Subcellular Location: phagocytic vesicle membrane
Found 500 associated metabolites.
86 associated genes.
ANXA3, ATG12, ATG5, ATP6V0A1, ATP6V0A2, ATP6V0A4, ATP6V0B, ATP6V0C, ATP6V0D1, ATP6V0D2, ATP6V0E1, ATP6V0E2, ATP7A, B2M, CALR, CLEC4E, CORO1A, CYBA, CYBB, DMBT1, DNM2, HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, HLA-DRB1, HLA-E, HLA-F, HLA-G, HLA-H, HVCN1, INPP5B, IRGM, LAMP2, MCOLN1, MICA, MPEG1, OCRL, PIK3C3, PIK3R4, PIKFYVE, PIP4P1, PIP4P2, RAB10, RAB11B, RAB11FIP1, RAB20, RAB22A, RAB23, RAB31, RAB32, RAB34, RAB38, RAB39A, RAB41, RAB43, RAB5A, RAB5C, RAB7A, RAB7B, RAB8A, RAB8B, RAB9A, RAB9B, RAC2, RAPGEF1, RILP, SEC22B, SLC11A1, SLC15A2, SLC48A1, SLC9A9, SNAP23, STX4, SYT7, TAP1, TAP2, TAPBP, TCIRG1, TLR1, TLR2, TLR6, VAMP3, VAMP7, VAMP8
Gracillin
Gracillin is a triterpenoid. Gracillin is a natural product found in Dracaena draco, Clintonia udensis, and other organisms with data available. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties. Gracillin is a steroidal saponin extracted from the roots of the plant and has anti-tumor properties.
(+)-4,11-Eudesmadien-3-one
(+)-4,11-Eudesmadien-3-one is found in root vegetables. (+)-4,11-Eudesmadien-3-one is a constituent of Cyperus rotundus (nutgrass). alpha-Cyperone is a natural product found in Cyperus alopecuroides, Cyperus articulatus, and other organisms with data available. Constituent of Cyperus rotundus (nutgrass). (+)-4,11-Eudesmadien-3-one is found in root vegetables.
L-Tryptophan
Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].
Harmaline
Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline is a natural product found in Passiflora pilosicorona, Passiflora boenderi, and other organisms with data available. A beta-carboline alkaloid isolated from seeds of PEGANUM. A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. Harmaline is found in fruits. Harmaline is an alkaloid from Passiflora incarnata (maypops D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H027; [MS2] KO008994 KEIO_ID H027
Spinosin
Spinosin is a flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. It has a role as a plant metabolite and an anxiolytic drug. It is a flavone C-glycoside, a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Spinosin is a natural product found in Clutia abyssinica, Galipea trifoliata, and other organisms with data available. A flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3]. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3].
Coniferaldehyde
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Apiin
Apiin is a beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. It has a role as an EC 3.2.1.18 (exo-alpha-sialidase) inhibitor and a plant metabolite. It is a beta-D-glucoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an apiin(1-). Apiin is a natural product found in Crotalaria micans, Limonium axillare, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). Apiin is found in celery leaves. Apiin is a constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isolated in 1843 Apiin is a chemical compound isolated from parsley and celery Constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isol. in 1843 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2350 Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1]. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].
Linonin
Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Ginsenoside Rg3
(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.
Eldelin
Deltaline is a diterpene alkaloid, a tertiary alcohol, a tertiary amino compound, an acetate ester, a cyclic acetal and an organic polycyclic compound. It derives from a hydride of an aconitane. Deltaline is a natural product found in Delphinium cheilanthum, Delphinium andersonii, and other organisms with data available. Deltaline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6836-11-9 (retrieved 2024-07-09) (CAS RN: 6836-11-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1]. Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1].
Scopolin
Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
Asperuloside
Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].
Aurantio-obtusin
Aurantio-obtusin is a trihydroxyanthraquinone that is 1,3,7-trihydroxy-9,10-anthraquinone which is by methoxy groups at positions 2 and 8, and by a methyl group at position 6. Aurantio-obtusin is a natural product found in Senna obtusifolia and Senna tora with data available. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].
Plantamoside
Plantamajoside is a hydroxycinnamic acid. Plantamajoside is a natural product found in Primulina eburnea, Plantaginaceae, and other organisms with data available. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1]. Plantamajoside is a phenylpropanoid glycoside isolated from Plantago asiatica L.(Plantaginaceae). Plantamajoside has protective effects on LPS-induced acute lung injury (ALI) mice model. Plantamajoside has the potential for the treatment of pulmonary inflammation[1].
Hocogenin
Hecogenin is a triterpenoid. Hecogenin is a natural product found in Yucca gloriosa, Allium rotundum, and other organisms with data available.
Phellodendrine
Phellodendrine is an alkaloid. Phellodendrine is a natural product found in Phellodendron chinense, Phellodendron chinense var. glabriusculum, and other organisms with data available.
Phorbol
Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.
(R)-Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Hyoscyamine
(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. Hyoscyamine is a chemical compound, a tropane alkaloid it is the levo-isomer to atropine. It is a secondary metabolite of some plants, particularly henbane (Hyoscamus niger.). Hyoscyamine is used to provide symptomatic relief to various gastrointestinal disorders including spasms, peptic ulcers, irritable bowel syndrome, pancreatitis, colic and cystitis. It has also been used to relieve some heart problems, control some of the symptoms of Parkinsons disease, as well as for control of respiratory secretions in end of life care. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2269 D002491 - Central Nervous System Agents KEIO_ID H045; [MS2] KO008998 KEIO_ID H045 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Columbamine
Columbamine is a berberine alkaloid and an organic heterotetracyclic compound. Columbamine is a natural product found in Thalictrum podocarpum, Berberis thunbergii, and other organisms with data available.
Valtrats
Valtratum is a fatty acid ester. Valtrate is a natural product found in Valeriana pulchella, Valeriana alpestris, and other organisms with data available. See also: Viburnum opulus bark (part of). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2]. Valepotriate can be isolated from?Valeriana jatamansi?Jones, has anti-epileptic and anti-cancer activities[1][2].
Taraxerol
Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
1,3,6-Trigalloyl_glucose
Gallotannin is a class of hydrolysable tannins obtained by condensation of the carboxy group of gallic acid (and its polymeric derivatives) with the hydroxy groups of a monosaccharide (most commonly glucose). It is functionally related to a gallic acid. 1,3,6-tri-O-galloyl-beta-D-glucose is a natural product found in Euphorbia lunulata with data available. 1,3,6-Tri-O-galloyl-beta-D-glucose (1,3,6-Tri-O-galloyl-β-D-glucose) is a phenolic compound in Black Walnut Kernels[1]. 1,3,6-Tri-O-galloyl-beta-D-glucose (1,3,6-Tri-O-galloyl-β-D-glucose) is a phenolic compound in Black Walnut Kernels[1].
Yamogenintetroside B
Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methylprotodioscin is found in herbs and spices. Methylprotodioscin is isolated from seeds of Trigonella caerulea (sweet trefoil) and Asparagus officinalis (asparagus). Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
D-Citronellol
Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Tricetin
Tricetin is flavone hydroxylated at positions 3, 4, 5, 5 and 7. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a tricetin(1-). Tricetin is a natural product found in Punica granatum, Lathyrus pratensis, and other organisms with data available. Constituent of the seed coat of lentil (Lens culinaris). Tricetin is found in many foods, some of which are ginkgo nuts, pulses, tea, and cereals and cereal products. Tricetin is found in cereals and cereal products. Tricetin is a constituent of the seed coat of lentil (Lens culinaris) Flavone hydroxylated at positions 3, 4, 5, 5 and 7.
5-Hydroxyferulic acid
5-Hydroxyferulic acid (CAS: 1782-55-4), also known as 3-(3,4-dihydroxy-5-methoxy)-2-propenoic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing a cinnamic acid where the benzene ring is hydroxylated. Outside of the human body, 5-hydroxyferulic acid has been detected, but not quantified in, several different foods, such as common salsifies, napa cabbages, sparkleberries, nectarines, and Chinese chestnuts. This could make 5-hydroxyferulic acid a potential biomarker for the consumption of these foods. 5-Hydroxyferulic acid is found in green vegetables. 5-Hydroxyferulic acid is isolated from bamboo (Phyllostachys edulis). 5-hydroxyferulic acid is ferulic acid in which the ring hydrogen at position 5 is substituted by a hydroxy group. It is a hydroxycinnamic acid and a methoxycinnamic acid. It is a conjugate acid of a 5-hydroxyferulate. 5-Hydroxyferulic acid is a natural product found in Arabidopsis thaliana, Sabia japonica, and other organisms with data available. Isolated from bamboo (Phyllostachys edulis). 5-Hydroxyferulic acid is found in many foods, some of which are napa cabbage, chervil, common bean, and saskatoon berry. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3]. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].
3-Methylbenzaldehyde
3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position.
M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite.
3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available.
Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde
Forchlorfenuron
CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8756 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8835; ORIGINAL_PRECURSOR_SCAN_NO 8832 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4401; ORIGINAL_PRECURSOR_SCAN_NO 4396 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4419; ORIGINAL_PRECURSOR_SCAN_NO 4414 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4428; ORIGINAL_PRECURSOR_SCAN_NO 4427 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8765; ORIGINAL_PRECURSOR_SCAN_NO 8763 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4391; ORIGINAL_PRECURSOR_SCAN_NO 4390 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8800; ORIGINAL_PRECURSOR_SCAN_NO 8798 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4416; ORIGINAL_PRECURSOR_SCAN_NO 4415 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8810; ORIGINAL_PRECURSOR_SCAN_NO 8809 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8790; ORIGINAL_PRECURSOR_SCAN_NO 8788 CONFIDENCE standard compound; INTERNAL_ID 811; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4435; ORIGINAL_PRECURSOR_SCAN_NO 4431 D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; EAWAG_UCHEM_ID 3601 Forchlorfenuron is plant growth regulator and cytokinin; can be used to increase fruit size of fruits, such as kiwi fruit and grapes.
Sinapaldehyde
(E)-sinapaldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a dimethoxybenzene and a member of phenols. It is functionally related to an (E)-cinnamaldehyde. Sinapaldehyde is a natural product found in Stereospermum colais, Aralia bipinnata, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Sinapaldehyde, also known as (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenal or (E)-sinapoyl aldehyde, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapaldehyde is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sinapaldehyde can be synthesized from cinnamaldehyde. Sinapaldehyde can also be synthesized into 4-acetoxy-3,5-dimethoxy-trans-cinnamaldehyde. Sinapaldehyde can be found in a number of food items such as angelica, saskatoon berry, rubus (blackberry, raspberry), and lemon verbena, which makes sinapaldehyde a potential biomarker for the consumption of these food products. In Arabidopsis thaliana, this compound is part of the lignin biosynthesis pathway. The enzyme dihydroflavonol 4-reductase uses sinapaldehyde and NADPH to produce sinapyl alcohol and NADP+ . Annotation level-2 Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1]. Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].
Santamarin
Santamarin, also known as (+)-santamarine or balchanin, belongs to eudesmanolides, secoeudesmanolides, and derivatives class of compounds. Those are terpenoids with a structure based on the eudesmanolide (a 3,5a,9-trimethyl-naphtho[1,2-b]furan-2-one derivative) or secoeudesmanolide (a 3,6-dimethyl-5-(pentan-2-yl)-1-benzofuran-2-one derivative) skeleton. Santamarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Santamarin can be found in sweet bay, which makes santamarin a potential biomarker for the consumption of this food product. Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.
Canadine
(S)-canadine is the (S)-enantiomer of canadine. It has a role as a plant metabolite. It is an an (S)-7,8,13,14-tetrahydroprotoberberine and a canadine. It is functionally related to a (S)-nandinine. It is an enantiomer of a (R)-canadine. (S)-Canadine is a natural product found in Hydrastis canadensis, Corydalis turtschaninovii, and other organisms with data available. The (S)-enantiomer of canadine. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.721 D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.
25d20E
Ponasterone A is a 2beta-hydroxy steroid, a 3beta-hydroxy steroid, a 14alpha-hydroxy steroid, a 20-hydroxy steroid, a 22-hydroxy steroid, a 6-oxo steroid and a phytoecdysteroid. Ponasterone A is a natural product found in Zoanthus, Lomaridium contiguum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].
3,7-Dimethylquercetin
3,4,5-trihydroxy-3,7-dimethoxyflavone is a dimethoxyflavone that the 3,7-di-O-methyl derivative of quercetin. It has a role as an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor and a metabolite. It is a trihydroxyflavone and a dimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3,7-dimethoxyflavone(1-). 3,7-Di-O-methylquercetin is a natural product found in Wollastonia biflora, Psiadia viscosa, and other organisms with data available. 3,7-Dimethylquercetin is found in beer. 3,7-Dimethylquercetin is isolated from various plants including many Asteraceae [CCD Isolated from various plants including many Asteraceae [CCD]. 3,7-Dimethylquercetin is found in beer and grape wine. A dimethoxyflavone that the 3,7-di-O-methyl derivative of quercetin.
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Cyperotundone
Cyperotundone is a sesquiterpenoid. 4,10,11,11-Tetramethyltricyclo[5.3.1.0^{1,5}]undec-4-en-3-one is a natural product found in Cyperus with data available.
