Eudesmin (BioDeep_00000003776)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


eudesmin;(1R,3aα,6aα)-1,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(1R,3aα,6aα)-1α,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(3aβ,6aβ)-3β,6β-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(+)-Pinoresinol dimethyl ether;(1S)-3aβ,4,6,6aβ-Tetrahydro-1β,4β-bis(3,4-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan;Pinoresinol dimethyl ether;NSC 35476

化学式: C22H26O6 (386.1729)
中文名称: 桉脂素, 松脂素二甲醚, 松脂酚二甲醚, 欧德明
谱图信息: 最多检出来源 Viridiplantae(plant) 11.05%

分子结构信息

SMILES: COC(C=C(C=C1)[C@@]2([H])[C@@]3([H])[C@](CO2)([H])[C@@](C(C=C4)=CC(OC)=C4OC)([H])OC3)=C1OC
InChI: InChI=1S/C22H26O6/c1-23-17-7-5-13(9-19(17)25-3)21-15-11-28-22(16(15)12-27-21)14-6-8-18(24-2)20(10-14)26-4/h5-10,15-16,21-22H,11-12H2,1-4H3/t15-,16-,21+,22+/m0/s1

描述信息

(+)-Eudesmin is a lignan.
(+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available.
Origin: Plant
Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1].
Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1].
Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].
Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].

同义名列表

28 个代谢物同义名

eudesmin;(1R,3aα,6aα)-1,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(1R,3aα,6aα)-1α,4α-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(3aβ,6aβ)-3β,6β-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan;(+)-Pinoresinol dimethyl ether;(1S)-3aβ,4,6,6aβ-Tetrahydro-1β,4β-bis(3,4-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan;Pinoresinol dimethyl ether;NSC 35476; 1H,3H-Furo(3,4-c)furan, 1,4-bis(3,4-dimethoxyphenyl)tetrahydro-, (1R-(1alpha,3aalpha,4alpha,6aalpha))-; (1S,3.ALPHA.R,4S,6.ALPHA.R)-1,4-BIS(3,4-DIMETHOXYPHENYL)TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN; (1S,3alphaR,4S,6alphaR)-1,4-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo(3,4-C)furan; (3S,3aR,6S,6aR)-3,6-bis(3,4-dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan; (1S,3aR,4S,6aR)-1,4-Bis(3,4-dimethoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan; 1,4-BIS(3,4-DIMETHOXYPHENYL)-HEXAHYDROFURO[3,4-C]FURAN; (+)-pinoresinol dimethyl ether; Pinoresinol, O,O-dimethyl-; Pinoresinol dimethyl ether; UNII-3TPV0HJ9B0; (+)-Eudesmin; Pinoresinol; 3TPV0HJ9B0; AC1Q70YM; CHEBI:23; AC1L2JAN; Eudesmin; (1S,3aR,4S,6aR)-1,4-bis(3,4-dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[4,3-c]furan; ZINC01668160; BB_NC-1494; NSC 35476; 526-06-7; C10561; (-)-Eudesmin; Eudesmine; (-)-Eudesmine; (+)-Eudesmin



