang. Association between histone hyperacetylation status in memory T lymphocytes and allergen-induced eosinophilic airway inflammation. Respirology (Carlton, Vic.). 2016 07; 21(5):850-7. doi: 10.1111/resp.12774. [PMID: 26991676]
  • Mohammad M Al-Bataineh, Rodrigo Alzamora, Kazuhiro Ohmi, Pei-Yin Ho, Allison L Marciszyn, Fan Gong, Hui Li, Kenneth R Hallows, Núria M Pastor-Soler. Aurora kinase A activates the vacuolar H+-ATPase (V-ATPase) in kidney carcinoma cells. American journal of physiology. Renal physiology. 2016 06; 310(11):F1216-28. doi: 10.1152/ajprenal.00061.2016. [PMID: 26911844]
  • Suhail Muzaffar, Chinchu Bose, Ashok Banerji, Bipin G Nair, Bharat B Chattoo. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Applied microbiology and biotechnology. 2016 Jan; 100(1):323-35. doi: 10.1007/s00253-015-6915-4. [PMID: 26381667]
  • J N Rashida Gnanaprakasam, Elizabet Estrada-Muñiz, Libia Vega. The anacardic 6-pentadecyl salicylic acid induces macrophage activation via the phosphorylation of ERK1/2, JNK, P38 kinases and NF-κB. International immunopharmacology. 2015 Dec; 29(2):808-817. doi: 10.1016/j.intimp.2015.08.038. [PMID: 26371858]
  • Mateusz Legut, Dominik Lipka, Nina Filipczak, Adriana Piwoni, Arkadiusz Kozubek, Jerzy Gubernator. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines - in vitro studies. International journal of nanomedicine. 2014; 9(?):653-68. doi: 10.2147/ijn.s54911. [PMID: 24489469]
  • Guillermo Mariño, Federico Pietrocola, Frank Madeo, Guido Kroemer. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy. 2014; 10(11):1879-82. doi: 10.4161/auto.36413. [PMID: 25484097]
  • Cintia Silveira, Flávia Oliveira, Maria Lucilia Dos Santos, Thiago de Freitas, José Carlos Imparato, Ana Carolina Magalhães. Anacardic acid from brazilian cashew nut trees reduces dentine erosion. Caries research. 2014; 48(6):549-56. doi: 10.1159/000358400. [PMID: 24993776]
  • Mahadevappa Hemshekhar, Martin Sebastin Santhosh, Kempaiah Kemparaju, Kesturu S Girish. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic & clinical pharmacology & toxicology. 2012 Feb; 110(2):122-32. doi: 10.1111/j.1742-7843.2011.00833.x. [PMID: 22103711]
  • Maciej A Pszczolkowski, Kevin Durden, Samantha Sellars, Brian Cowell, John J Brown. Effects of Ginkgo biloba constituents on fruit-infesting behavior of codling moth (Cydia pomonella) in apples. Journal of agricultural and food chemistry. 2011 Oct; 59(20):10879-86. doi: 10.1021/jf202386c. [PMID: 21905729]
  • AndreAna N Peña, Kaoru Tominaga, Olivia M Pereira-Smith. MRG15 activates the cdc2 promoter via histone acetylation in human cells. Experimental cell research. 2011 Jul; 317(11):1534-40. doi: 10.1016/j.yexcr.2011.02.001. [PMID: 21324423]
  • Deepesh Pandey, Feng Chen, Anand Patel, Cong-Yi Wang, Christiana Dimitropoulou, Vijay S Patel, R Daniel Rudic, David W Stepp, David J Fulton. SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arteriosclerosis, thrombosis, and vascular biology. 2011 Jul; 31(7):1634-42. doi: 10.1161/atvbaha.111.226621. [PMID: 21527745]
  • Chia-Chien Hsieh, Blanca Hernández-Ledesma, Ben O de Lumen. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens. Plant foods for human nutrition (Dordrecht, Netherlands). 2011 Jun; 66(2):107-13. doi: 10.1007/s11130-011-0229-1. [PMID: 21562729]
  • Claudia Colussi, Jessica Rosati, Stefania Straino, Francesco Spallotta, Roberta Berni, Donatella Stilli, Stefano Rossi, Ezio Musso, Emilio Macchi, Antonello Mai, Gianluca Sbardella, Sabrina Castellano, Cristina Chimenti, Andrea Frustaci, Angela Nebbioso, Lucia Altucci, Maurizio C Capogrossi, Carlo Gaetano. Nε-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart. Proceedings of the National Academy of Sciences of the United States of America. 2011 Feb; 108(7):2795-800. doi: 10.1073/pnas.1013124108. [PMID: 21282606]
  • Leonard Tedong, Padma Madiraju, Louis C Martineau, Diane Vallerand, John T Arnason, Dzeufiet D P Desire, Louis Lavoie, Pierre Kamtchouing, Pierre S Haddad. Hydro-ethanolic extract of cashew tree (Anacardium occidentale) nut and its principal compound, anacardic acid, stimulate glucose uptake in C2C12 muscle cells. Molecular nutrition & food research. 2010 Dec; 54(12):1753-62. doi: 10.1002/mnfr.201000045. [PMID: 20603833]