Dihydrovaltrate
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). Isolated from Valeriana subspecies Dihydrovaltrate is found in tea, fats and oils, and herbs and spices. Dihydrovaltrate is found in fats and oils. Dihydrovaltrate is isolated from Valeriana specie C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Ferruginol
Ferruginol is an abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12. It has a role as an antineoplastic agent, an antibacterial agent, a protective agent and a plant metabolite. It is an abietane diterpenoid, a member of phenols, a carbotricyclic compound and a meroterpenoid. Ferruginol is a natural product found in Calocedrus macrolepis, Teucrium polium, and other organisms with data available. An abietane diterpenoid that is abieta-8,11,13-triene substituted by a hydroxy group at positions 12.
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Valencene is found in citrus. Valencene is a constituent of orange oil Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
Geraniol
Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
Cuminyl alcohol
Cuminol or Cuminyl alcohol, also known as p-cumin-7-ol or 4-Isopropylbenzyl alcohol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Cuminol is an extremely weak basic (essentially neutral) compound (based on its pKa). Cuminol is an alcohol derivative of p-Cymene. It exists as a clear, colorless liquid that is poorly soluble in water. Cuminol can be used as a food additive or as a cosmetic fragrance. It has a cumin, caraway or spicy, herbal aroma and a similar spicy, herbal or peppery taste. Cuminol is found naturally in a number of plants, spices and foods including cumin seed and cumin oils, caraway eucalyptus oils, thyme, sunflowers, tuermeric, guava fruit and other spices and essential oils. Cumin, a widely used spice, is known to have anti-diabetic properties and two of its phytochemicals: cuminol and cuminaldehyde appear to be among the most active components. Cuminol is a potent insulinotrophic molecule that can enhance insulin secretion by up to 4-fold (in rat islet cells) (PMID:23507295 ). It also exhibits strong beta-cell protective action (PMID:23507295 ). 4-isopropylbenzyl alcohol is a member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. It has a role as a fragrance, an insect repellent, a volatile oil component, a plant metabolite and a xenobiotic metabolite. It is a p-menthane monoterpenoid and a member of benzyl alcohols. It is functionally related to a p-cymene. 4-Isopropylbenzyl alcohol is a natural product found in Xylopia aromatica, Curcuma amada, and other organisms with data available. Flavouring ingredient. Isolated from oils of Cuminum cyminum (cumin). Cuminyl alcohol is found in many foods, some of which are sweet bay, sunflower, cumin, and herbs and spices. A member of the class of benzyl alcohols in which the hydrogen at position 4 on the phenyl ring of benzyl alcohol has been replaced by an isopropyl group. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].
5-O-Methylvisamminol
5-O-Methylvisamminol is an oxacycle and an organic heterotricyclic compound. 5-O-Methylvisamminol is a natural product found in Saposhnikovia divaricata, Angelica japonica, and Prionosciadium thapsoides with data available. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].
trans-beta-Farnesene
Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Gardoside
Gardoside is a glycoside. Gardoside is a natural product found in Plantago atrata, Gardenia jasminoides, and other organisms with data available.
Octacosanoic acid
Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)
Neriifolin
Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.
beta-Phellandrene
beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].
Indole-3-carboxaldehyde
Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
p-Menth-1-en-4-ol
p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
alpha-Terpinene
Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].
Diethyltoluamide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379
Cyprodinil
CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9314; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9293; ORIGINAL_PRECURSOR_SCAN_NO 9292 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9313; ORIGINAL_PRECURSOR_SCAN_NO 9312 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9269; ORIGINAL_PRECURSOR_SCAN_NO 9268 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9257; ORIGINAL_PRECURSOR_SCAN_NO 9256 CONFIDENCE standard compound; INTERNAL_ID 810; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9257 CONFIDENCE standard compound; EAWAG_UCHEM_ID 148 CONFIDENCE standard compound; INTERNAL_ID 2569 KEIO_ID C172; [MS2] KO008908 Cyprodinil is a fungicide. Cyprodinil is a fungicide KEIO_ID C172
N-Methylhydantoin
N-methylhydantoin is a imidazolidine-2,4-dione that is the N-methyl-derivative of hydantoin. It has a role as a bacterial metabolite. It derives from a hydantoin. N-Methylhydantoin is a small molecular weight polar substance, the product of degradation of creatinine by bacteria (hydrolyzed by creatinine iminohydrolase, EC 3.5.4.21 to ammonia and N-methylhydantoin). In mammals, the metabolism of 1-methylhydantoin occurs via 5-hydroxy-1-methylhydantoin. In a reported human case, 1-Methylhydantoin was found as an unexpected metabolite of the intelligence-affecting substance dupracetam (PMID:15533691, 8287520, 3196760, 7294979). N-Methylhydantoin is a small molecular weight polar substance, the product of degradation of creatinine by bacteria (hydrolyzed by creatinine iminohydrolase, EC 3.5.4.21 to ammonia and N-methylhydantoin). In mammals, the metabolism of 1-methylhydantoin occurs via 5-hydroxy-1-methylhydantoin. In a reported human case, 1-Methylhydantoin was found as an unexpected metabolite of the intelligence-affecting substance dupracetam. (PMID: 15533691, 8287520, 3196760, 7294979) [HMDB] KEIO_ID M016 N-Methylhydantoin is a product of degradation of creatinine by bacteria. N-Methylhydantoin is a product of degradation of creatinine by bacteria.
2-Hydroxyphenethylamine
2-Hydroxyphenethylamine, also known as beta-phenethanolamine or 2-amino-1-phenylethanol, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. It is the simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. 2-Hydroxyphenethylamine exists in all living organisms, ranging from bacteria to humans. 2-Hydroxyphenethylamine ia an amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. Simple amine found in the brain. It may be modulator of sympathetic functions. Its derivatives are adrenergic agonists and antagonists. It is also used in chemical industry. [HMDB] 2-Amino-1-phenylethanol is an analogue of noradrenaline.
1-Methylxanthine
1-Methylxanthine is one of the major metabolites of caffeine in humans. The oxidation of 1-methylxanthine to 1-methyluric acid occurs so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in the brain (PMID: 28863020). 1-methylxanthine is the major metabolites of caffeine in the human. The oxidation of 1-methylxanthine to 1-methyluric acid occurred so rapidly that the parent compound could not be detected in plasma, and only low concentrations could be detected in brain. (PMID: 28863020 [HMDB] 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
2-hydroxyphenylacetate
ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
5-Sulfosalicylic acid
5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug.Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia [HMDB] 5-Sulfosalicylic acid is a derivative of salicylic acid, a common anti-inflammatory drug. Sulfosalicylic acid is used in urine tests to determine urine protein content. The chemical causes the precipitation of dissolved proteins, which is measured from the degree of turbidity. It is also used for integral colour anodizing. -Wikipedia. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
6-HYDROXYMELATONIN
A member of the class of tryptamines that is melatonin with a hydroxy group substituent at position 6. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.
Acetyl-N-formyl-5-methoxykynurenamine
Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration, with AFMK found in some patients exceeding the concentration of melatonin normally found in serum. (PMID: 16150112) [HMDB] Acetyl-N-formyl-5-methoxykynurenamine (AFMK) results from the oxidative cleavage of the pyrrole ring during melatonin oxidation by myeloperoxidase (MPO), a superoxide anion (O)-dependent reaction. AFMK is also expected to be formed from oxidation catalyzed by the unspecific enzyme indoleamine-2,3-dioxygenase (IDO), found in a variety of cell types including monocyte/macrophage lineages. MPO- and IDO-catalyzed melatonin oxidation has the requirement of O in common, a species formed in large amounts in inflammatory conditions. The non-enzymatic formation of AFMK can also be expected by its direct reaction with highly reactive oxygen species, such as hydroxyl radical and singlet oxygen. Thus, we assume that AFMK is a product formed in a route of melatonin metabolism, especially active in inflammation. As AFMK is biologically more active on leukocytes than melatonin, the metabolizing of melatonin to AFMK at inflammatory sites possibly plays a role in immunomodulation. AFMK is found in the CSF of patients with meningitis, and in some samples at a remarkably high concentration. AFMK was also found in some patients to exceed the concentration of melatonin normally found in serum (PMID: 16150112).
N-Acetylhistamine
N-Acetylhistamine is a 4-(beta-Acetylaminoethyl)imidazole that is an intermediate in Histidine metabolism. It is generated from Histamine via the enzyme Transferases (EC 2.3.1.-). Histamine is an amine derived by enzymatic decarboxylation of histidine. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Isolated from leaves of Spinacia oleracea (spinach). N-Acetylhistamine is found in green vegetables and spinach. KEIO_ID A093 N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
Indole-3-lactic acid
Indolelactic acid (CAS: 1821-52-9) is a tryptophan metabolite found in human plasma, serum, and urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical fetal plasma than in maternal plasma in the protein-bound form (PMID 2361979, 1400722, 3597614, 11060358, 1400722). Indolelactic acid is also a microbial metabolite; urinary indole-3-lactate is produced by Clostridium sporogenes (PMID: 29168502). Indolelactic acid is a tryptophan metabolite found in human plasma and serum and normal urine. Tryptophan is metabolized by two major pathways in humans, either through kynurenine or via a series of indoles, and some of its metabolites are known to be biologically active. Indolelactic acid is present in various amounts, significantly higher in umbilical foetal plasma than in maternal plasma in the protein-bound form. (PMID 2361979, 1400722, 3597614, 11060358, 1400722) [HMDB] Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
L-Histidinol
L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumour cells of animal origin (PMID:8297120). L-Histidinol inhibits human myristoyl-CoA:protein-myristoyltransferase (hNMT), an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate into the NH2-terminal glycine residue of a number of important proteins of diverse function (PMID:9778369). L-Histidinol, a structural analogue of the essential amino acid L-histidine, enhances the toxicity of a variety of anticancer drugs for many tumor cells of animal origin. (PMID 8297120)
Morphine-3-glucuronide
Morphine-3-glucuronide belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants
N1-Acetylspermine
N1-Acetylspermine belongs to the class of organic compounds known as acetamides. These are organic compounds with the general formula RNHC(=O)CH3, where R= organyl group. N1-Acetylspermine exists in all living species, ranging from bacteria to humans. Outside of the human body, N1-Acetylspermine has been detected, but not quantified in several different foods, such as purple lavers, jutes, yams, pineapples, and fireweeds. This could make N1-acetylspermine a potential biomarker for the consumption of these foods. N1-Acetylspermine is a polyamine that has been postulated to be an intermediate in the conversion of spermine to spermidine. N1-Acetylspermine is a polyamine that has been postulated to be an intermediate in the conversion of spermine to spermidine [HMDB]. N1-Acetylspermine is found in many foods, some of which are chinese cinnamon, purple laver, common sage, and mexican oregano. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A111; [MS2] KO008807 KEIO_ID A111; [MS3] KO008809 KEIO_ID A111; [MS3] KO008808 KEIO_ID A111
Prostaglandin B1
Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). PGB1does not inhibit phospholipase activity, but oligomers of PGB1 (PGBx) extracted from human neutrophils inhibit human phospholipases A2 in vitro and in situ in a dose-dependent manner; these oligomers inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. One mechanism for the pharmacological effects of PGBx may be inhibition of cell-associated and extracellular phospholipase A2. PGB1 has the ability to enhance peripheral vascular resistance and elevate blood pressure. The effect is not central in origin and apparently is not the result of changes in cholinergic or alpha-adrenoceptor sensitivity or changes in vascular smooth muscle susceptibility per se. PGB1 blocks S-phase DNA synthesis; inhibition of DNA synthesis does not appear to require elevated levels of cAMP. (PMID: 7667505, 1477202, 2129000, 2597672, 6635328). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin B1 (PGB1) is a metabolite of PGE1. PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2).