数据库引用编号

55 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

141 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 BCL2, CASP3, CYP2A6, CYP2B6, CYP2C19, CYP2C9, CYP2D6, SOX2
Peripheral membrane protein 1 CYP2B6
Endoplasmic reticulum membrane 12 BCL2, CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C9, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A9, UGT2B7
Nucleus 6 BCL2, CASP3, EZH2, NANOG, SOX2, SUZ12
cytosol 3 BCL2, CASP3, SOX2
nuclear body 1 SUZ12
nucleoplasm 6 ANO1, CASP3, EZH2, NANOG, SOX2, SUZ12
Cell membrane 2 ANO1, TNF
Early endosome membrane 1 DKK1
Multi-pass membrane protein 1 ANO1
Synapse 1 EZH2
cell surface 1 TNF
glutamatergic synapse 1 CASP3
neuronal cell body 2 CASP3, TNF
Presynapse 1 ANO1
plasma membrane 6 ANO1, CYP2C19, CYP2C9, DKK1, TNF, UGT1A1
Membrane 9 ANO1, BCL2, CYP2A6, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A9, UGT2B7
apical plasma membrane 1 ANO1
extracellular exosome 1 ANO1
endoplasmic reticulum 6 BCL2, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A9
extracellular space 2 DKK1, TNF
perinuclear region of cytoplasm 1 UGT1A1
mitochondrion 2 BCL2, CYP2D6
protein-containing complex 1 BCL2
intracellular membrane-bounded organelle 7 CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2C9, CYP2D6, NANOG
Microsome membrane 4 CYP1A2, CYP2B6, CYP2C9, CYP2D6
postsynaptic density 1 CASP3
chromatin silencing complex 2 EZH2, SUZ12
ESC/E(Z) complex 2 EZH2, SUZ12
pericentric heterochromatin 1 EZH2
pronucleus 1 EZH2
Secreted 1 DKK1
extracellular region 2 DKK1, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 7 BCL2, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A9, UGT2B7
mitochondrial outer membrane 1 BCL2
transcription regulator complex 1 SOX2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
nucleolus 2 NANOG, SUZ12
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 ANO1
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 1 TNF
pore complex 1 BCL2
nuclear speck 1 SOX2
chromatin 3 EZH2, NANOG, SOX2
cell projection 1 ANO1
phagocytic cup 1 TNF
Chromosome 1 EZH2
chromosome, telomeric region 1 EZH2
chloride channel complex 1 ANO1
Nucleus speckle 1 SOX2
myelin sheath 1 BCL2
ribonucleoprotein complex 1 SUZ12
cytoplasmic microtubule 1 CYP2A6
protein-DNA complex 1 SUZ12
death-inducing signaling complex 1 CASP3
sex chromatin 1 SUZ12
RSC-type complex 1 SUZ12
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
endoplasmic reticulum chaperone complex 1 UGT1A1
BAD-BCL-2 complex 1 BCL2
cytochrome complex 1 UGT1A1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Ayşe Nur Demiryürek, Özge Göktürk, Ahmet Saracaloglu, Seniz Demiryürek, Abdullah Tuncay Demiryürek. Protective effects of verbenalin and (+)-eudesmin against 6-hydroxydopamine-induced oxidative/nitrosative stress in SH-SY5Y cells. Molecular biology reports. 2023 Jan; 50(1):331-338. doi: 10.1007/s11033-022-08039-z. [PMID: 36331750]
  • Yi-Ran Wang, Yong-Hui Li, Tao Guo, Hai-Long Li, Yin-Feng Tan, Zhong Zhang, Xu-Guang Zhang, Shi-Ying Mai, Jun-Qing Zhang. Measurement of pharmacokinetics and tissue distribution of three bioactive constituents from Zanthoxylum armatum DC in rat plasma and tissues through UFLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Jun; 1087-1088(?):80-89. doi: 10.1016/j.jchromb.2018.04.032. [PMID: 29723699]
  • Li-Li Jiang, Bai-Rong Sun, Chao Zheng, Gui-Lun Yang. The antitumour effects of eudesmin on lung cancer by inducing apoptosis via mitochondria-mediated pathway in the tumour cells. Pharmaceutical biology. 2017 Dec; 55(1):2259-2263. doi: 10.1080/13880209.2017.1401647. [PMID: 29171326]
  • Nishikant Wase, Boqiang Tu, James W Allen, Paul N Black, Concetta C DiRusso. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae. Plant physiology. 2017 Aug; 174(4):2146-2165. doi: 10.1104/pp.17.00433. [PMID: 28652262]