  • Lúcio P L Logrado, Camila O Santos, Luiz A S Romeiro, Arinice M Costa, José R O Ferreira, Bruno C Cavalcanti, O Manoel de Moraes, Letícia V Costa-Lotufo, Cláudia Pessoa, Maria L Dos Santos. Synthesis and cytotoxicity screening of substituted isobenzofuranones designed from anacardic acids. European journal of medicinal chemistry. 2010 Aug; 45(8):3480-9. doi: 10.1016/j.ejmech.2010.05.015. [PMID: 20537433]
  • Rahul Chelikani, Yong Hwan Kim, Do-Young Yoon, Dong-Shik Kim. Enzymatic polymerization of natural anacardic acid and antibiofouling effects of polyanacardic acid coatings. Applied biochemistry and biotechnology. 2009 May; 157(2):263-77. doi: 10.1007/s12010-008-8284-2. [PMID: 18592408]
  • Isao Fukuda, Akihiro Ito, Go Hirai, Shinichi Nishimura, Hisashi Kawasaki, Hisato Saitoh, Ken-Ichi Kimura, Mikiko Sodeoka, Minoru Yoshida. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chemistry & biology. 2009 Feb; 16(2):133-40. doi: 10.1016/j.chembiol.2009.01.009. [PMID: 19246003]
  • Joseph Y N Philip, José Da Cruz Francisco, Estera S Dey, Joseph Buchweishaija, Lupituko L Mkayula, Lei Ye. Isolation of anacardic acid from natural cashew nut shell liquid (CNSL) using supercritical carbon dioxide. Journal of agricultural and food chemistry. 2008 Oct; 56(20):9350-4. doi: 10.1021/jf801532a. [PMID: 18811166]
  • S G De Lima, C M Feitosa, A M G L Citó, J M Moita Neto, J A D Lopes, A S Leite, M C Brito, S M M Dantas, A A C Melo Cavalcante. Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity. Genetics and molecular research : GMR. 2008 Sep; 7(3):806-18. doi: 10.4238/vol7-3gmr473. [PMID: 18949700]
  • Claudio Muscari, Francesca Bonafé, Marco Carboni, Marco Govoni, Ivana Stanic, Chiara Gamberini, Francesca Ricci, Pier Luigi Tazzari, Claudio Marcello Caldarera, Carlo Guarnieri. Difluoromethylornithine stimulates early cardiac commitment of mesenchymal stem cells in a model of mixed culture with cardiomyocytes. Journal of cellular biochemistry. 2008 Mar; 103(4):1046-52. doi: 10.1002/jcb.21683. [PMID: 18240140]
  • Hortensia Rosas Acevedo, Maritere Domínguez Rojas, Sandra Díaz Barriga Arceo, Marcos Soto Hernández, Mariano Martínez Vázquez, Teresa Terrazas, Gustavo Valencia del Toro. Effect of 6-nonadecyl salicylic acid and its methyl ester on the induction of micronuclei in polychromatic erythrocytes in mouse peripheral blood. Mutation research. 2006 Oct; 609(1):43-6. doi: 10.1016/j.mrgentox.2006.06.002. [PMID: 16857418]
  • James D Adams, Cecilia Garcia. Women's health among the Chumash. Evidence-based complementary and alternative medicine : eCAM. 2006 Mar; 3(1):125-31. doi: 10.1093/ecam/nek021. [PMID: 16550233]
  • Tae Joung Ha, Isao Kubo. Lipoxygenase inhibitory activity of anacardic acids. Journal of agricultural and food chemistry. 2005 Jun; 53(11):4350-4. doi: 10.1021/jf048184e. [PMID: 15913294]
  • Karanam Balasubramanyam, V Swaminathan, Anupama Ranganathan, Tapas K Kundu. Small molecule modulators of histone acetyltransferase p300. The Journal of biological chemistry. 2003 May; 278(21):19134-40. doi: 10.1074/jbc.m301580200. [PMID: 12624111]
  • Parvin Begum, Yasuyuki Hashidoko, Md Tofazzal Islam, Yuko Ogawa, Satoshi Tahara. Zoosporicidal activities of anacardic acids against Aphanomyces cochlioides. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2002 Sep; 57(9-10):874-82. doi: 10.1515/znc-2002-9-1020. [PMID: 12440727]
  • D Wang, T J Girard, T P Kasten, R M LaChance, M A Miller-Wideman, R C Durley. Inhibitory activity of unsaturated fatty acids and anacardic acids toward soluble tissue factor-factor VIIa complex. Journal of natural products. 1998 Nov; 61(11):1352-5. doi: 10.1021/np980117p. [PMID: 9834151]
  • J George, R Kuttan. Mutagenic, carcinogenic and cocarcinogenic activity of cashewnut shell liquid. Cancer letters. 1997 Jan; 112(1):11-6. doi: 10.1016/s0304-3835(96)04540-5. [PMID: 9029164]
  • D J Schultz, E B Cahoon, J Shanklin, R Craig, D L Cox-Foster, R O Mumma, J I Medford. Expression of a delta 9 14:0-acyl carrier protein fatty acid desaturase gene is necessary for the production of omega 5 anacardic acids found in pest-resistant geranium (Pelargonium xhortorum). Proceedings of the National Academy of Sciences of the United States of America. 1996 Aug; 93(16):8771-5. doi: 10.1073/pnas.93.16.8771. [PMID: 8710947]
  • N Loreau, C Lepreux, R Ardaillou. Calcitonin-sensitive adenylate cyclase in rat renal tubular membranes. The Biochemical journal. 1975 Sep; 150(3):305-14. doi: 10.1042/bj1500305. [PMID: 2153]