S-Lactoylglutathione
S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). [HMDB]. S-Lactoylglutathione is found in many foods, some of which are blackcurrant, oat, pomegranate, and brussel sprouts. S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). Acquisition and generation of the data is financially supported in part by CREST/JST. D000970 - Antineoplastic Agents KEIO_ID L016; [MS3] KO009026 KEIO_ID L016; [MS2] KO009024 KEIO_ID L016
Sulfadoxine
Sulfadoxine is only found in individuals that have used or taken this drug. It is a long acting sulfonamide that is used, usually in combination with other drugs, for respiratory, urinary tract, and malarial infections. [PubChem]Sulfadoxine is a sulfa drug, often used in combination with pyrimethamine to treat malaria. This medicine may also be used to prevent malaria in people who are living in, or will be traveling to, an area where there is a chance of getting malaria. Sulfadoxine targets Plasmodium dihydropteroate synthase and dihydrofolate reductase. Sulfa drugs or Sulfonamides are antimetabolites. They compete with para-aminobenzoic acid (PABA) for incorporation into folic acid. The action of sulfonamides exploits the difference between mammal cells and other kinds of cells in their folic acid metabolism. All cells require folic acid for growth. Folic acid (as a vitamin) diffuses or is transported into human cells. However, folic acid cannot cross bacterial (and certain protozoan) cell walls by diffusion or active transport. For this reason bacteria must synthesize folic acid from p-aminobenzoic acid. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides CONFIDENCE standard compound; INTERNAL_ID 1010
Carisoprodol
A centrally acting skeletal muscle relaxant whose mechanism of action is not completely understood but may be related to its sedative actions. It is used as an adjunct in the symptomatic treatment of musculoskeletal conditions associated with painful muscle spasm. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1202) M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents
Mesoridazine
Mesoridazine is only found in individuals that have used or taken this drug. It is a phenothiazine antipsychotic with effects similar to chlorpromazine. [PubChem]Based upon animal studies, mesoridazine, as with other phenothiazines, acts indirectly on reticular formation, whereby neuronal activity into reticular formation is reduced without affecting its intrinsic ability to activate the cerebral cortex. In addition, the phenothiazines exhibit at least part of their activities through depression of hypothalamic centers. Neurochemically, the phenothiazines are thought to exert their effects by a central adrenergic blocking action. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AC - Phenothiazines with piperidine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
Phenyl dihydrogen phosphate
CONFIDENCE standard compound; INTERNAL_ID 2498 KEIO_ID P033
N-acetylneuraminate
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A018; [MS2] KO008824 KEIO_ID A018 N-Acetylneuraminic acid is a sialic acid monosaccharide ubiquitous on cell membrane glycoproteins and glycolipids of mammalian cell ganglioglycerides, which plays a biological role in neurotransmission, leukocyte vasodilation, and viral or bacterial infection.
Diethylphosphate
Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). [HMDB] Diethylphosphate is product of metabolism and of environmental degradation of Chlorpyrifos (CPF; a commonly used diethylphosphorothionate organophosphorus (OP) insecticide) and are routinely measured in urine as biomarkers of exposure. (PMID: 17590257). KEIO_ID D141 Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
D-myo-Inositol 1,4-bisphosphate
D-myo-Inositol 1,4-bisphosphate belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. D-myo-Inositol 1,4-bisphosphate is an extremely weak basic (essentially neutral) compound (based on its pKa). D-myo-Inositol 1,4-bisphosphate is a substrate for several proteins including inositol polyphosphate 1-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, skeletal muscle and kidney enriched inositol phosphatase, and type I inositol-1,4,5-trisphosphate 5-phosphatase. 1D-Myo-inositol 1,4-bisphosphate is a substrate for Inositol polyphosphate 1-phosphatase, Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A, Skeletal muscle and kidney enriched inositol phosphatase and Type I inositol-1,4,5-trisphosphate 5-phosphatase. [HMDB]
Dephospho-CoA
Dephospho-CoA, also known as 3-dephospho-CoA, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribonucleosides with a diphosphate group linked to the ribose moiety. Thus, dephospho-CoA is considered to be a fatty ester lipid molecule. Dephospho-CoA is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, dephospho-CoA has been detected, but not quantified in, several different foods, such as wild leeks, summer savouries, arctic blackberries, biscuits, and persimmons. This could make dephospho-CoA a potential biomarker for the consumption of these foods. Dephospho-CoA is an intermediate in pantothenate and CoA biosynthesis. It is a substrate for bifunctional coenzyme A synthase which contains the dephospho-CoA kinase (EC 2.7.1.24). This enzyme catalyzes the final step in CoA biosynthesis: the phosphorylation of the 3-hydroxyl group of ribose using ATP as a phosphate donor. The reaction is ATP + 3-dephospho-CoA = ADP + CoA. Dephospho-CoA is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 1, Ectonucleotide pyrophosphatase/phosphodiesterase 3 and Ectonucleotide pyrophosphatase/phosphodiesterase 2. [HMDB]. Dephospho-CoA is found in many foods, some of which are cardamom, epazote, lemon balm, and mammee apple. Acquisition and generation of the data is financially supported in part by CREST/JST.
(±)-2-(1-Methylpropyl)-4,6-dinitrophenol
CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5273; ORIGINAL_PRECURSOR_SCAN_NO 5272 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5303; ORIGINAL_PRECURSOR_SCAN_NO 5302 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5259; ORIGINAL_PRECURSOR_SCAN_NO 5256 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4695; ORIGINAL_PRECURSOR_SCAN_NO 4691 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4674; ORIGINAL_PRECURSOR_SCAN_NO 4673 CONFIDENCE standard compound; INTERNAL_ID 838; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5235; ORIGINAL_PRECURSOR_SCAN_NO 5234 D010575 - Pesticides > D005659 - Fungicides, Industrial > D004140 - Dinitrophenols CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8186 CONFIDENCE standard compound; EAWAG_UCHEM_ID 257 CONFIDENCE standard compound; INTERNAL_ID 2330 D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides Acaricide and weed kille D016573 - Agrochemicals
Etodolac
Etodolac is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory, analgesic and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated for relief of signs and symptoms of rheumatoid arthritis and osteoarthritis. Similar to other NSAIDs, the anti-inflammatory effects of etodolac result from inhibition of the enzyme cycooxygenase (COX). This decreases the synthesis of peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of the COX enzyme active site and prevents its substrate, arachidonic acid, from entering the active site. Etodolac was previously thought to be a non-selective COX inhibitor, but it is now known to be 5 – 50 times more selective for COX-2 than COX-1. Antipyresis may occur by central action on the hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents KEIO_ID E034; [MS2] KO008956 KEIO_ID E034
17-beta-Estradiol glucuronide
17-beta-Estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 17-beta-estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Thiodiacetic acid
Thiodiacetic acid belongs to the family of Thiodiacetic Acid Derivatives. These are compounds containing a thiodiacetic acid group (or esters/salts thereof) which is made up of two 2-sulfanylacetic (OC(=O)CS) acid moieties sharing their sulfur atom.
Cefamandole
Cefamandole is only found in individuals that have used or taken this drug. It is a broad-spectrum cephalosporin antibiotic. The clinically used form of cefamandole is the formate ester cefamandole nafate, a prodrug which is administered parenterally. Cefamandole is no longer available in the United States.Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefamandole interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Pyroglutamic acid
Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Betaxolol
Betaxolol is only found in individuals that have used or taken this drug. It is a cardioselective beta-1-adrenergic antagonist with no partial agonist activity. [PubChem]Betaxolol selectively blocks catecholamine stimulation of beta(1)-adrenergic receptors in the heart and vascular smooth muscle. This results in a reduction of heart rate, cardiac output, systolic and diastolic blood pressure, and possibly reflex orthostatic hypotension. Betaxolol can also competitively block beta(2)-adrenergic responses in the bronchial and vascular smooth muscles, causing bronchospasm. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.
Testosterone cypionate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Guanfacine
A centrally acting antihypertensive agent. The drug lowers both systolic and diastolic blood pressure by activating the central nervous system alpha-2 adrenoreceptors, which results in reduced sympathetic outflow leading to reduced vascular tone. Its adverse reactions include dry mouth, sedation, and constipation. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Penconazole
CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9666; ORIGINAL_PRECURSOR_SCAN_NO 9664 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9751; ORIGINAL_PRECURSOR_SCAN_NO 9750 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9670; ORIGINAL_PRECURSOR_SCAN_NO 9668 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9676; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 411; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9793; ORIGINAL_PRECURSOR_SCAN_NO 9792 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3107 D016573 - Agrochemicals D010575 - Pesticides
But-2-enoic acid
But-2-enoic acid, also known as (2E)-2-butenoate or alpha-crotonic acid, belongs to the class of organic compounds known as straight chain organic acids. These are organic acids with a straight aliphatic chain. But-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Food flavour component KEIO_ID C093 NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.
trifluralin
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 123 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Fenbuconazole
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9428; ORIGINAL_PRECURSOR_SCAN_NO 9423 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9470; ORIGINAL_PRECURSOR_SCAN_NO 9465 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9518; ORIGINAL_PRECURSOR_SCAN_NO 9516 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9492; ORIGINAL_PRECURSOR_SCAN_NO 9491 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9544; ORIGINAL_PRECURSOR_SCAN_NO 9543 CONFIDENCE standard compound; INTERNAL_ID 707; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9531; ORIGINAL_PRECURSOR_SCAN_NO 9529
Phosalone
CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9787; ORIGINAL_PRECURSOR_SCAN_NO 9783 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9765; ORIGINAL_PRECURSOR_SCAN_NO 9762 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9731; ORIGINAL_PRECURSOR_SCAN_NO 9728 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9703; ORIGINAL_PRECURSOR_SCAN_NO 9702 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9750; ORIGINAL_PRECURSOR_SCAN_NO 9747 CONFIDENCE standard compound; INTERNAL_ID 175; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9781; ORIGINAL_PRECURSOR_SCAN_NO 9778 Phosalone is an organophosphate chemical commonly used as an insecticide and acaricide. It is developed by Rhone-Poulenc in France but EU eliminated it from pesticide registration on December 2006. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Nornicotine
Nornicotine is an alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. An alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. [HMDB] CONFIDENCE standard compound; EAWAG_UCHEM_ID 3280 CONFIDENCE standard compound; INTERNAL_ID 2228 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Tricyclazole
Rice fungicid
Fluocinonide
Fluocinonide is only found in individuals that have used or taken this drug. It is a topical glucocorticoid used in the treatment of eczema. [PubChem]Fluocinonide is a potent glucocorticoid steroid used topically as anti-inflammatory agent for the treatment of skin disorders such as eczema. It relieves itching, redness, dryness, crusting, scaling, inflammation, and discomfort. Fluocinonide binds to the cytosolic glucocorticoid receptor. After binding the receptor the newly formed receptor-ligand complex translocates itself into the cell nucleus, where it binds to many glucocorticoid response elements (GRE) in the promoter region of the target genes. The DNA bound receptor then interacts with basic transcription factors, causing the increase in expression of specific target genes. The anti-inflammatory actions of corticosteroids are thought to involve lipocortins, phospholipase A2 inhibitory proteins which, through inhibition arachidonic acid, control the biosynthesis of prostaglandins and leukotrienes. Specifically glucocorticoids induce lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. Cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect. In another words, the two main products in inflammation Prostaglandins and Leukotrienes are inhibited by the action of Glucocorticoids. Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines etc.) from neutrophils, macrophages and mastocytes. Additionally the immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Like other glucocorticoid agents Fluocinolone acetonide acts as a physiological antagonist to insulin by decreasing glycogenesis (formation of glycogen). It also promotes the breakdown of lipids (lipolysis), and proteins, leading to the mobilization of extrahepatic amino acids and ketone bodies. This leads to increased circulating glucose concentrations (in the blood). There is also decreased glycogen formation in the liver. C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents
Ouabain
Ouabain is only found in individuals that have used or taken this drug. It is a cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like digitalis. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-exchanging ATPase. [PubChem]Ouabain inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Ouabain also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6235; ORIGINAL_PRECURSOR_SCAN_NO 6233 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6272; ORIGINAL_PRECURSOR_SCAN_NO 6270 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6219; ORIGINAL_PRECURSOR_SCAN_NO 6216 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6224; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6194; ORIGINAL_PRECURSOR_SCAN_NO 6191 C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins [Raw Data] CB084_Ouabain_pos_50eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_10eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_30eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_20eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_40eV_CB000036.txt D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors
Dantron
Danthron is an orange crystalline powder. Almost odorless and tasteless. (NTP, 1992) Chrysazin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 8. It has a role as an apoptosis inducer and a plant metabolite. Withdrawn from the Canadian, US, and UK markets in 1998 due to genotoxicity. Danthron is a natural product found in Didemnum albopunctatum, Asphodelus tenuifolius, and other organisms with data available. Danthron is a reddish, synthetic anthraquinone derivative. Danthron has been widely used as a laxative, but is no longer used to treat constipation and is currently used as an antioxidant in synthetic lubricants, in the synthesis of experimental antitumor agents, as a fungicide and as an intermediate for making dyes. This substance is a suspected mutagen and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in experimental animals. (NCI05) A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 8. Dantron is found in green vegetables. Dantron occurs in roots of Rheum palmatum (Turkey rhubarb Occurs in roots of Rheum palmatum (Turkey rhubarb). Dantron is found in green vegetables. D005765 - Gastrointestinal Agents > D002400 - Cathartics D009676 - Noxae > D009153 - Mutagens [Raw Data] CB120_Laxapur_neg_20eV_000028.txt [Raw Data] CB120_Laxapur_neg_40eV_000028.txt [Raw Data] CB120_Laxapur_neg_30eV_000028.txt [Raw Data] CB120_Laxapur_neg_10eV_000028.txt [Raw Data] CB120_Laxapur_neg_50eV_000028.txt Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK.
Cefaclor
Cefaclor is only found in individuals that have used or taken this drug. It is a semisynthetic, broad-spectrum antibiotic derivative of cephalexin. [PubChem]Cefaclor, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that cefaclor interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3069 Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].