  • Vinod Bhatt, Sushila Sharma, Neeraj Kumar, Upendra Sharma, Bikram Singh. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS. Journal of pharmaceutical and biomedical analysis. 2017 Jan; 132(?):46-55. doi: 10.1016/j.jpba.2016.09.035. [PMID: 27693952]
  • Hao Liu, Zhi Song, Da-Guang Liao, Tian-Yi Zhang, Feng Liu, Kai Zhuang, Kui Luo, Liang Yang, Jing He, Jian-Ping Lei. Anticonvulsant and Sedative Effects of Eudesmin isolated from Acorus tatarinowii on mice and rats. Phytotherapy research : PTR. 2015 Jul; 29(7):996-1003. doi: 10.1002/ptr.5337. [PMID: 25851178]
  • Yan-qun Liu, Sheng-hui Yang, Qiang Liu, Gang Pei, Wei-wei Pan, Min Liu, Cai-yun Peng. [Study on chemical constituents of Zanthoxyli cortex's ethyl acetate extract]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2013 Nov; 36(11):1792-5. doi: . [PMID: 24956821]
  • Juliana Montani Raimundo, Ana Paula Felix Trindade, Leosvaldo Salazar Marques Velozo, Maria Auxiliadora Coelho Kaplan, Roberto Takashi Sudo, Gisele Zapata-Sudo. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. European journal of pharmacology. 2009 Mar; 606(1-3):150-4. doi: 10.1016/j.ejphar.2009.01.038. [PMID: 19374838]
  • Jae Yeon Kim, Hyo Jin Lim, Da Yeon Lee, Ji Sun Kim, Do Hee Kim, Hwa Jin Lee, Hee Doo Kim, Raok Jeon, Jae-Ha Ryu. In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. Bioorganic & medicinal chemistry letters. 2009 Feb; 19(3):937-40. doi: 10.1016/j.bmcl.2008.11.103. [PMID: 19110419]
  • Suresh Awale, Feng Li, Hiroko Onozuka, Hiroyasu Esumi, Yasuhiro Tezuka, Shigetoshi Kadota. Constituents of Brazilian red propolis and their preferential cytotoxic activity against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition. Bioorganic & medicinal chemistry. 2008 Jan; 16(1):181-9. doi: 10.1016/j.bmc.2007.10.004. [PMID: 17950610]
  • Suzanne Lim, Jérôme Grassi, Valentina Akhmedjanova, Eric Debiton, Guy Balansard, Richard Beliveau, Chantal Barthomeuf. Reversal of P-glycoprotein-mediated drug efflux by eudesmin from Haplophyllum perforatum and cytotoxicity pattern versus diphyllin, podophyllotoxin and etoposide. Planta medica. 2007 Dec; 73(15):1563-7. doi: 10.1055/s-2007-993754. [PMID: 18074315]
  • Yoo Jung Yang, Jae In Park, Hak-Ju Lee, Seon-Mi Seo, Oh-Kyu Lee, Don-Ha Choi, Ki-Hyon Paik, Myung Koo Lee. Effects of (+)-eudesmin from the stem bark of magnolia kobus DC. var. borealis Sarg. on neurite outgrowth in PC12 cells. Archives of pharmacal research. 2006 Dec; 29(12):1114-8. doi: 10.1007/bf02969301. [PMID: 17225460]
  • C L Cantrell, K K Schrader, L K Mamonov, G T Sitpaeva, T S Kustova, C Dunbar, D E Wedge. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. Journal of agricultural and food chemistry. 2005 Oct; 53(20):7741-8. doi: 10.1021/jf051478v. [PMID: 16190626]
  • Isabele R Nascimento, Afonso T Murata, Sergio A Bortoli, Lucia M X Lopes. Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest management science. 2004 Apr; 60(4):413-6. doi: 10.1002/ps.805. [PMID: 15119605]
  • Y G Chen, H D Sun, Z H Xu, G W Qin. [Studies on chemical constituents of Stellera chamejasma L]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2001 Jul; 26(7):477-9. doi: . [PMID: 12776361]
  • E Yeşilada, H Taninaka, Y Takaishi, G Honda, E Sezik, H Momota, Y Ohmoto, T Taki. In vitro inhibitory effects of Daphne oleoides ssp. oleoides on inflammatory cytokines and activity-guided isolation of active constituents. Cytokine. 2001 Mar; 13(6):359-64. doi: 10.1006/cyto.2001.0838. [PMID: 11292319]
  • I M Nilsson, S E Bergentz, U Hedner, K Kullenberg. Gastric fibrinolysis. Thrombosis et diathesis haemorrhagica. 1975 Nov; 34(2):409-18. doi: 10.1055/s-0038-1651400. [PMID: 807]