8-HETE (BioDeep_00000001713)
Main id: BioDeep_00000409873
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H32O3 (320.23513219999995)
中文名称: 8-羟基-[S-(E,Z,Z,Z)]-5,9,11,14-二十碳四烯酸
谱图信息:
最多检出来源 Danio rerio(blood) 40%
分子结构信息
SMILES: CCCCC/C=C\C/C=C\C=C\C(C/C=C\CCCC(=O)O)O
InChI: InChI=1S/C20H32O3/c1-2-3-4-5-6-7-8-9-10-13-16-19(21)17-14-11-12-15-18-20(22)23/h6-7,9-11,13-14,16,19,21H,2-5,8,12,15,17-18H2,1H3,(H,22,23)/b7-6-,10-9-,14-11-,16-13+/t19-/m1/s1
描述信息
8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987) [HMDB]
8(S)-HETE is a naturally occurring hydroxyeicosatetraenoic acid eicosanoid. 8(S)-HETE is a strong activator of peroxisome proliferator-activated receptors (PPARs) alpha and a weak activator of PPAR gamma. PPARs are nuclear hormone receptors that regulate gene transcription in response to peroxisome proliferators and fatty acids. PPARs also play an important role in the regulation of adipocyte differentiation. It is unclear however what naturally occurring compounds activate each of the PPAR subtypes. Additionally, 8(S)-HETE is able to induce differentiation of preadipocytes. (PMID: 7592593, 9113987).
同义名列表
28 个代谢物同义名
(5Z,9E,11Z,14Z)-(8S)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid; (5Z,9E,11Z,14Z)-(8S)-8-Hydroxyicosa-5,9,11,14-tetraenoic acid; (5Z,8S,9E,11Z,14Z)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid; (5Z,8S,9E,11Z,14Z)-8-Hydroxyicosa-5,9,11,14-tetraenoic acid; (5Z,9E,11Z,14Z)-(8S)-8-Hydroxyeicosa-5,9,11,14-tetraenoate; (5Z,9E,11Z,14Z)-(8S)-8-Hydroxyicosa-5,9,11,14-tetraenoate; (5Z,8S,9E,11Z,14Z)-8-Hydroxyeicosa-5,9,11,14-tetraenoate; (8S)-Hydroxy-(5Z),(9E),(11Z),(14Z)-eicosatetraenoic acid; (S)-(Z,e,Z,Z)-8-Hydroxyeicosa-5,9,11,14-tetraenoic acid; (5Z,8S,9E,11Z,14Z)-8-Hydroxyicosa-5,9,11,14-tetraenoate; 8-Hydroxyeicosatetraenoic acid, (e,Z,Z,Z)-(+-)-isomer; 8(S)-Hydroxy-(5Z, 9E, 11Z, 14Z)-Eicosatetraenoic acid; (8S)-Hydroxy-(5Z),(9E),(11Z),(14Z)-eicosatetraenoate; (S)-(Z,e,Z,Z)-8-Hydroxyeicosa-5,9,11,14-tetraenoate; 8(S)-Hydroxy-(5Z,9E,11Z,14Z)-eicosatetraenoic acid; 8-Hydroxyeicosatetraenoic acid, (e,Z,Z,Z)-isomer; 8(S)-Hydroxy-(5Z,9E,11Z,14Z)-eicosatetraenoate; 8S-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid; 8-hydroxy-5Z,9E,11Z,14Z-eicosatetraenoic acid; 8S-Hydroxy-5Z,9E,11Z,14Z-eicosatetraenoate; 8-hydroxyicosa-5,9,11,14-tetraenoic acid; 8(S)-Hydroxyeicosatetraenoic acid; 8-Hydroxyeicosatetraenoic acid; 8(S)-Hydroxyeicosatetraenoate; 8(s)-hete; 8S-HETE; 8-HETE; 8(S)-HETE
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:34486
- KEGG: C14776
- PubChem: 5283154
- PubChem: 1898
- HMDB: HMDB0004679
- Metlin: METLIN45977
- Metlin: METLIN45730
- Wikipedia: Vâlcele, Covasna
- foodb: FDB023400
- chemspider: 4446278
- CAS: 98462-03-4
- PMhub: MS000001034
- PubChem: 17395774
- LipidMAPS: LMFA03060006
- NIKKAJI: J855.517F
- RefMet: 8-HETE
- RefMet: 8S-HETE
- KNApSAcK: 34486
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
47 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Manila Hada, Matthew L Edin, Patricia Hartge, Fred B Lih, Nicolas Wentzensen, Darryl C Zeldin, Britton Trabert. Prediagnostic Serum Levels of Fatty Acid Metabolites and Risk of Ovarian Cancer in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial.
Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.
2019 01; 28(1):189-197. doi:
10.1158/1055-9965.epi-18-0392
. [PMID: 30262599] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Qiaoxia Bian, Weihui Wang, Nannan Wang, Yan Peng, Wen Ma, Ronghua Dai. Arachidonic acid metabolomic study of BPH in rats and the interventional effects of Zishen pill, a traditional Chinese medicine.
Journal of pharmaceutical and biomedical analysis.
2016 Sep; 128(?):149-157. doi:
10.1016/j.jpba.2016.05.027
. [PMID: 27262108] - Jelena Klawitter, Kim McFann, Alexander T Pennington, Wei Wang, Jost Klawitter, Uwe Christians, Robert W Schrier, Berenice Gitomer, Melissa A Cadnapaphornchai. Pravastatin Therapy and Biomarker Changes in Children and Young Adults with Autosomal Dominant Polycystic Kidney Disease.
Clinical journal of the American Society of Nephrology : CJASN.
2015 Sep; 10(9):1534-41. doi:
10.2215/cjn.11331114
. [PMID: 26224879] - M A Fernández-Peralbo, C Ferreiro Vera, F Priego-Capote, M D Luque de Castro. Stable isotopic internal standard correction for quantitative analysis of hydroxyeicosatetraenoic acids (HETEs) in serum by on-line SPE-LC-MS/MS in selected reaction monitoring mode.
Talanta.
2014 Aug; 126(?):170-6. doi:
10.1016/j.talanta.2014.03.038
. [PMID: 24881549] - Jun Yang, Jason P Eiserich, Carroll E Cross, Brian M Morrissey, Bruce D Hammock. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients.
Free radical biology & medicine.
2012 Jul; 53(1):160-71. doi:
10.1016/j.freeradbiomed.2012.05.001
. [PMID: 22580336] - Janny C de Grauw, Chris H A van de Lest, Paul René van Weeren. A targeted lipidomics approach to the study of eicosanoid release in synovial joints.
Arthritis research & therapy.
2011 Jul; 13(4):R123. doi:
10.1186/ar3427
. [PMID: 21794148] - Christopher P Thomas, Lloyd T Morgan, Benjamin H Maskrey, Robert C Murphy, Hartmut Kühn, Stanley L Hazen, Alison H Goodall, Hassan A Hamali, Peter W Collins, Valerie B O'Donnell. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation.
The Journal of biological chemistry.
2010 Mar; 285(10):6891-903. doi:
10.1074/jbc.m109.078428
. [PMID: 20061396] - Puneet Puri, Michelle M Wiest, Onpan Cheung, Faridoddin Mirshahi, Carol Sargeant, Hae-Ki Min, Melissa J Contos, Richard K Sterling, Michael Fuchs, Huiping Zhou, Steven M Watkins, Arun J Sanyal. The plasma lipidomic signature of nonalcoholic steatohepatitis.
Hepatology (Baltimore, Md.).
2009 Dec; 50(6):1827-38. doi:
10.1002/hep.23229
. [PMID: 19937697] - James P Hardwick, Douglas Osei-Hyiaman, Homer Wiland, Mohamed A Abdelmegeed, Byoung-Joon Song. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid omega-Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease.
PPAR research.
2009; 2009(?):952734. doi:
10.1155/2009/952734
. [PMID: 20300478] - Dorothea Schweiger, Gerhard Fürstenberger, Peter Krieg. Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways.
Journal of lipid research.
2007 Mar; 48(3):553-64. doi:
10.1194/jlr.m600311-jlr200
. [PMID: 17164225] - B M Forman, J Chen, R M Evans. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta.
Proceedings of the National Academy of Sciences of the United States of America.
1997 Apr; 94(9):4312-7. doi:
10.1073/pnas.94.9.4312
. [PMID: 9113986]