(+)-Gallocatechin
Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
Landomycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID O016; [MS2] KO009136 KEIO_ID O016
Tetrahydrocortisone
Cortisol is a corticosteroid hormone that is involved in the response to stress; it increases blood pressure and blood sugar levels and suppresses the immune system. Synthetic cortisol, also known as hydrocortisone, is used as a drug mainly to fight allergies and inflammation. -- Wikipedia; As an oral or injectable drug, cortisol is also known as hydrocortisone. It is used as an immunosuppressive drug, given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. -- Wikipedia [HMDB] Cortisol is a corticosteroid hormone that is involved in the response to stress; it increases blood pressure and blood sugar levels and suppresses the immune system. Synthetic cortisol, also known as hydrocortisone, is used as a drug mainly to fight allergies and inflammation. -- Wikipedia; As an oral or injectable drug, cortisol is also known as hydrocortisone. It is used as an immunosuppressive drug, given by injection in the treatment of severe allergic reactions such as anaphylaxis and angioedema, in place of prednisolone in patients who need steroid treatment but cannot take oral medication, and peri-operatively in patients on long-term steroid treatment to prevent an Addisonian crisis. -- Wikipedia. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
Promazine
Promazine is only found in individuals that have used or taken this drug. It is a phenothiazine with actions similar to chlorpromazine but with less antipsychotic activity. It is primarily used in short-term treatment of disturbed behavior and as an antiemetic. [PubChem]Promazine is an antagonist at types 1, 2, and 4 dopamine receptors, 5-HT receptor types 2A and 2C, muscarinic receptors 1 through 5, alpha(1)-receptors, and histamine H1-receptors. Promazines antipsychotic effect is due to antagonism at dopamine and serotonin type 2 receptors, with greater activity at serotonin 5-HT2 receptors than at dopamine type-2 receptors. This may explain the lack of extrapyramidal effects. Promazine does not appear to block dopamine within the tubero-infundibular tract, explaining the lower incidence of hyperprolactinemia than with typical antipsychotic agents or risperidone. Antagonism at muscarinic receptors, H1-receptors, and alpha(1)-receptors also occurs with promazine. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics
Dioxybenzone
C1892 - Chemopreventive Agent > C851 - Sunscreen Same as: D03853
Oxethazaine
C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Same as: D01152
Confertin
A natural product found in Inula hupehensis. A pseudoguaianolide that is decahydroazuleno[6,5-b]furan-2(3H)-one substituted by an oxo group at position 5, methyl groups at positions 4a and 8 and a methylidene group at position 3. It has been isolated from the aerial parts of Inula hupehensis.
3,4-Di-O-caffeoylquinic acid
Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Phenylacetylglycine
Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction:. acyl-CoA + glycine < -- > CoA + N-acylglycine. Phenylacetylglycine or PAG is a glycine conjugate of phenylacetic acid. Phenylacetic acid may arise from exposure to styrene (plastic) or through the consumption of fruits and vegetables. Phenylacetic acid is used in some perfumes, possessing a honey-like odour in low concentrations, and is also used in penicillin G production. PAG is a putative biomarker of phospholipidosis. Urinary PAG is elevated in animals exhibiting abnormal phospholipid accumulation in many tissues and may thus be useful as a surrogate biomarker for phospholipidosis. (PMID: 15764292) The presence of phenylacetylglycine in urine has been confirmed for dogs, rats and mice. However, the presence of this compound in human urine is controversial. GC-MS studies have not found this compound (PMID: 7492634) while NMR studies claimed to have identified it (PMID: 21167146). It appears that phenylacetylglycine may sometimes be mistaken for phenylacetylglutamine via NMR. Phenylacetylglycine is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
3b-Allotetrahydrocortisol
3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418). The daily excretion of allotetrahydrocortisol is above normal in hyperthyroid patients; In contrast, in hyperthyroidism the excretion is diminished below normal levels to approximately half that of normal subjects. (PMID 13906284). A decreased activity of the enzyme 11beta-HSD produces a pattern of urinary steroid metabolites with an abnormal elevation of tetrahydrocortisol and allo-tetrahydrocortisol compared to tetrahydrocortisone; this pattern of steroid excretion is essential for the diagnosis of the syndrome of apparent mineralocorticoid excess type 1. (PMID: 8834992). 3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
4-Chloro-3-methylphenol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
Citrulline
Citrulline, also known as Cit or δ-ureidonorvaline, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Citrulline has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. Citrulline exists in all living species, ranging from bacteria to humans. Within humans, citrulline participates in a number of enzymatic reactions. In particular, citrulline can be biosynthesized from carbamoyl phosphate and ornithine which is catalyzed by the enzyme ornithine carbamoyltransferase. In addition, citrulline and L-aspartic acid can be converted into argininosuccinic acid through the action of the enzyme argininosuccinate synthase. In humans, citrulline is involved in the metabolic disorder called argininemia. Citrulline has also been found to be associated with several diseases such as ulcerative colitis, rheumatoid arthritis, and citrullinemia type II. Citrulline has also been linked to several inborn metabolic disorders including argininosuccinic aciduria and fumarase deficiency. Outside of the human body, citrulline is found, on average, in the highest concentration in a few different foods such as wheats, oats, and cucumbers and in a lower concentration in swiss chards, yellow wax beans, and potato. Citrulline has also been detected, but not quantified in several different foods, such as epazotes, lotus, common buckwheats, strawberry guava, and italian sweet red peppers. Citrulline is a potentially toxic compound. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC1.14.13.39). [Spectral] L-Citrulline (exact mass = 175.09569) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Occurs in the juice of watermelon (Citrullus vulgaris) IPB_RECORD: 257; CONFIDENCE confident structure KEIO_ID C013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway. L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.
3,4-Dihydroxymandelic acid
3,4-Dihydroxymandelic acid, also known as DOMA or 3,4-dihydroxyphenylglycolate, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxymandelic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3,4-dihydroxymandelic acid participates in a number of enzymatic reactions. In particular, 3,4-dihydroxymandelic acid can be biosynthesized from 3,4-dihydroxymandelaldehyde through its interaction with the enzyme aldehyde dehydrogenase, dimeric nadp-preferring. In addition, 3,4-dihydroxymandelic acid and guaiacol can be converted into vanillylmandelic acid and pyrocatechol through the action of the enzyme catechol O-methyltransferase. In humans, 3,4-dihydroxymandelic acid is involved in the metabolic disorder called tyrosinemia type I. Outside of the human body, 3,4-Dihydroxymandelic acid has been detected, but not quantified in several different foods, such as yellow wax beans, soy beans, pomegranates, cucurbita (gourd), and daikon radish. 3,4-dihydroxymandelic acid, also known as 3,4-dihydroxyphenylglycolate or (3,4-dihydroxyphenyl)(hydroxy)acetic acid, is a member of the class of compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-dihydroxymandelic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 3,4-dihydroxymandelic acid can be found in a number of food items such as lime, pitanga, sapodilla, and persimmon, which makes 3,4-dihydroxymandelic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxymandelic acid can be found primarily in blood and urine, as well as in human nerve cells tissue. In humans, 3,4-dihydroxymandelic acid is involved in a couple of metabolic pathways, which include disulfiram action pathway and tyrosine metabolism. 3,4-dihydroxymandelic acid is also involved in several metabolic disorders, some of which include hawkinsinuria, alkaptonuria, dopamine beta-hydroxylase deficiency, and tyrosinemia, transient, of the newborn. D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D066 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
Adrenosterone
Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G.(Wikipedia). Andrenosterone is created from androst-4-ene-3,17-dione by the work of two enzymes, CYP11B (E1.14.15.4) and 11beta-hydroxysteroid dehydrogenase [EC:1.1.1.146]. Adrenosterone is a steroid hormone with weak androgenic effect. It was first isolated in 1936 from the adrenal cortex by Tadeus Reichstein at the Pharmaceutical Institute in the University of Basel. Originally, adrenosterone was called Reichsteins substance G. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].
Dofetilide
Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Amdinocillin
Amdinocillin is only found in individuals that have used or taken this drug. It is an amidinopenicillanic acid derivative with broad spectrum antibacterial action. It is poorly absorbed if given orally and is used in urinary infections and typhus. [PubChem]Amdinocillin is a stong and specific antagonist of Penicillin Binding Protein-2 (PBP 2). It is active against gram negative bacteria, preventing cell wall synthesis by inhibiting the activity of PBP2. PBP2 is a peptidoglycan elongation initiating enzyme. Peptidoglycan is a polymer of sugars and amino acids that is the main component of bacterial cell walls. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Vecuronium
Monoquaternary homolog of pancuronium. A non-depolarizing neuromuscular blocking agent with shorter duration of action than pancuronium. Its lack of significant cardiovascular effects and lack of dependence on good kidney function for elimination as well as its short duration of action and easy reversibility provide advantages over, or alternatives to, other established neuromuscular blocking agents. [PubChem] D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
3-Hydroxyaspartic acid
A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086
Procarbazine
Procarbazine is only found in individuals that have used or taken this drug. It is an antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkins disease. [PubChem]The precise mode of cytotoxic action of procarbazine has not been clearly defined. There is evidence that the drug may act by inhibition of protein, RNA and DNA synthesis. Studies have suggested that procarbazine may inhibit transmethylation of methyl groups of methionine into t-RNA. The absence of functional t-RNA could cause the cessation of protein synthesis and consequently DNA and RNA synthesis. In addition, procarbazine may directly damage DNA. Hydrogen peroxide, formed during the auto-oxidation of the drug, may attack protein sulfhydryl groups contained in residual protein which is tightly bound to DNA. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents
(2E)-Decenoyl-ACP
(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050
Blasticidin S
Contact fungicide used against rice blast disease in Japan Blasticidin S is an antibiotic used to select transformed cells in genetic engineering. In short, DNA of interest is fused to DNA encoding a resistance gene, and then is transformed into cells. After allowing time for recovery and for cells to begin transcribing and translating their new DNA, blasticidin is added. Now only the cells that have the new DNA can grow D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents KEIO_ID B019; [MS3] KO008877 KEIO_ID B019; [MS2] KO008876 D004791 - Enzyme Inhibitors KEIO_ID B019
Proteinase inhibitor E 64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents KEIO_ID E015; [MS2] KO008950 KEIO_ID E015
Glutamylglutamic acid
Glutamylglutamic acid is a dipeptide composed of two glutamic acid residues, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. Glutamylglutamic acid is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. KEIO_ID G043; [MS2] KO008970 KEIO_ID G043
Leupeptin
A tripeptide composed of N-acetylleucyl, leucyl and argininal residues joined in sequenceby peptide linkages. It is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L006; [MS2] KO009038 KEIO_ID L006
Sisomicin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S047; [MS3] KO009246 KEIO_ID S047; [MS2] KO009245 KEIO_ID S047
Fomepizole
Fomepizole is used as an antidote in confirmed or suspected methanol or ethylene glycol poisoning. Fomepizole is a competitive inhibitor of alcohol dehydrogenase, the enzyme that catalyzes the initial steps in the metabolism of ethylene glycol and methanol to their toxic metabolites. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor KEIO_ID M124
Ginkgolide A
Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Himbacine
A piperidine alkaloid that is decahydronaphtho[2,3-c]furan-1(3H)-one substituted by a methyl group at position 3 and a 2-[(2R,6S)-1,6-dimethylpiperidin-2-yl]ethenyl group at position 4. It has been isolated from the bark of Australian magnolias. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.814 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.809
Baccatin III
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 1.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.027 Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].
Canthaxanthin
Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
(S)-scoulerine
(s)-scoulerine, also known as discretamine or aequaline, belongs to protoberberine alkaloids and derivatives class of compounds. Those are alkaloids with a structure based on a protoberberine moiety, which consists of a 5,6-dihydrodibenzene moiety fused to a quinolizinium and forming 5,6-Dihydrodibenzo(a,g)quinolizinium skeleton (s)-scoulerine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-scoulerine can be found in a number of food items such as rice, lemon grass, chinese bayberry, and sea-buckthornberry, which makes (s)-scoulerine a potential biomarker for the consumption of these food products.
(S)-N-Methylcoclaurine
This compound belongs to the family of Benzylisoquinolines. These are organic compounds containing an isoquinoline to which a benzyl group is attached.
Benzyl benzoate
Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body. Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties. Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available. See also: ... View More ... P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01138 Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].
alpha-Cadinol
alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)
Liriodendrin
Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
(-)-Kaur-16-en-19-oic acid
(-)-kaur-16-en-19-oic acid, also known as ent-kaurenoic acid or ent-kaur-16-en-19-oate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D (-)-kaur-16-en-19-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (-)-kaur-16-en-19-oic acid can be found in sugar apple and sunflower, which makes (-)-kaur-16-en-19-oic acid a potential biomarker for the consumption of these food products. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
5alpha-Cholestane
5alpha-Cholestane is found in potato. Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. (Wikipedia). Cholestane is a saturated 27-carbon steroid precursor which serves as the basis for many organic molecules. 5alpha-Cholestane is found in potato.
Iodoquinol
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AC - Quinoline derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
Prenol
Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
3-oxo-C12 homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 211
α-Muricholic acid
alpha-Muricholic acid is a hydroxylated bile acid present in normal human urine (PMID: 1629271), and in free glycine-conjugated, taurine-conjugated, and sulfated forms in human feces (PMID: 3667743). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). a-Muricholic acid is an hydroxylated bile acid present in normal human urine (PMID 1629271), and free, glycine-conjugated, taurine-conjugated and sulphated forms in human feces (PMID 3667743). α-Muricholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2393-58-0 (retrieved 2024-06-29) (CAS RN: 2393-58-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1].
alpha-Selinene
Occurs in celery oil and hop (Humulus lupulus) oil. alpha-Selinene is found in many foods, some of which are ginger, lovage, sweet bay, and allspice. alpha-Selinene is found in alcoholic beverages. alpha-Selinene occurs in celery oil and hop (Humulus lupulus) oi
Butylbenzene
Butylbenzene belongs to the family of Substituted Benzenes. These are aromatic compounds containing a benzene substituted at one or more positions.
Gibberellin A116
Gibberellin a116, also known as ga12, is a member of the class of compounds known as c20-gibberellin 6-carboxylic acids. C20-gibberellin 6-carboxylic acids are c20-gibberellins with a carboxyl group at the 6-position. Thus, gibberellin a116 is considered to be an isoprenoid lipid molecule. Gibberellin a116 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a116 can be found in a number of food items such as rape, pigeon pea, chinese cabbage, and linden, which makes gibberellin a116 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins
gamma-Humulene
N1-Acetylspermidine
N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine. Aliphatic polyamines occur ubiquitously in organisms and have important functions in the stabilization of cell membranes, biosynthesis of informing molecules, cell growth and differentiation, as well as adaptation to osmotic, ionic, pH and thermal stress. These cationic substances are implicated in multiple functions, therefore it is not surprising that intracellular levels of polyamines are regulated by different mechanisms. The inhibition of polyamine metabolism has important pharmacological and therapeutic implications for the control of physiological processes, reproduction, cancer and parasitic diseases. Recent reports have suggested the idea that parasites with an high turnover of Ornithine Decarboxilase (ODC) are resistant to Difluoromethyl ornithine (DFMO, the irreversible inhibitor of ornithine decarboxylase) because they always contain a fraction of newly synthesized and active enzyme, therefore not DFMO inhibited, sufficient to produce small amounts of putrescine rapidly converted into spermidine, which can support protozoan proliferation. DFMO has proved to be curative in trypanosomiasis, coccidiosis, and certain other protozoan infections. (PMID: 15490259). N1-Acetylspermidine is a polyamine. In many organisms, polyamines originate from L-ornithine and methionine. Ornithine decarboxylase (EC 4.1.1.17), a key enzyme in polyamine metabolism, decarboxylates L-ornithine to yield putrescine which is then converted to higher polyamines spermidine and spermine by successive addition of aminopropyl groups derived from decarboxylated S-adenosylmethionine.
Tosyllysine Chloromethyl Ketone
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
3-Mercaptopyruvic acid
3-Mercaptopyruvic acid, also known as 3-mercapto-2-oxopropanoate or beta-thiopyruvate, belongs to the class of organic compounds known as alpha-keto acids and derivatives. These are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. 3-Mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. Within humans, 3-mercaptopyruvic acid participates in a number of enzymatic reactions. In particular, 3-mercaptopyruvic acid and cyanide can be converted into pyruvic acid and thiocyanate; which is mediated by the enzyme 3-mercaptopyruvate sulfurtransferase. In addition, 3-mercaptopyruvic acid can be biosynthesized from 3-mercaptolactic acid; which is mediated by the enzyme L-lactate dehydrogenase. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. In humans, 3-mercaptopyruvic acid is involved in cystinosis, ocular nonnephropathic. Outside of the human body, 3-mercaptopyruvic acid has been detected, but not quantified in several different foods, such as lima beans, spinachs, shallots, mexican groundcherries, and white lupines. This could make 3-mercaptopyruvic acid a potential biomarker for the consumption of these foods. 3-mercaptopyruvic acid, also known as beta-mercaptopyruvate or beta-thiopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. 3-mercaptopyruvic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-mercaptopyruvic acid can be found in a number of food items such as garland chrysanthemum, rubus (blackberry, raspberry), tarragon, and arrowhead, which makes 3-mercaptopyruvic acid a potential biomarker for the consumption of these food products. 3-mercaptopyruvic acid exists in all living organisms, ranging from bacteria to humans. In humans, 3-mercaptopyruvic acid is involved in a couple of metabolic pathways, which include cysteine metabolism and cystinosis, ocular nonnephropathic. 3-mercaptopyruvic acid is also involved in beta-mercaptolactate-cysteine disulfiduria, which is a metabolic disorder. 3-Mercaptopyruvic acid is an intermediate in cysteine metabolism. It has been studied as a potential treatment for cyanide poisoning, but its half-life is too short for it to be clinically effective. Instead, prodrugs, such as sulfanegen, are being evaluated to compensate for the short half-life of 3-mercaptopyruvic acid .
Uroporphyrinogen III
Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Protoporphyrinogen IX
Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which two pyrrole rings each have one methyl and one propionate side chain, and the other two pyrrole rings each have one methyl and one vinyl side chain. Fifteen isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. Under certain conditions, protoporphyrinogen IX can act as a phototoxin, a neurotoxin, and a metabotoxin. A phototoxin leads to cell damage upon exposure to light. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, protoporphyrinogen IX is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). Protoporphyrinogen IX is an intermediate in heme biosynthesis. It is a porphyrinogen in which 2 pyrrole rings each have one methyl and one propionate side chain and the other two pyrrole rings each have one methyl and one vinyl side chain. 15 isomers are possible but only one, type IX, occurs naturally. Protoporphyrinogen is produced by oxidative decarboxylation of coproporphyrinogen. [HMDB]. Protoporphyrinogen IX is found in many foods, some of which are elderberry, grapefruit, green vegetables, and pepper (c. annuum). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Oxidized dithiothreitol
Oxidized dithiothreitol is part of the Ubiquinone and other terpenoid-quinone biosynthesis pathway. It is a substrate for: Vitamin K epoxide reductase complex subunit 1.
Lathosterol
Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB] Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
Inositol 1,3,4-trisphosphate
Inositol 1,3,4-trisphosphate (CAS: 98102-63-7), also known as Ins(1,3,4)P3 or I3S, belongs to the class of organic compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. Within humans, inositol 1,3,4-trisphosphate participates in several enzymatic reactions. In particular, inositol 1,3,4-trisphosphate can be converted into 1D-myo-inositol 1,3,4,6-tetrakisphosphate through the action of the enzyme inositol-tetrakisphosphate 1-kinase. In addition, inositol 1,3,4-trisphosphate can be converted into inositol 1,3,4,5-tetraphosphate through its interaction with the enzyme inositol-tetrakisphosphate 1-kinase. In humans, inositol 1,3,4-trisphosphate is involved in inositol metabolism. Inositol 1,3,4-trisphosphate is a specific regulator of cellular signalling. A specific regulator of cellular signaling [HMDB]
neamine
C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
Hydrogen selenide
Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926) [HMDB] Hydrogen selenide is a metabolite of selenium which could have potential antiangiogenic effect in the chemoprevention of cancer. The hydrogen selenide is a key intermediate in the selenium methylation metabolism of inorganic and organic selenium compounds. Accumulation of the hydrogen selenide resulting from inhibition of the selenium methylation metabolism, detoxification metabolic pathway of selenium, is found in animals following repeated administration of a toxic dose of selenocystine. The excess of the hydrogen selenide produced by inhibition of the selenium methylation metabolism contributes to the hepatotoxicity caused by selenocystine. (PMID: 9414580, 11799926).
Carbamic acid
Carbamic acid is occasionally found as carbamate in workers exposed to pesticides. Carbamates, particularly carbofuran, seem to be more associated with exuberant and diversified symptomatology of pesticide exposure than organophosphates. Neurological symptoms occur among farmers occupationally exposed to acetylcholinesterase-inhibiting insecticides such as carbamates. Carbamic acid products of several amines, such as beta-N-methylamino-L-alanine (BMAA), ethylenediamine, and L-cysteine have been implicated in toxicity. Studies suggested that a significant portion of amino-compounds in biological samples (that naturally contain CO2/bicarbonate) can be present as a carbamic acid. The formation of carbamate glucuronide metabolites has been described for numerous pharmaceuticals and they have been identified in all of the species commonly used in drug metabolism studies (rat, dog, mouse, rabbit, guinea pig, and human). There has been no obvious species specificity for their formation and no preference for 1 or 2 degree amines. Many biological reactions have also been described in the literature that involve the reaction of CO2 with amino groups of biomolecules. For example, CO2 generated from cellular respiration is expired in part through the reversible formation of a carbamate between CO2 and the -amino groups of the alpha and beta-chains of hemoglobin. Glucuronidation is an important mechanism used by mammalian systems to clear and eliminate both endogenous and foreign chemicals. Many functional groups are susceptible to conjugation with glucuronic acid, including hydroxyls, phenols, carboxyls, activated carbons, thiols, amines, and selenium. Primary and secondary amines can also react with carbon dioxide (CO2) via a reversible reaction to form a carbamic acid. The carbamic acid is also a substrate for glucuronidation and results in a stable carbamate glucuronide metabolite. The detection and characterization of these products has been facilitated greatly by the advent of soft ionization mass spectrometry techniques and high field NMR instrumentation. (PMID: 16268118, 17168688, 12929145).
L-Dopachrome
Dopachrome is a cyclization product of L-DOPA and is an intermediate in the biosynthesis of melanin. Dopaquinone has an ortho-quinone ring, which is known to be neurotoxic and highly reactive with many other compounds (PMID: 413870). Dopachrome spontaneously gives rise to 5,6-dihydroxyindole (DHI) or it can be enzymatically metabolized by dopachrome tautomerase to give 5,6-dihydroxyindole-2-carboxylic acid (DHICA). DHI and its oxidation products are also toxic to cells. Many Parkinsons patients are treated with L-DOPA. However, long-term treatment with L-DOPA may actually worsen symptoms or may result in neurotic and psychotic symptoms. These may be due to dopachrome and dopaquinone accumulating in the brain of L-DOPA treated patients (PMID: 19131041, PMID: 12373519). The non-decarboxylative tautomerization of L-dopachrome to 5,6-dihydroxyindole-2-carboxylic acid in the melanin biosynthetic pathway is catalyzed by Tyrosinase-related protein-2, a melanocyte-specific enzyme. (PMID 11095412) [HMDB]
Thiocysteine
The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).
Arachidonyl-CoA
Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).
DG(10:0/10:0/0:0)
DG(10:0/10:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(10:0/10:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid
D004791 - Enzyme Inhibitors
GLUFOSINATE
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
2-(a-Hydroxyethyl)thiamine diphosphate
2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125] [HMDB] 2-Hydroxyethyl-ThPP is involved in Glycolysis, Gluconeogenesis, Alanine and aspartate matabolism, Valine, Leucine and isoleucine biosynthesis, Pyruvate metabolism, and Butanoate metabolism [Kegg: c05125].
Olivoretin D
D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D007509 - Irritants
20alpha-Hydroxycholesterol
20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. [HMDB] 20 alpha-hydroxycholesterol participates in C21-Steroid hormone metabolism. 20 alpha-hydroxycholesterol is produced by the reaction between cholesterol and the enzyme, cholesterol monooxygenase (side-chain-cleaving) [EC:1.14.15.6]. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].
(+)-1(10),4-Cadinadiene
Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag
FAPy-adenine
Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases (PMID 15116424). Oxidative stress damage to DNA bases may contribute to neuronal loss in Alzheimers disease (AD). Increased levels were observed in parietal, temporal, occipital, and frontal lobe, superior temporal gyrus, and hippocampus areas of the brain in patients with AD. (PMID 9109533). Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases. (PMID 15116424) FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
Aztreonam
Aztreonam is only found in individuals that have used or taken this drug. It is a monocyclic beta-lactam antibiotic originally isolated from Chromobacterium violaceum. It is resistant to beta-lactamases and is used in gram-negative infections, especially of the meninges, bladder, and kidneys. It may cause a superinfection with gram-positive organisms. [PubChem]The bactericidal action of aztreonam results from the inhibition of bacterial cell wall synthesis due to a high affinity of aztreonam for penicillin binding protein 3 (PBP3). By binding to PBP3, aztreonam inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. It is possible that aztreonam interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DF - Monobactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Diphenidol
Diphenidol is only found in individuals that have used or taken this drug. It is an antiemetic agent used in the treatment of vomiting and vertigo. Diphenidol overdose may result in serious toxicity in children.The mechanism by which diphenidol exerts its antiemetic and antivertigo effects is not precisely known. It is thought to diminish vestibular stimulation and depress labyrinthine function and as an antimuscarinic agent. An action on the medullary chemoreceptive trigger zone may also be involved in the antiemetic effect. Diphenidol has no significant sedative, tranquilizing, or antihistaminic action. It has a weak peripheral anticholinergic effect. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents
Diloxanide
Diloxanide furoate is an anti-protozoal drug used in the treatment of Entamoeba histolytica and some other protozoal infections. Although it is not currently approved for use in the United States, it was approved by a CDC study in the treatment of 4,371 cases of Entamoeba histolytica from 1977 to 1990. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
semustine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
Aldophosphamide
D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
2-((3-Aminopropyl)amino)ethanethiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
Previtamin D3
Previtamin D3 is an intermediate in the production of Vitamin D. [HMDB] Previtamin D3 is an intermediate in the production of Vitamin D.
Ibutilide
Ibutilide is only found in individuals that have used or taken this drug. It is a Class III antiarrhythmic agent that is indicated for acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm. [Wikipedia]Ibutilide is a pure class III antiarrhythmic drug, used intravenously against atrial flutter and fibrillation. At a cellular level it exerts two main actions: induction of a persistent Na+ current sensitive to dihydropyridine Ca2+ channel blockers and potent inhibition of the cardiac rapid delayed rectifier K+ current, by binding within potassium channel pores. In other words, Ibutilide binds to and alters the activity of hERG potassium channels, delayed inward rectifier potassium (IKr) channels and L-type (dihydropyridine sensitive) calcium channels C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker
Thiamylal
Thiamylal is only found in individuals that have used or taken this drug. It is a barbiturate that is administered intravenously for the production of complete anesthesia of short duration, for the induction of general anesthesia, or for inducing a hypnotic state. (From Martindale, The Extra Pharmacopoeia, 30th ed, p919)Thiamylal binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
magnesium hydroxide
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D000863 - Antacids
Butoconazole
Butoconazole is only found in individuals that have used or taken this drug. It is an imidazole antifungal used in gynecology.The exact mechanism of the antifungal action of butoconazole is unknown, however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol via the inhibition of the enzyme cytochrome P450 14α-demethylase, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
Cefmetazole
Cefmetazole is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic with a broad spectrum of activity against both gram-positive and gram-negative microorganisms. It has a high rate of efficacy in many types of infection and to date no severe side effects have been noted. [PubChem]The bactericidal activity of cefmetazole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Prednisolone Acetate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents
Dipropyl disulfide
Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).
Quercetin 3-O-sophoroside
D004396 - Coloring Agents > D050858 - Betalains
Vulgaxanthin I
Vulgaxanthin I is found in common beet. Vulgaxanthin I is a yellow pigment from Beta species Vulgaxanthin I is a food colouran Yellow pigment from Beta subspecies Food colourant. Vulgaxanthin I is found in red beetroot, common beet, and root vegetables. D004396 - Coloring Agents > D050858 - Betalains
24-Methylenecycloartan-3-ol
24-methylenecycloartan-3-ol belongs to cycloartanols and derivatives class of compounds. Those are steroids containing a cycloartanol moiety. 24-methylenecycloartan-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 24-methylenecycloartan-3-ol can be found in a number of food items such as oregon yampah, common persimmon, pineapple, and climbing bean, which makes 24-methylenecycloartan-3-ol a potential biomarker for the consumption of these food products.
bulbocapnine
An aporphine alkaloid that has been isolated from Corydalis and exhibits inhibitory activity against enzymes such as tyrosine 3-monooxygenase and diamine oxidase.
Thalicarpin
C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C1907 - Drug, Natural Product
beta-Selinene
Constituent of celery oiland is) also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops). beta-Selinene is found in many foods, some of which are safflower, star anise, chinese cinnamon, and allspice. beta-Selinene is found in alcoholic beverages. beta-Selinene is a constituent of celery oil. Also from Cyperus rotundus (nutgrass) and Humulus lupulus (hops)
Agathisflavone
A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-6 and C-8 of the two chromene rings.
Gentisein
Gentisein is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. It has a role as a plant metabolite. It is a member of xanthones and a polyphenol. Gentisein is a natural product found in Hypericum scabrum, Cratoxylum formosum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3 and 7. Gentisein is found in alcoholic beverages. Gentisein is isolated from Gentiana lutea (yellow gentian Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].
1,3,5-Trihydroxyxanthone
A member of the class of xanthones that is xanthone substituted by hydroxy groups at positions 1, 3 and 5. It has been isolated from Anaxagorea luzonensis.
4-O-Digalloyl-3,5-di-O-galloylquinic acid
4-O-Digalloyl-3,5-di-O-galloylquinic acid is isolated from commercial tannic acid. Isolated from commercial tannic acid
Yatein
Dihydroanhydropodorhizol is a member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively. It has a role as a plant metabolite. It is a lignan, a butan-4-olide, a member of methoxybenzenes and a member of benzodioxoles. Yatein is a natural product found in Austrocedrus chilensis, Podolepis canescens, and other organisms with data available. A member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively.
Isofenphos
Isofenphos is an Agricultural insecticide with contact and stomach actio C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Proflavine
Proflavine is only found in individuals that have used or taken this drug. It is a topical antiseptic used mainly in wound dressings. [PubChem]Proflavine acts by interchelating DNA (intercalation), thereby disrupting DNA synthesis and leading to high levels of mutation in the copied DNA strands. This prevents bacterial reproduction. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents
Narbomycin
A macrolide antibiotic that is narbonolide having a 3,4,6-trideoxy-3-(dimethylamino)-beta-D-xylo-hexopyranosyl residue attached at position 6. It is biosynthesised by Streptomyces venezuelae.
Bropirimine
D007155 - Immunologic Factors > D007369 - Interferon Inducers C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D000970 - Antineoplastic Agents Same as: D01666
Luliconazole
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D01980
IAA-94
D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics
1-(2-Hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-1H-benzo[d]imidazol-2(3H)-one
2,3,4,5-Tetrachloro-4'-biphenylol
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
Metribolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
Benzo[ghi]perylene
2-Ethylphenol
2-ethylphenol, also known as phlorol or 1-ethyl-2-hydroxybenzene, is a member of the class of compounds known as 1-hydroxy-4-unsubstituted benzenoids. 1-hydroxy-4-unsubstituted benzenoids are phenols that are unsubstituted at the 4-position. 2-ethylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-ethylphenol can be found in arabica coffee, which makes 2-ethylphenol a potential biomarker for the consumption of this food product. Ethylphenol may refer to: 2-Ethylphenol 3-Ethylphenol 4-Ethylphenol .
1,3-Diphenylpropane
1,3-Diphenylpropane is a styrene dimer. Present as an impurity in polystyrene food containers and other products - liberated on heatin
ICI 164384
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
Gardenin B
Gardenin b, also known as demethyltangeretin or 5-hydroxy-4,6,7,8-tetramethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, gardenin b is considered to be a flavonoid lipid molecule. Gardenin b is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Gardenin b can be found in mandarin orange (clementine, tangerine), peppermint, sweet basil, and winter savory, which makes gardenin b a potential biomarker for the consumption of these food products. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1]. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].
CE(18:2(9Z,12Z))
Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694) [HMDB] Cholesteryl linoleic acid is a cholesteryl ester. A cholesteryl ester is an ester of cholesterol. Fatty acid esters of cholesterol constitute about two-thirds of the cholesterol in the plasma. Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. The accumulation of cholesterol esters in the arterial intima (the innermost layer of an artery, in direct contact with the flowing blood) is a characteristic feature of atherosclerosis. Atherosclerosis is a disease affecting arterial blood vessels. It is a chronic inflammatory response in the walls of arteries, in large part to the deposition of lipoproteins (plasma proteins that carry cholesterol and triglycerides). Cholesteryl linoleate is contained in low density lipoprotein and atherosclerotic lesions. The oxidation products of cholesteryl linoleate may cause chronic inflammatory processes. (PMID 9684755, 11950694). Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.
Nonadecanoic acid
Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
beta-Bisabolene
S-beta-Bisabolene is found in anise. S-beta-Bisabolene is a constituent of the essential oils of bergamot, lemon and wild carrot
Flavouring ingredient used singly or as mixed isomers. Component of FEMA 3331. See also 2,7,10-Bisabolatriene
beta-Sesquiphellandrene
Constituent of the oil of ginger (Zingiber officinale). beta-Sesquiphellandrene is found in many foods, some of which are turmeric, parsley, rosemary, and tea. beta-Sesquiphellandrene is found in common oregano. beta-Sesquiphellandrene is a constituent of the oil of ginger (Zingiber officinale)
Pyropheophorbide a
Pyropheophorbide-a (Ppa) is a promising photosensitizer for tumor photodynamic therapy (PDT)[1].
(±)-Tryptophan
(±)-Tryptophan is a dietary supplement, nutrient.Tryptophan is one of the 20 standard amino acids, as well as an essential amino acid in the human diet. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the D-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan). (Wikipedia Dietary supplement, nutrient DL-Tryptophan is an endogenous metabolite.
D-Phenylalanine
Flavouring ingredient. (±)-Phenylalanine is found in many foods, some of which are cucumber, green bell pepper, yellow bell pepper, and saskatoon berry.
Canadine
Canadine is a berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. It is a berberine alkaloid, an organic heteropentacyclic compound, an aromatic ether and an oxacycle. Canadine is a natural product found in Glaucium squamigerum, Hydrastis canadensis, and other organisms with data available. A berberine alkaloid that is 5,8,13,13a-tetrahydro-6H-[1,3]dioxolo[4,5-g]isoquino[3,2-a]isoquinoline substituted by methoxy groups at positions 9 and 10. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors. Tetrahydroberberine is a different kind of living thing that can be extended and divided into parts. Tetrahydroberberine is a kind of effective D2 receptor antagonistic force. Tetrahydroberberine has the ability to strengthen the stomach and relieve the pressure on the stomach[1][2][3]. Tetrahydroberberine is an isoquinoline alkaloid isolated from Corydalis Corydalis, with uM-level affinity for D2 and 5-HT1A receptors.
Forchlorfenuron
Forchlorfenuron is a member of the class of phenylureas that is urea substituted by a phenyl group and a 2-chloropyridin-4-yl group at positions 1 and 3 respectively. It is a plant growth regulator widely used in agriculture for improving fruit quality and fruit size. It has a role as a plant growth regulator. It is a member of phenylureas and a monochloropyridine. Forchlorfenuron is a diphenylurea-derivative cytokinin growth stimulating substance used as plant growth regulator (PGR) to enhance fruit set, size and increase yields. It is absorbed by most plant parts and acts synergistically with natural auxins to promote cell division and growth. It has been approved for use on kiwi fruit and grapes in the USA, and it has been associated with exploding watermelons in China. Forchlorfenuronis is commonly used in horticulture to stimulate the growth of kiwi fruit and grapes. D006133 - Growth Substances > D010937 - Plant Growth Regulators Forchlorfenuron is plant growth regulator and cytokinin; can be used to increase fruit size of fruits, such as kiwi fruit and grapes.
6-Hydroxymelatonin
6-Hydroxymelatonin, also known as lopac-H-0627, belongs to the class of organic compounds known as hydroxyindoles. These are organic compounds containing an indole moiety that carries a hydroxyl group. 6-Hydroxymelatonin is considered to be a practically insoluble (in water) and relatively neutral molecule. 6-Hydroxymelatonin has been found in human liver and kidney tissues, and has also been detected in multiple biofluids, such as urine and blood. Within the cell, 6-hydroxymelatonin is primarily located in the cytoplasm. 6-Hydroxymelatonin is the main primary metabolite that can be biosynthesized from melatonin through its interaction with the enzyme cytochrome P450 (CYP) 1A2 (PMID: 11452239). In humans, 6-hydroxymelatonin is involved in the tryptophan metabolism pathway. Melatonin is a hormone that is metabolized by cytochrome P450 (CYP) 1A2 to its main primary metabolite 6-hydroxymelatonin. (PMID 11452239) [HMDB]. 6-Hydroxymelatonin is found in many foods, some of which are garden onion, millet, peppermint, and apricot. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents 6-Hydroxymelatonin is a primary metabolic of Melatonin, which is metabolized by cytochrome P450 (CYP) 1A2.
Limonin
Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
Aldophosphamide
Detoxification of cyclophosphamide is effected, in part, by hepatic class 1 aldehyde dehydrogenase (ALDH-1)-catalyzed oxidation of aldophosphamide, a pivotal aldehyde intermediate, to the nontoxic metabolite, carboxyphosphamide. Detoxification of aldophosphamide may also be effected by enzymes, viz. Thus, NAD-linked oxidation and NADPH-linked reduction of aldophosphamide catalyzed by relevant erythrocyte enzymes were quantified. (PMID: 9394035) Class 1 aldehyde dehydrogenases (ALDH-1) function as drug resistance gene products by catalyzing the irreversible conversion of aldophosphamide, an active metabolite of cyclophosphamide, to an inert compound. (PMID: 9322086) D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards
Indicaxanthin
Indicaxanthin is found in fruits. Indicaxanthin is a constituent of the fruits of Opuntia ficus-indica (Indian fig) Indicaxanthin is a type of betaxanthin, a plant pigment present in beets, prickly pear cactus, and a powerful antioxidant. It is also found in red dragonfruit D004396 - Coloring Agents > D050858 - Betalains
3beta-24-Methylenecycloartan-3-ol
3beta-24-Methylenecycloartan-3-ol is a constituent of rice bran oil. Constituent of rice bran oil
beta-Farnesene
A mixture with 1,3,6,10-Farnesatetraene
(S)-p-Menth-1-en-4-ol
(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
Rotundone
Rotundone is found in root vegetables. Rotundone is a constituent of the essential oil of Cyperus rotundus (nutgrass). Constituent of the essential oil of Cyperus rotundus (nutgrass). Rotundone is found in root vegetables.
(-)-Deoxypodophyllotoxin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins
4-Acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid
4alpha-Phorbol
7-Hydroxycholesterol
Cyclosporin A
D-Citrulline
Citrullin, also known as cit or 2-amino-5-uredovaleric acid, is a member of the class of compounds known as alpha amino acids. Alpha amino acids are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Citrullin is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Citrullin can be found in a number of food items such as cow milk, sesame, orange bell pepper, and pepper (c. frutescens), which makes citrullin a potential biomarker for the consumption of these food products. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite.
Tetrahydrocoptisine
(±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2]. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2].
glutamine-betaxanthin
D004396 - Coloring Agents > D050858 - Betalains
Indolelactic acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
2-Hydroxybutyric acid
(S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
Kaurenoic_acid
Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
(+)-Gallocatechin
Gallocatechin is a catechin that is a flavan substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7 (the trans isomer). It is isolated from Acacia mearnsii. It has a role as a metabolite. It is a catechin and a flavan-3,3,4,5,5,7-hexol. (+)-Gallocatechin is a natural product found in Saxifraga cuneifolia, Quercus dentata, and other organisms with data available. See also: Cianidanol (related); Crofelemer (monomer of); Green tea leaf (part of). Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. A gallocatechin that has (2R,3S)-configuration. It is found in green tea and bananas. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
Tetrahydrocoptisine
Stylopine is a natural product found in Fumaria capreolata, Fumaria muralis, and other organisms with data available. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2]. (±)-Stylopine (Tetrahydrocoptisine) is an alkaloid compound originally isolated from Corydalis tubers that exhibits anti-inflammatory and anti-parasitic activities[1][2].
GardeninB
Gardenin B is a tetramethoxyflavone that is tangeretin in which the methoxy group at position 5 has been replaced by a hydroxy group. It has a role as a plant metabolite. It is a tetramethoxyflavone and a monohydroxyflavone. It is functionally related to a tangeretin. Gardenin B is a natural product found in Citrus tankan, Chromolaena odorata, and other organisms with data available. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1]. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].
ginkgolide A
Bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A is found in ginkgo nuts and fats and oils. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.715 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.712 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Ginkgolide A is a highly active PAF antagonist cage molecule that is isolated from the leaves of the Ginkgo biloba tree. Shows potential in a wide variety of inflammatory and immunological disorders. ginkgolide-A is a natural product found in Ginkgo biloba and Machilus wangchiana with data available. See also: Ginkgo (part of). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Baccatin_III
Baccatin III is a tetracyclic diterpenoid isolated from plant species of the genus Taxus. It has a role as a plant metabolite. It is a tetracyclic diterpenoid, an acetate ester and a benzoate ester. It derives from a hydride of a taxane. Baccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. Baccatin III is a compound obtained from the needles of the Taxus baccata tree that is used as a precursor of paclitaxel. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent A tetracyclic diterpenoid isolated from plant species of the genus Taxus. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].
Liriodendrin
(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].
Gardenin
Gardenin B is a tetramethoxyflavone that is tangeretin in which the methoxy group at position 5 has been replaced by a hydroxy group. It has a role as a plant metabolite. It is a tetramethoxyflavone and a monohydroxyflavone. It is functionally related to a tangeretin. Gardenin B is a natural product found in Citrus tankan, Chromolaena odorata, and other organisms with data available. A tetramethoxyflavone that is tangeretin in which the methoxy group at position 5 has been replaced by a hydroxy group. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1]. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].
Ginkgolide A
9H-1,7a-(Epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo[3,2:3,4]cyclopenta[1,2-d]furan-5,9,12(4H)-trione, 3-tert-butylhexahydro-4,7b-dihydroxy-8-methyl- is a diterpene lactone. Ginkgolide A is a natural product found in Ginkgo biloba with data available. Ginkgolide A is found in fats and oils. Ginkgolide A is a bitter principle from Ginkgo biloba (ginkgo). Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
2-Hydroxybutyric acid
A hydroxybutyric acid having a single hydroxyl group located at position 2; urinary secretion of 2-hydroxybutyric acid is increased with alcohol ingestion or vigorous physical exercise and is associated with lactic acidosis and ketoacidosis in humans and diabetes in animals. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
gamma-Eudesmol
A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11 and has a double bond between C-4 and C-5.
Apiin
Apiin is a beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. It has a role as an EC 3.2.1.18 (exo-alpha-sialidase) inhibitor and a plant metabolite. It is a beta-D-glucoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an apiin(1-). Apiin is a natural product found in Crotalaria micans, Limonium axillare, and other organisms with data available. See also: Chamomile (part of); Chamaemelum nobile flower (part of). A beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1]. Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].
TRIPHENYLPHOSPHINE OXIDE
CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8827; ORIGINAL_PRECURSOR_SCAN_NO 8826 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8840; ORIGINAL_PRECURSOR_SCAN_NO 8839 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8870; ORIGINAL_PRECURSOR_SCAN_NO 8869 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8871; ORIGINAL_PRECURSOR_SCAN_NO 8868 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8916; ORIGINAL_PRECURSOR_SCAN_NO 8915 CONFIDENCE standard compound; INTERNAL_ID 825; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8885 CONFIDENCE standard compound; INTERNAL_ID 2472 CONFIDENCE standard compound; INTERNAL_ID 8813 CONFIDENCE standard compound; INTERNAL_ID 8250 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3587 EAWAG_UCHEM_ID 3587; CONFIDENCE standard compound
gallocatechol
(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].
alpha-muricholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay
Taraxerol
Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.
alpha-Cadinol
A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.
Limonin
Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Gamma-tocopherol/beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). Beta-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. It has a role as a plant metabolite and a food component. It is a vitamin E and a tocopherol. beta-Tocopherol is a natural product found in Trachycarpus fortunei, Crataegus monogyna, and other organisms with data available. A natural tocopherol with less antioxidant activity than alpha-tocopherol. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in GAMMA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3].
β-Bisabolene
(S)-beta-bisabolene is a beta-bisabolene which has (1S)-configuration. It is an enantiomer of a (R)-beta-bisabolene. beta-Bisabolene is a natural product found in Rattus rattus, Eupatorium cannabinum, and other organisms with data available. A beta-bisabolene which has (1S)-configuration. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1]. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1].
etodolac
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AB - Acetic acid derivatives and related substances D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3308
carisoprodol
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3327
Diethyltoluamide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379 CONFIDENCE Reference Standard (Level 1)
betaxolol
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AB - Beta blocking agents, selective S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01ED - Beta blocking agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Betaxolol is a selective beta1 adrenergic receptor blocker that can be used for the research of hypertension and glaucoma.
Vecuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
Atropine
Atropine is a racemate composed of equimolar concentrations of (S)- and (R)-atropine. It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. It has a role as a muscarinic antagonist, an anaesthesia adjuvant, an anti-arrhythmia drug, a mydriatic agent, a parasympatholytic, a bronchodilator agent, a plant metabolite, an antidote to sarin poisoning and a oneirogen. It contains a (S)-atropine and a (R)-atropine. Atropine is an alkaloid originally synthesized from Atropa belladonna. It is a racemic mixture of d-and l-hyoscyamine, of which only l-hyoscyamine is pharmacologically active. Atropine is generally available as a sulfate salt and can be administered by intravenous, subcutaneous, intramuscular, intraosseous, endotracheal and ophthalmic methods. Oral atropine is only available in combination products. Atropine is a competitive, reversible antagonist of muscarinic receptors that blocks the effects of acetylcholine and other choline esters. It has a variety of therapeutic applications, including pupil dilation and the treatment of anticholinergic poisoning and symptomatic bradycardia in the absence of reversible causes. Atropine is a relatively inexpensive drug and is included in the World Health Organization List of Essential Medicines. Atropine is an Anticholinergic and Cholinergic Muscarinic Antagonist. The mechanism of action of atropine is as a Cholinergic Antagonist and Cholinergic Muscarinic Antagonist. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. Atropine is a natural product found in Cyphanthera tasmanica, Anthocercis ilicifolia, and other organisms with data available. Atropine Sulfate is the sulfate salt of atropine, a naturally-occurring alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Atropine is a synthetically-derived form of the endogenous alkaloid isolated from the plant Atropa belladonna. Atropine functions as a sympathetic, competitive antagonist of muscarinic cholinergic receptors, thereby abolishing the effects of parasympathetic stimulation. This agent may induce tachycardia, inhibit secretions, and relax smooth muscles. (NCI04) Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines A racemate composed of equimolar concentrations of (S)- and (R)-atropine . It is obtained from deadly nightshade (Atropa belladonna) and other plants of the family Solanaceae. S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.421 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.416 Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. Atropine (Tropine tropate) is a competitive muscarinic acetylcholine receptor (mAChR) antagonist with IC50 values of 0.39 and 0.71 nM for Human mAChR M4 and Chicken mAChR M4, respectively. Atropine inhibits ACh-induced relaxations in human pulmonary veins. Atropine can be used for research of anti-myopia and bradycardia[1][2][3][4]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
Histidinol
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.044 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.040
FLUOCINONIDE
C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid D000893 - Anti-Inflammatory Agents D018926 - Anti-Allergic Agents
cefaclor
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin bearing chloro and (R)-2-amino-2-phenylacetamido groups at positions 3 and 7, respectively, of the cephem skeleton. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic Cefaclor is a well-absorbed orally active cephalosporin antibiotic. Cefaclor can specifically bind to specific for penicillin-binding protein 3 (PBP3). Cefaclor can be used for the research of depression and kinds of infections caused by bacteria, such as respiratory tract infections, bacterial bronchitis, pharyngitis and skin infections[1][2][3][4].
Dofetilide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Mecillinam
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
L-Histidinol
An amino alcohol that is propanol substituted by 1H-imidazol-4-yl group at position 3 and an amino group at position 2 (the 2S stereoisomer).
Cycloleucine
C308 - Immunotherapeutic Agent > C574 - Immunosuppressant
3,4-Dihydroxymandelic acid
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids A catechol that is the 3,4-dihydroxy derivative of mandelic acid; a metabolite of L-dopa. 3,4-Dihydroxymandelic acid is a metabolite of norepinephrine.
2-Hydroxyphenylacetic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.
Phenylacetylglycine
A N-acylglycine that is glycine substituted on nitrogen with a phenylacetyl group. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1]. Phenylacetylglycine is a gut microbial metabolite that can activate β2AR. Phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion[1].
Tetrahydrocortisone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
phenylethanolamine
The simplest member of the class of phenylethanolamines that is 2-aminoethanol bearing a phenyl substituent at the 1-position. The parent of the phenylethanolamine class. 2-Amino-1-phenylethanol is an analogue of noradrenaline.
3-mercaptopyruvic acid
A 2-oxo monocarboxylic acid that is pyruvic acid substituted by a sulfanyl group at position 3.
FAPy-adenine
FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
nerol
Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
Adrenosterone
A 3-oxo Delta(4)-steroid that is androst-4-ene carrying three oxo-substituents at positions 3, 11 and 17. Adrenosterone ((+)-Adrenosterone) is a competitive hydroxysteroid (11-beta) dehydrogenase 1 (HSD11β1) inhibitor. Adrenosterone is a steroid hormone with weak androgenic effect. Adrenosterone is a dietary supplement that can decrease fat and increase muscle mass. Adrenosterone acts as a suppressor of metastatic progression of human cancer cells[1][2][3].
mesoridazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AC - Phenothiazines with piperidine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
Hyoscyamine
(S)-atropine is an atropine with a 2S-configuration. It is functionally related to a (S)-tropic acid. It is a conjugate base of a (S)-atropinium. Hyoscyamine is a tropane alkaloid and the levo-isomer of [atropine]. It is commonly extracted from plants in the Solanaceae or nightshade family. Research into the action of hyoscyamine in published literature dates back to 1826. Hyoscyamine is used for a wide variety of treatments and therapeutics due to its antimuscarinic properties. Although hyoscyamine is marketed in the United States, it is not FDA approved. Hyoscyamine as a natural plant alkaloid derivative and anticholinergic that is used to treat mild to moderate nausea, motion sickness, hyperactive bladder and allergic rhinitis. Hyoscyamine has not been implicated in causing liver enzyme elevations or clinically apparent acute liver injury. L-Hyoscyamine is a natural product found in Datura ferox, Crenidium spinescens, and other organisms with data available. Hyoscyamine is a belladonna alkaloid derivative and the levorotatory form of racemic atropine isolated from the plants Hyoscyamus niger or Atropa belladonna, which exhibits anticholinergic activity. Hyoscyamine functions as a non-selective, competitive antagonist of muscarinic receptors, thereby inhibiting the parasympathetic activities of acetylcholine on the salivary, bronchial, and sweat glands, as well as the eye, heart, bladder, and gastrointestinal tract. These inhibitory effects cause a decrease in saliva, bronchial mucus, gastric juices, and sweat. Furthermore, its inhibitory action on smooth muscle prevents bladder contraction and decreases gastrointestinal motility. The 3(S)-endo isomer of atropine. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03B - Belladonna and derivatives, plain > A03BA - Belladonna alkaloids, tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents An atropine with a 2S-configuration. Annotation level-1 L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2]. L-Hyoscyamine (Daturine), a natural plant tropane alkaloid, is a potent and competitive muscarinic receptor (MR) antagonist. L-Hyoscyamine is a levo-isomer to Atropine (HY-B1205)[1][2].
N-Acetylhistamine
A member of the class of acetamides that is acetamide comprising histamine having an acetyl group attached to the side-chain amino function. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions. N-Acetylhistamine is a histamine metabolite. N-acetylhistamine can be used as a potential biomarker of histidine metabolism for anaphylactoid reactions.
procarbazine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XB - Methylhydrazines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents
Benzyl Benzoate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].
Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Danthron
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D002400 - Cathartics D009676 - Noxae > D009153 - Mutagens Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK.
Cholestane
oleandomycin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic
1-Methylxanthine
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MVOYJPOZRLFTCP-UHFFFAOYSA-N_STSL_0033_1-Methylxanthine_0500fmol_180410_S2_LC02_MS02_41; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2]. 1-Methylxanthine, a caffeine derivative, is an essential human urinary metabolite of caffeine and theophylline (1,3-dimethylxanthine, TP)[1]. 1-Methylxanthine enhances the radiosensitivity of tumor cells[2].
triphenylphosphineoxide
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1081
4-Chloro-3-methylphenol
CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534
Crotonic acid
A but-2-enoic acid with a trans- double bond at C-2. It has been isolated from Daucus carota. But-2-enoic acid is fatty acid formed by the action of fatty acid synthases from acetyl-CoA and malonyl-CoA precursors. It is involved in the fatty acid biosynthesis. Specifically, it is the product of reaction between (R)-3-Hydroxybutyric acid and fatty acid synthase. [HMDB]. NSC 8751 is an endogenous metabolite. NSC 8751 is an endogenous metabolite.
Penconazole
D016573 - Agrochemicals D010575 - Pesticides
Kdo2-lipid A
7-isopropenyl-4a-methyl-1-methylenedecahydronaphthalene
CHOLESTERYL LINOLEATE
Cholesteryl linoleate is shown to be the major cholesteryl ester contained in LDL and atherosclerotic lesions.
β-Phellandrene
β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].
Prostaglandin B1
A member of the class of prostaglandins B that is prosta-8(12),13-dien-1-oic acid carrying oxo and hydroxy substituents at positions 9 and 15 respectively (the 13E,15S-stereoisomer).
CoA 20:4
Dephospho-CoA
Lathosterol
Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
ST 27:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
Urocortisone
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisone is a stress-induced hormone. Tetrahydrocortisone is also a urinary metabolite of Cortisone derived from the reduction of Cortisone by 5-reductase[1].
Urocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
ST 24:1;O5
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids β-Muricholic acid is a potent and orally active biliary cholesterol-desaturating agent. β-Muricholic acid prevents cholesterol gallstones. β-Muricholic acid inhibits lipid accumulation. β-Muricholic acid has the potential for the research of nonalcoholic fatty liver disease (NAFLD)[1][2].
beta-selinene
An optically active form of beta-selinene having (+)-(4aR,7R,8aS)-configuration.
(+)-DELTA-CADINENE
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).
canthaxanthin
A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
DL-Pyroglutamic acid
DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2]. DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2].
4-Isopropyl-1,6-dimethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenol
EDTA disodium salt
D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants
Methyltrienolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
N-n-Butyl-N-methyl-11-(3,17beta-dihydroxyestra-1,3,5(10)-trien-7alpha-yl)undecanamide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
dioxybenzone
C1892 - Chemopreventive Agent > C851 - Sunscreen Same as: D03853
Oxethazaine
C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
17066-67-0
Farnesene
Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Terpilene
α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].
AI3-52407
Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
Ferulaldehyde
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
Scabide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].
Gentisein
Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2]. Gentisein (NSC 329491), the major metabolite of Mangiferin, shows the most potent serotonin uptake inhibition with an IC50 value of 4.7 μM[1][2].
cuminol
4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].
AI3-36442
Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].
CHEBI:37386
Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].
Altan
A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AB - Contact laxatives D005765 - Gastrointestinal Agents > D002400 - Cathartics D009676 - Noxae > D009153 - Mutagens Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK. Danthron is a natural product extracted from the traditional Chinese medicine Salvia miltiorrhiza Bunge. Danthron functions in regulating glucose and lipid metabolism by activating AMPK.
614-75-5
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
1782-55-4
5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3]. 5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].
NY IV34 1
C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C1907 - Drug, Natural Product
c0242
m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.
Balchanin
Santamarin is a sesquiterpene lactone of the eudesmanolide group. Santamarine is a natural product found in Centaurea uniflora, Eupatorium capillifolium, and other organisms with data available.
80681-42-1
5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1]. 5-O-Methylvisamminol, a (furo) chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom. 5-O-Methylvisamminol is useful in (chemical) phylogeny and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae[1].
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Constituent of orange oil. Valencene is found in many foods, some of which are citrus, common oregano, rosemary, and sweet orange. Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
Tetrahydrocortisol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is the most powerful natural angiostatic steroid. It is involved in C21-Steroid hormone metabolism pathway (KEGG). [HMDB] Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].
Uroporphyrinogen III
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uroporphyrinogen iii, also known as urogen iii, is a member of the class of compounds known as porphyrins. Porphyrins are compounds containing a fundamental skeleton of four pyrrole nuclei united through the alpha-positions by four methine groups to form a macrocyclic structure. Uroporphyrinogen iii is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Uroporphyrinogen iii can be found in a number of food items such as pili nut, rubus (blackberry, raspberry), sunflower, and pecan nut, which makes uroporphyrinogen iii a potential biomarker for the consumption of these food products. Uroporphyrinogen iii can be found primarily in blood. Uroporphyrinogen iii exists in all living species, ranging from bacteria to humans. In humans, uroporphyrinogen iii is involved in the porphyrin metabolism. Uroporphyrinogen iii is also involved in few metabolic disorders, which include acute intermittent porphyria, congenital erythropoietic porphyria (CEP) or gunther disease, hereditary coproporphyria (HCP), and porphyria variegata (PV).
Ginkgolid A
Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist. Ginkgolide A (BN-52020) is an extract from in Ginkgo biloba and a g-aminobutyric acid (GABA) antagonist.
Blasticidin S
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A blasticidin that is an antibiotic obtained from Streptomyces griseochromogene. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors
EDTA disodium
D064449 - Sequestering Agents > D002614 - Chelating Agents > D065096 - Calcium Chelating Agents C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent D000074385 - Food Ingredients > D005503 - Food Additives D006401 - Hematologic Agents > D000925 - Anticoagulants
(+)-Himbacine
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics
Aurantio-obtusin
Aurantio-obtusin is a trihydroxyanthraquinone that is 1,3,7-trihydroxy-9,10-anthraquinone which is by methoxy groups at positions 2 and 8, and by a methyl group at position 6. Aurantio-obtusin is a natural product found in Senna obtusifolia and Senna tora with data available. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].
MPD cpd
Methylprotodioscin is a steroid saponin. Methylprotodioscin is a natural product found in Dracaena draco, Smilax menispermoidea, and other organisms with data available. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2]. Methyl protodioscin(NSC-698790) is a furostanol bisglycoside with antitumor properties; shows to reduce proliferation, cause cell cycle arrest. IC50 value: Target: in vitro: MPD showed growth inhibitory effects in A549 cells in a dose- and time-dependent manner. The significant G2/M cell cycle arrest and apoptotic effect were also seen in A549 cells treated with MPD. MPD-induced apoptosis was accompanied by a significant reduction of mitochondrial membrane potential, release of mitochondrial cytochrome c to cytosol, activation of caspase-3, downregulation of Bcl-2, p-Bad, and upregulation of Bax [1]. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis [2].
Didrovaltrat
Didrovaltratum is an iridoid monoterpenoid. Didrovaltrate is a natural product found in Valeriana pulchella, Fedia cornucopiae, and other organisms with data available. See also: Viburnum opulus bark (has part). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic
Fomepizole
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D020011 - Protective Agents > D000931 - Antidotes D004791 - Enzyme Inhibitors C471 - Enzyme Inhibitor
iodoquinol
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AC - Quinoline derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
SULFADOXINE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D013424 - Sulfanilamides
semustine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AD - Nitrosoureas C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents
Cefamandole
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams A cephalosporin compound having (R)-mandelamido and N-methylthiotetrazole side-groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
promazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics
GUANFACINE
C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AC - Imidazoline receptor agonists C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
Ibutilide
C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker
Diethyl phosphate
A dialkyl phosphate having ethyl as the alkyl group. Diethylphosphate (DEP) is product of metabolism and of environmental degradation of a commonly used insecticide Chlorpyrifos.
3-METHYL-2-BUTEN-1-OL
3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
Phenyl phosphate
An aryl phosphate resulting from the mono-esterification of phosphoric acid with phenol.
Cefmetazole
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin antibiotic containg an N(1)-methyltetrazol-5-ylthiomethyl side-chain at C-3 of the parent cephem bicyclic structure. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Propyl disulfide
An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.
thiamylal
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Vecuronium
A 5alpha-androstane compound having 3alpha-acetoxy-, 17beta-acetoxy-, 2beta-piperidino- and 16beta-N-methylpiperidinium substituents. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03A - Muscle relaxants, peripherally acting agents D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
(S)-2-Hydroxybutyric acid
An optically active form of 2-hydroxybutyric acid having (S)-configuration. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].
Butoconazole
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent
N-Methylhydantoin
A imidazolidine-2,4-dione that is the N-methyl-derivative of hydantoin. N-Methylhydantoin is a product of degradation of creatinine by bacteria. N-Methylhydantoin is a product of degradation of creatinine by bacteria.
DILOXANIDE FUROATE
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
Indole-3-lactic Acid
Indolelactic acid (Indole-3-lactic acid) is a tryptophan (Trp) catabolite in Azotobacter vinelandii cultures. Indolelactic acid has anti-inflammation and potential anti-viral activity[1][3][4].
D-Alanyl-D-alanine
A dipeptide comprising D-alanine with a D-alanyl residue attached to the alpha-nitrogen. It is a component of bacterial peptidoglycan and forms an important target for development of antibacterial drugs . D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].
CARBAMIC ACID
A one-carbon compound that is ammonia in which one of the hydrogens is replaced by a carboxy group. Although carbamic acid derivatives are common, carbamic acid itself has never been synthesised.
24-methylenecycloartanol
A pentacyclic triterpenoid that is (9beta)-24-methylene-9,19-cyclolanostane which carries a hydroxy group at position 3beta. It is isolated from several plant species including Euphorbia, Epidendrum, Psychotria and Sideritis.
Amifostine thiol
D020011 - Protective Agents > D011837 - Radiation-Protective Agents Amifostine thiol (WR-1065) is an active metabolite of the cytoprotector Amifostine (HY-B0639). Amifostine thiol is a cytoprotective agent with radioprotective abilities. Amifostine thiol activates p53 through a JNK-dependent signaling pathway[1][2][3].
e-64
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents
20-Hydroxycholesterol
An oxysterol that is cholesterol substituted by a hydroxy group at position 20. 20(S)-hydroxyCholesterol (20α-Hydroxycholesterol) is an allosteric activator of the oncoprotein smoothened (Smo) that activates the hedgehog (Hh) signaling pathway with an EC50 of 3 μM in a gene transcription reporter assay using NIH3T3 cells[1][2].
Glufosinate-p
D010575 - Pesticides > D006540 - Herbicides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
(R)-S-Lactoylglutathione
The S-[(R)-lactoyl] derivative of glutathione. It is an intermediate in the pyruvate metabolism. D000970 - Antineoplastic Agents
Previtamin D3
A hydroxy seco-steroid which is an intermediate in the production of vitamin D3 in human skin.
protoporphyrinogen
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(-)-7-Epi-alpha-selinene
An isomer of selinene where the double bond in the octahydronaphthalene ring system is endocyclic with (2S,4aR,8aR)-configuration.
N-acetyl-2,3-didehydro-2-deoxyneuraminic acid
D004791 - Enzyme Inhibitors
Thalicarpine
C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C1907 - Drug, Natural Product
Teleocidin B-1
D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D007509 - Irritants
Azactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Proflavine
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents
Oxetacaine
C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AD - Local anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent Same as: D01152
Chlorocresol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
Sulfosalicylic Acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Gibberellin A12
Gibberellin A12. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1164-45-0 (retrieved 2024-10-09) (CAS RN: 1164-45-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Sexangularetin
A 7-hydroxyflavonol that is kaempferol substituted by a methoxy group at position 8.
phosalone
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
trifluralin
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
UNII:0514MAW53A
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
DINOSEB
D010575 - Pesticides > D005659 - Fungicides, Industrial > D004140 - Dinitrophenols D010575 - Pesticides > D007306 - Insecticides D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
m-3-g hydrate
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants
DL-Citrulline
2-Amino-5-ureidopentanoic acid is an endogenous metabolite. 2-Amino-5-ureidopentanoic acid is an endogenous metabolite.
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
2,3,4,5-Tetrachloro-4-biphenylol
D004785 - Environmental Pollutants > D011078 - Polychlorinated Biphenyls
17beta-Estradiol glucuronide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones