Lathosterol (BioDeep_00000004609)
Secondary id: BioDeep_00000636703
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product
代谢物信息卡片
化学式: C27H46O (386.3548)
中文名称: 5α-胆固醇-7-烯-3ß-醇
谱图信息:
最多检出来源 Homo sapiens(blood) 16.18%
分子结构信息
SMILES: CC(C)CCCC(C)C1CCC2C1(CCC3C2=CCC4C3(CCC(C4)O)C)C
InChI: InChI=1S/C27H46O/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h10,18-21,23-25,28H,6-9,11-17H2,1-5H3/t19-,20+,21+,23-,24+,25+,26+,27-/m1/s1
描述信息
Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB]
Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O.
Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.
同义名列表
35 个代谢物同义名
(1R,2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol; 3β-Hydroxy-5α,7-cholestene; 3beta-Hydroxy-5alpha-cholest-7-ene; 5α-Cholest-7-en-3β-ol; (3beta,5alpha)-Cholest-7-en-3-ol; (3beta,alpha)-Cholest-7-en-3-ol; 5-alpha-Cholest-7-en-3-beta-ol; 5alpha-Cholest-7-en-3beta-ol; 5-a-Cholest-7-en-3-beta-ol; DELTA7-Cholesten-3beta-ol; (3beta)-Cholest-7-en-3-ol; 3b-Hydroxy-5-cholestene; Cholesterol - synthetic; Cholesterol extra pure; cholest-7-en-3β-o; 7-Cholesten-3-beta-ol; cholest-7-en-3beta-ol; 5a-Cholest-7-en-3b-ol; 5Α-cholest-7-en-3β-ol; Cholesterol,NF grade; delta(7)-Cholestenol; Cholesterol pharma; DELTA7-Cholestenol; gamma-Cholestenol; gamma-Cholesterol; Cholest-7-en-3-ol; Cholest-7-en-ol; (7)-Cholestenol; Cholesterol GR; 7-Cholesterol; g-Cholesterol; 7-Cholestenol; Γ-cholesterol; Lathosterol; Lathosterol
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:17168
- KEGG: C01189
- PubChem: 65728
- PubChem: 420
- HMDB: HMDB0001170
- Metlin: METLIN166
- ChEMBL: CHEMBL3138639
- Wikipedia: Lathosterol
- MetaCyc: CPD-4186
- KNApSAcK: C00023744
- foodb: FDB022463
- chemspider: 59151
- CAS: 80-99-9
- PMhub: MS000017144
- PubChem: 4415
- LipidMAPS: LMST01010089
- 3DMET: B01406
- NIKKAJI: J9.827B
- RefMet: Lathosterol
- medchemexpress: HY-113486
- KNApSAcK: 17168
- LOTUS: LTS0007764
- LOTUS: LTS0229886
- LOTUS: LTS0216482
- wikidata: Q105123507
分类词条
相关代谢途径
BioCyc(3)
PlantCyc(3)
代谢反应
390 个相关的代谢反应过程信息。
Reactome(75)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Cholesterol biosynthesis:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Kandutsch-Russell pathway:
ZYMSTNL ⟶ LTHSOL
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Kandutsch-Russell pathway:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
BioCyc(6)
- superpathway of cholesterol biosynthesis:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of cholesterol biosynthesis:
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- cholesterol biosynthesis I:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
WikiPathways(6)
- Cholesterol metabolism:
Dehydrocholesterol ⟶ Cholesterol
- Cholesterol synthesis disorders:
squalene ⟶ (S)-2,3-epoxysqualene
- Cholesterol biosynthesis with skeletal dysplasias:
7-Dehydrodesmosterol ⟶ 7-Dehydrocholesterol
- Biosynthesis and regulation of nematode bile acids:
7-Dehydrocholesterol ⟶ Lathosterol
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
- Cholesterol metabolism with Bloch and Kandutsch-Russell pathways:
7-dehydodesmosterol ⟶ 7-dehdrocholesterol
Plant Reactome(220)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
ZSOL ⟶ lathosterol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
ZSOL ⟶ lathosterol
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
ZSOL ⟶ lathosterol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
ZSOL ⟶ lathosterol
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NAD(P)H + PSDP ⟶ NAD(P)+ + PPi + SQNE
- Cholesterol biosynthesis I:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
INOH(1)
- Steroids metabolism ( Steroids metabolism ):
7-Dehydro-cholesterol + NADP+ ⟶ Cholesterol + NADPH
PlantCyc(34)
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- sphingolipid biosynthesis (plants):
NADP+ + sphinganine (C18) ⟶ 3-dehydrosphinganine (C18) + H+ + NADPH
- cholesterol biosynthesis I:
O2 + a reduced [NADPH-hemoprotein reductase] + squalene ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O + an oxidized [NADPH-hemoprotein reductase]
- cholesterol biosynthesis (plants):
H+ + O2 + a ferrocytochrome b5 + cycloartanol ⟶ (3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + H2O + a ferricytochrome b5
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis (plants):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis (plants):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis (plants):
NADP+ + cholesterol ⟶ 7-dehydrocholesterol + H+ + NADPH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
- cholesterol biosynthesis (plants, early side-chain reductase):
(3β,9β)-4α-demethyl-4α-carboxy-9,19-cyclolanost-3-ol + NAD+ ⟶ 31-norcycloartanone + CO2 + NADH
COVID-19 Disease Map(0)
PathBank(48)
- Steroid Biosynthesis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Smith-Lemli-Opitz Syndrome (SLOS):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- CHILD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Desmosterolosis:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Ibandronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Simvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pravastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Rosuvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Alendronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hypercholesterolemia:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Lovastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Zoledronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cerivastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Risedronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Pamidronate Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Fluvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Atorvastatin Action Pathway:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Cholesteryl Ester Storage Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Hyper-IgD Syndrome:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Mevalonic Aciduria:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Wolman Disease:
Lathosterol + NADPH + Oxygen ⟶ 7-Dehydrocholesterol + NADP + Water
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Steroid Biosynthesis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- CHILD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Chondrodysplasia Punctata II, X-Linked Dominant (CDPX2):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Desmosterolosis:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Lysosomal Acid Lipase Deficiency (Wolman Disease):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Smith-Lemli-Opitz Syndrome (SLOS):
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hypercholesterolemia:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Cholesteryl Ester Storage Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Hyper-IgD Syndrome:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Mevalonic Aciduria:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Wolman Disease:
7-Dehydrocholesterol + NADPH ⟶ Cholesterol + NADP
- Steroid Biosynthesis:
Hydrogen Ion + Lathosterol + Oxygen + ferrocytochrome b5 ⟶ 7-Dehydrocholesterol + Water + ferricytochrome b5
- Kandutsch-Russell Pathway (Cholesterol Biosynthesis):
Fe2+ + Hydrogen Ion + Lathosterol + Oxygen ⟶ 7-Dehydrocholesterol + Fe3+ + Water
PharmGKB(0)
237 个相关的物种来源信息
- 237077 - Aaptos: LTS0229886
- 253165 - Aaptos aaptos: 10.1007/BF01963582
- 253165 - Aaptos aaptos: LTS0229886
- 133433 - Acanthaster: LTS0007764
- 133433 - Acanthaster: LTS0229886
- 133434 - Acanthaster planci: 10.1016/0039-128X(80)90068-9
- 133434 - Acanthaster planci: LTS0007764
- 133434 - Acanthaster planci: LTS0229886
- 133432 - Acanthasteridae: LTS0007764
- 133432 - Acanthasteridae: LTS0229886
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 155619 - Agaricomycetes: LTS0007764
- 155619 - Agaricomycetes: LTS0229886
- 4678 - Allium: LTS0229886
- 74896 - Allium neapolitanum: 10.1016/S0031-9422(00)84605-1
- 74896 - Allium neapolitanum: LTS0229886
- 3563 - Amaranthaceae: LTS0229886
- 4668 - Amaryllidaceae: LTS0007764
- 4668 - Amaryllidaceae: LTS0229886
- 4211 - Ambrosia: LTS0007764
- 4211 - Ambrosia: LTS0229886
- 4212 - Ambrosia artemisiifolia: LTS0007764
- 4212 - Ambrosia artemisiifolia: LTS0229886
- 4215 - Ambrosia artemisiifolia var. elatior: 10.1248/CPB.30.2780
- 4215 - Ambrosia artemisiifolia var. elatior: LTS0007764
- 4215 - Ambrosia artemisiifolia var. elatior: LTS0229886
- 307971 - Apostichopus: LTS0229886
- 307972 - Apostichopus japonicus: 10.1016/0305-0491(83)90235-3
- 307972 - Apostichopus japonicus: LTS0229886
- 30275 - Ascidia: LTS0007764
- 30275 - Ascidia: LTS0229886
- 7713 - Ascidiacea: LTS0007764
- 7713 - Ascidiacea: LTS0229886
- 30274 - Ascidiidae: LTS0007764
- 30274 - Ascidiidae: LTS0229886
- 4210 - Asteraceae: LTS0007764
- 4210 - Asteraceae: LTS0229886
- 7601 - Asterias: LTS0007764
- 7601 - Asterias: LTS0229886
- 7602 - Asterias amurensis: 10.1246/BCSJ.27.421
- 7602 - Asterias amurensis: LTS0007764
- 7602 - Asterias amurensis: LTS0229886
- 7604 - Asterias rubens: 10.1016/S1001-0742(14)60648-3
- 7604 - Asterias rubens: LTS0229886
- 7600 - Asteriidae: LTS0007764
- 7600 - Asteriidae: LTS0229886
- 7592 - Asterinidae: LTS0007764
- 7592 - Asterinidae: LTS0229886
- 7588 - Asteroidea: LTS0007764
- 7588 - Asteroidea: LTS0229886
- 12958 - Axinella: LTS0007764
- 12958 - Axinella: LTS0229886
- 798305 - Axinella cannabina: 10.1039/P19830000147
- 798305 - Axinella cannabina: LTS0007764
- 798305 - Axinella cannabina: LTS0229886
- 45118 - Axinellidae: LTS0007764
- 45118 - Axinellidae: LTS0229886
- 5204 - Basidiomycota: LTS0007764
- 5204 - Basidiomycota: LTS0229886
- 1333867 - Calciodinellaceae: LTS0007764
- 1333867 - Calciodinellaceae: LTS0229886
- 1804623 - Chenopodiaceae: LTS0229886
- 256107 - Chiton: LTS0007764
- 256107 - Chiton: LTS0229886
- 1539881 - Chiton tuberculatus: 10.1021/JO01365A020
- 1539881 - Chiton tuberculatus: LTS0007764
- 1539881 - Chiton tuberculatus: LTS0229886
- 39684 - Chitonidae: LTS0007764
- 39684 - Chitonidae: LTS0229886
- 7711 - Chordata: LTS0007764
- 7711 - Chordata: LTS0229886
- 3720 - Crambe: LTS0229886
- 3722 - Crambe crambe: 10.1016/0305-1978(84)90058-9
- 3722 - Crambe crambe: LTS0229886
- 283433 - Crambeidae: LTS0229886
- 3781 - Crassulaceae: LTS0007764
- 3781 - Crassulaceae: LTS0229886
- 6042 - Demospongiae: LTS0007764
- 6042 - Demospongiae: LTS0229886
- 74559 - Dictyuchus: LTS0007764
- 74559 - Dictyuchus: LTS0229886
- 120407 - Dictyuchus monosporus: 10.1016/S0031-9422(00)80786-4
- 120407 - Dictyuchus monosporus: LTS0007764
- 120407 - Dictyuchus monosporus: LTS0229886
- 2864 - Dinophyceae: LTS0007764
- 2864 - Dinophyceae: LTS0229886
- 4672 - Dioscorea: LTS0229886
- 55575 - Dioscorea polystachya: 10.1016/0031-9422(91)83651-Z
- 55575 - Dioscorea polystachya: LTS0229886
- 4671 - Dioscoreaceae: LTS0229886
- 7586 - Echinodermata: LTS0007764
- 7586 - Echinodermata: LTS0229886
- 72179 - Esperiopsidae: LTS0229886
- 2759 - Eukaryota: LTS0007764
- 2759 - Eukaryota: LTS0229886
- 42393 - Eupentacta: LTS0007764
- 42393 - Eupentacta: LTS0229886
- 42394 - Eupentacta quinquesemita: 10.1246/NIKKASHI1948.76.243
- 42394 - Eupentacta quinquesemita: LTS0007764
- 42394 - Eupentacta quinquesemita: LTS0229886
- 3803 - Fabaceae: LTS0229886
- 4751 - Fungi: LTS0007764
- 4751 - Fungi: LTS0229886
- 7705 - Holothuroidea: LTS0007764
- 7705 - Holothuroidea: LTS0229886
- 9604 - Hominidae: LTS0229886
- 9605 - Homo: LTS0229886
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0229886
- 80649 - Hymenogastraceae: LTS0007764
- 80649 - Hymenogastraceae: LTS0229886
- 71944 - Hypholoma: LTS0007764
- 71944 - Hypholoma: LTS0229886
- 72129 - Hypholoma fasciculare: 10.1002/CBDV.201000203
- 72129 - Hypholoma fasciculare: LTS0007764
- 72129 - Hypholoma fasciculare: LTS0229886
- 51454 - Ipheion: LTS0007764
- 51454 - Ipheion: LTS0229886
- 82527 - Ipheion uniflorum:
- 82527 - Ipheion uniflorum: LTS0007764
- 82527 - Ipheion uniflorum: LTS0229886
- 23012 - Kalanchoe: LTS0007764
- 23012 - Kalanchoe: LTS0229886
- 80912 - Kalanchoe petitiana: 10.1016/0031-9422(91)83027-I
- 80912 - Kalanchoe petitiana: LTS0007764
- 80912 - Kalanchoe petitiana: LTS0229886
- 4447 - Liliopsida: LTS0007764
- 4447 - Liliopsida: LTS0229886
- 3398 - Magnoliopsida: LTS0007764
- 3398 - Magnoliopsida: LTS0229886
- 40674 - Mammalia: LTS0229886
- 3877 - Medicago: LTS0229886
- 70959 - Medicago monspeliaca: 10.1016/0305-1978(95)00105-0
- 70959 - Medicago monspeliaca: LTS0229886
- 200951 - Melilotus indicus: 10.1016/0305-1978(95)00105-0
- 33208 - Metazoa: LTS0007764
- 33208 - Metazoa: LTS0229886
- 466990 - Meyenaster: LTS0229886
- 466991 - Meyenaster gelatinosus: 10.1021/NP50041A031
- 466991 - Meyenaster gelatinosus: LTS0229886
- 6447 - Mollusca: LTS0007764
- 6447 - Mollusca: LTS0229886
- 10066 - Muridae: LTS0229886
- 10088 - Mus: LTS0229886
- 10090 - Mus musculus: LTS0229886
- 10090 - Mus musculus: NA
- 51464 - Nothoscordum: LTS0229886
- 51465 - Nothoscordum bivalve: LTS0229886
- 74906 - Nothoscordum gracile: 10.1016/S0031-9422(00)84605-1
- 74906 - Nothoscordum gracile: LTS0229886
- 178549 - Nothoscordum inodorum: 10.1016/S0031-9422(00)84605-1
- 178549 - Nothoscordum inodorum: LTS0229886
- 1072610 - Nothoscordum montevidense: 10.1016/S0031-9422(00)84605-1
- 1072610 - Nothoscordum montevidense: LTS0229886
- 4762 - Oomycota: LTS0007764
- 4762 - Oomycota: LTS0229886
- 35076 - Patiria: LTS0007764
- 35076 - Patiria: LTS0229886
- 7594 - Patiria pectinifera:
- 7594 - Patiria pectinifera: 10.1246/BCSJ.29.317
- 7594 - Patiria pectinifera: 10.1248/BPB.23.1247
- 7594 - Patiria pectinifera: LTS0007764
- 7594 - Patiria pectinifera: LTS0229886
- 66803 - Peridiniaceae: LTS0007764
- 66803 - Peridiniaceae: LTS0229886
- 56696 - Phallusia: LTS0007764
- 56696 - Phallusia: LTS0229886
- 569429 - Phallusia nigra: 10.1016/0039-128X(82)90021-6
- 569429 - Phallusia nigra: LTS0007764
- 569429 - Phallusia nigra: LTS0229886
- 4479 - Poaceae: LTS0229886
- 6650 - Polyplacophora: LTS0007764
- 6650 - Polyplacophora: LTS0229886
- 581071 - Polyzoa: LTS0229886
- 581072 - Polyzoa opuntia: 10.1016/0039-128X(95)00167-O
- 581072 - Polyzoa opuntia: LTS0229886
- 6040 - Porifera: LTS0007764
- 6040 - Porifera: LTS0229886
- 71950 - Psilocybe: LTS0007764
- 71950 - Psilocybe: LTS0229886
- 4764 - Saprolegniaceae: LTS0007764
- 4764 - Saprolegniaceae: LTS0229886
- 42392 - Sclerodactylidae: LTS0007764
- 42392 - Sclerodactylidae: LTS0229886
- 54902 - Scrippsiella: LTS0007764
- 54902 - Scrippsiella: LTS0229886
- 1691973 - Scrippsiella acuminata: 10.1016/0031-9422(88)80432-1
- 71861 - Scrippsiella trochoidea: 10.1016/0031-9422(88)80432-1
- 71861 - Scrippsiella trochoidea: LTS0007764
- 71861 - Scrippsiella trochoidea: LTS0229886
- 41634 - Serratula: LTS0229886
- 65004 - Serratula tinctoria: 10.1016/0965-1748(93)90098-D
- 65004 - Serratula tinctoria: LTS0229886
- 4703 - Smilacaceae: LTS0229886
- 49656 - Smilax: LTS0229886
- 1045167 - Smilax perfoliata: 10.4268/CJCMM20160315
- 1045167 - Smilax perfoliata: LTS0229886
- 4070 - Solanaceae: LTS0229886
- 4107 - Solanum: LTS0229886
- 4081 - Solanum lycopersicum: 10.5650/JOS.50.259
- 4081 - Solanum lycopersicum: LTS0229886
- 3561 - Spinacia: LTS0229886
- 3562 - Spinacia oleracea: 10.1016/S0031-9422(00)89731-9
- 3562 - Spinacia oleracea: LTS0229886
- 335722 - Stichaster: LTS0229886
- 467008 - Stichaster striatus: 10.1021/NP50031A031
- 467008 - Stichaster striatus: LTS0229886
- 1933099 - Stichasteridae: LTS0229886
- 7687 - Stichopodidae: LTS0229886
- 35493 - Streptophyta: LTS0007764
- 35493 - Streptophyta: LTS0229886
- 40562 - Strophariaceae: LTS0007764
- 40562 - Strophariaceae: LTS0229886
- 7721 - Styelidae: LTS0229886
- 55660 - Suberitidae: LTS0229886
- 1691972 - Thoracosphaeraceae: LTS0007764
- 1691972 - Thoracosphaeraceae: LTS0229886
- 58023 - Tracheophyta: LTS0007764
- 58023 - Tracheophyta: LTS0229886
- 78532 - Trigonella: LTS0229886
- 200963 - Trigonella caerulea: 10.1016/0305-1978(95)00105-0
- 200963 - Trigonella caerulea: LTS0229886
- 78533 - Trigonella cretica: 10.1016/0305-1978(95)00105-0
- 78533 - Trigonella cretica: LTS0229886
- 78534 - Trigonella foenum-graecum: 10.1016/0305-1978(95)00105-0
- 78534 - Trigonella foenum-graecum: LTS0229886
- 51487 - Tristagma: LTS0007764
- 51487 - Tristagma: LTS0229886
- 82527 - Tristagma uniflorum: 10.1016/0031-9422(88)80693-9
- 82527 - Tristagma uniflorum: 10.1016/S0031-9422(00)84605-1
- 33090 - Viridiplantae: LTS0007764
- 33090 - Viridiplantae: LTS0229886
- 4575 - Zea: LTS0229886
- 4577 - Zea mays: 10.1016/0031-9422(95)00435-A
- 4577 - Zea mays: LTS0229886
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Valéria Sutti Nunes, Angela de Oliveira Godoy Ilha, Guilherme da Silva Ferreira, Renata de Paula Assis Bombo, Milessa Silva Afonso, Maria Silvia Ferrari Lavrador, Roberta Marcondes Machado, Edna Regina Nakandakare, Eder Carlos Rocha Quintão, Ana Maria Lottenberg. Plasma lathosterol measures rates of cholesterol synthesis and efficiency of dietary phytosterols in reducing the plasma cholesterol concentration.
Clinics (Sao Paulo, Brazil).
2022; 77(?):100028. doi:
10.1016/j.clinsp.2022.100028
. [PMID: 35397367] - S Mashnafi, J Plat, R P Mensink, P J Joris, J P D Kleinloog, S Baumgartner. Effects of an 8-week aerobic exercise program on plasma markers for cholesterol absorption and synthesis in older overweight and obese men.
Lipids in health and disease.
2021 Sep; 20(1):112. doi:
10.1186/s12944-021-01537-2
. [PMID: 34548089] - Min-Ji Oh, Hee-Jin So, Eun-Sik Hong, Jung-Ah Shin, Ki-Teak Lee. Presence of Cholesterol in Non-Animal Organisms: Identification and Quantification of Cholesterol in Crude Seed Oil from Perilla frutescens and Dehydrated Pyropia tenera.
Molecules (Basel, Switzerland).
2021 Jun; 26(12):. doi:
10.3390/molecules26123767
. [PMID: 34205624] - Wen-Chin Lee, Wei-Hung Kuo, Sin-Hua Moi, Barry Chiu, Jin-Bor Chen, Cheng-Hong Yang. Associations between Circulating Markers of Cholesterol Homeostasis and Macrovascular Events among Patients Undergoing Hemodialysis.
Nutrients.
2021 Mar; 13(3):. doi:
10.3390/nu13031014
. [PMID: 33801029] - Ivana Semova, Amy E Levenson, Joanna Krawczyk, Kevin Bullock, Kathryn A Williams, R Paul Wadwa, Philip R Khoury, Thomas R Kimball, Elaine M Urbina, Sarah D de Ferranti, David M Maahs, Lawrence M Dolan, Amy S Shah, Clary B Clish, Sudha B Biddinger. Markers of cholesterol synthesis are elevated in adolescents and young adults with type 2 diabetes.
Pediatric diabetes.
2020 11; 21(7):1126-1131. doi:
10.1111/pedi.13097
. [PMID: 32738021] - Valéria Sutti Nunes, Isabela M Bensenor, Paulo A Lotufo, Marisa Passarelli, Edna Regina Nakandakare, Eder Carlos Rocha Quintão. The coronary artery calcium score is linked to plasma cholesterol synthesis and absorption markers: Brazilian Longitudinal Study of Adult Health.
Bioscience reports.
2020 07; 40(7):. doi:
10.1042/bsr20201094
. [PMID: 32579186] - Hiroshi Yoshida, Hayato Tada, Kumie Ito, Yoshimi Kishimoto, Hidekatsu Yanai, Tomonori Okamura, Katsunori Ikewaki, Kyoko Inagaki, Tetsuo Shoji, Hideaki Bujo, Takashi Miida, Masayuki Yoshida, Masafumi Kuzuya, Shizuya Yamashita. Reference Intervals of Serum Non-Cholesterol Sterols by Gender in Healthy Japanese Individuals.
Journal of atherosclerosis and thrombosis.
2020 May; 27(5):409-417. doi:
10.5551/jat.50187
. [PMID: 31484845] - Hammad Ullah, Ajmal Khan, Najeeb Ur Rehman, Sobia Ahsan Halim, Haroon Khan, Imran Khan, Rene Csuk, Ahmed Al-Rawahi, Saif Al-Hatmi, Ahmed Al-Harrasi. Lophenol and lathosterol from resin of Commiphora kua possess hepatoprotective effects in vivo.
Journal of ethnopharmacology.
2020 Apr; 252(?):112558. doi:
10.1016/j.jep.2020.112558
. [PMID: 31926985] - Monica Gelzo, Maria Donata Di Taranto, Concetta Sica, Antonio Boscia, Francesco Papagni, Giuliana Fortunato, Gaetano Corso, Antonio Dello Russo. Age-related changes of cholestanol and lathosterol plasma concentrations: an explorative study.
Lipids in health and disease.
2019 Dec; 18(1):235. doi:
10.1186/s12944-019-1176-3
. [PMID: 31888647] - Oliver Weingärtner, Dieter Lütjohann, Sven Meyer, Arne Fuhrmann, Bodo Cremers, Sarah Seiler-Mußler, Hans-F Schött, Anja Kerksiek, Silvia Friedrichs, Ursula Ulbricht, Adam Zawada, Ulrich Laufs, P Christian Schulze, Bruno Scheller, Danilo Fliser, Michael Böhm, Eric Sijbrands, Gunnar H Heine. Low serum lathosterol levels associate with fatal cardiovascular disease and excess all-cause mortality: a prospective cohort study.
Clinical research in cardiology : official journal of the German Cardiac Society.
2019 Dec; 108(12):1381-1385. doi:
10.1007/s00392-019-01474-2
. [PMID: 30949753] - Maite M Schroor, Henriette P Sennels, Jan Fahrenkrug, Henrik L Jørgensen, Jogchum Plat, Ronald P Mensink. Diurnal Variation of Markers for Cholesterol Synthesis, Cholesterol Absorption, and Bile Acid Synthesis: A Systematic Review and the Bispebjerg Study of Diurnal Variations.
Nutrients.
2019 Jun; 11(7):. doi:
10.3390/nu11071439
. [PMID: 31247945] - Dieter Lütjohann, Ingemar Björkhem, Silvia Friedrichs, Anja Kerksiek, Anita Lövgren-Sandblom, Wolf-Jochen Geilenkeuser, Robert Ahrends, Isabel Andrade, Diana Ansorena, Iciar Astiasarán, Lucía Baila-Rueda, Bianca Barriuso, Susen Becker, Lionel Bretillon, Richard W Browne, Claudio Caccia, Uta Ceglarek, Ana Cenarro, Peter J Crick, Günter Fauler, Guadalupe Garcia-Llatas, Robert Gray, William J Griffiths, Helena Gylling, Scott Harding, Christin Helmschrodt, Luigi Iuliano, Hans-Gerd Janssen, Peter Jones, Leena Kaipiainen, Frank Kannenberg, María Jesús Lagarda, Valerio Leoni, Ana Maria Lottenberg, Dylan S MacKay, Silke Matysik, Jeff McDonald, Maria Menendez-Carreño, Semone B Myrie, Valéria Sutti Nunes, Richard E Ostlund, Eliana Polisecki, Fernando Ramos, Todd C Rideout, Ernst J Schaefer, Gerd Schmitz, Yuqin Wang, Chiara Zerbinati, Ulf Diczfalusy, Hans-Frieder Schött. First international descriptive and interventional survey for cholesterol and non-cholesterol sterol determination by gas- and liquid-chromatography-Urgent need for harmonisation of analytical methods.
The Journal of steroid biochemistry and molecular biology.
2019 06; 190(?):115-125. doi:
10.1016/j.jsbmb.2019.03.025
. [PMID: 30940596] - Ernst J Schaefer, Andrew S Geller, Gregory Endress. The biochemical and genetic diagnosis of lipid disorders.
Current opinion in lipidology.
2019 04; 30(2):56-62. doi:
10.1097/mol.0000000000000590
. [PMID: 30720493] - Daphne Kamino, Vann Chau, Colin Studholme, Mengyuan Liu, Duan Xu, A James Barkovich, Donna M Ferriero, Steven P Miller, Rollin Brant, Emily W Y Tam. Plasma cholesterol levels and brain development in preterm newborns.
Pediatric research.
2019 02; 85(3):299-304. doi:
10.1038/s41390-018-0260-0
. [PMID: 30635642] - Sultan Mashnafi, Jogchum Plat, Ronald P Mensink, Sabine Baumgartner. Non-Cholesterol Sterol Concentrations as Biomarkers for Cholesterol Absorption and Synthesis in Different Metabolic Disorders: A Systematic Review.
Nutrients.
2019 Jan; 11(1):. doi:
10.3390/nu11010124
. [PMID: 30634478] - Elizabeth A Babawale, Peter Jh Jones, Kelly E Mercer, Haixia Lin, Laxmi Yeruva, Fabiana Bar Yoseph, Shane M Rutherfurd. Modulating Sterol Concentrations in Infant Formula Influences Cholesterol Absorption and Synthesis in the Neonatal Piglet.
Nutrients.
2018 Dec; 10(12):. doi:
10.3390/nu10121848
. [PMID: 30513717] - Natalia Mast, Ilya R Bederman, Irina A Pikuleva. Retinal Cholesterol Content Is Reduced in Simvastatin-Treated Mice Due to Inhibited Local Biosynthesis Albeit Increased Uptake of Serum Cholesterol.
Drug metabolism and disposition: the biological fate of chemicals.
2018 11; 46(11):1528-1537. doi:
10.1124/dmd.118.083345
. [PMID: 30115644] - Satoshi Hirayama, Hironori Nagasaka, Akira Honda, Haruki Komatsu, Takahiro Kodama, Ayano Inui, Ichiro Morioka, Shunsaku Kaji, Tsuyoshi Ueno, Kenji Ihara, Mariko Yagi, Zenro Kizaki, Kazuhiko Bessho, Hiroki Kondou, Tohru Yorifuji, Hirokazu Tsukahara, Kazumoto Iijima, Takashi Miida. Cholesterol Metabolism Is Enhanced in the Liver and Brain of Children With Citrin Deficiency.
The Journal of clinical endocrinology and metabolism.
2018 07; 103(7):2488-2497. doi:
10.1210/jc.2017-02664
. [PMID: 29659898] - Christoph Müller, Sandra Hemmers, Nicholas Bartl, Alois Plodek, Andreas Körner, Valbona Mirakaj, Martin Giera, Franz Bracher. New chemotype of selective and potent inhibitors of human delta 24-dehydrocholesterol reductase.
European journal of medicinal chemistry.
2017 Nov; 140(?):305-320. doi:
10.1016/j.ejmech.2017.08.011
. [PMID: 28964935] - Rgia A Othman, Semone B Myrie, David Mymin, Jean-Baptiste Roullet, Andrea E DeBarber, Robert D Steiner, Peter J H Jones. Thyroid Hormone Status in Sitosterolemia Is Modified by Ezetimibe.
The Journal of pediatrics.
2017 09; 188(?):198-204.e1. doi:
10.1016/j.jpeds.2017.05.049
. [PMID: 28625503] - Marcella Matos Cordeiro Borges, Hanna Leijoto de Oliveira, Keyller Bastos Borges. Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol.
Electrophoresis.
2017 09; 38(17):2150-2159. doi:
10.1002/elps.201600489
. [PMID: 28543542] - Akinori Sawamura, Takahiro Okumura, Hiroaki Hiraiwa, Soichiro Aoki, Toru Kondo, Takeo Ichii, Kenji Furusawa, Naoki Watanabe, Naoaki Kano, Kenji Fukaya, Ryota Morimoto, Yasuko K Bando, Toyoaki Murohara. Cholesterol metabolism as a prognostic marker in patients with mildly symptomatic nonischemic dilated cardiomyopathy.
Journal of cardiology.
2017 Jun; 69(6):888-894. doi:
10.1016/j.jjcc.2016.08.012
. [PMID: 27686044] - Frans Stellaard, Klaus von Bergmann, Thomas Sudhop, Dieter Lütjohann. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies.
The Journal of steroid biochemistry and molecular biology.
2017 05; 169(?):111-122. doi:
10.1016/j.jsbmb.2016.03.030
. [PMID: 27060336] - Oliver Weingärtner, Ivan Bogeski, Carsten Kummerow, Stephan H Schirmer, Constanze Husche, Tim Vanmierlo, Gudrun Wagenpfeil, Markus Hoth, Michael Böhm, Dieter Lütjohann, Ulrich Laufs. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels.
The Journal of steroid biochemistry and molecular biology.
2017 05; 169(?):219-225. doi:
10.1016/j.jsbmb.2016.07.016
. [PMID: 27473562] - S De Vuono, M A Ricci, D Siepi, M Boni, A Gentili, M Scavizzi, G Daviddi, P Labate, A R Roscini, G Lupattelli. Laparoscopic sleeve gastrectomy modifies cholesterol synthesis but not cholesterol absorption.
Obesity research & clinical practice.
2017 Jan; 11(1):118-122. doi:
10.1016/j.orcp.2016.12.004
. [PMID: 28057416] - Eva Herzog, Ingo Pragst, Marcel Waelchli, Andreas Gille, Sabrina Schenk, Jochen Mueller-Cohrs, Svetlana Diditchenko, Paolo Zanoni, Marina Cuchel, Andreas Seubert, Daniel J Rader, Samuel D Wright. Reconstituted high-density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component.
Journal of applied toxicology : JAT.
2016 08; 36(8):1038-47. doi:
10.1002/jat.3264
. [PMID: 26651060] - Piia Simonen, Jukka Lehtonen, Helena Gylling, Markku Kupari. Cholesterol metabolism in cardiac sarcoidosis.
Atherosclerosis.
2016 May; 248(?):210-5. doi:
10.1016/j.atherosclerosis.2016.03.018
. [PMID: 27035112] - Wendy Whiteside, Meng Tan, Richard E Ostlund, Sunkyung Yu, Lina Ma, Albert Rocchini. Altered Cholesterol Metabolism and Hypocholesterolemia in Patients with Single Ventricle following Fontan Palliation.
The Journal of pediatrics.
2016 Apr; 171(?):73-7. doi:
10.1016/j.jpeds.2015.12.038
. [PMID: 26806364] - R T Ras, W P Koppenol, U Garczarek, A Otten-Hofman, D Fuchs, F Wagner, E A Trautwein. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2016 Apr; 26(4):302-9. doi:
10.1016/j.numecd.2015.11.007
. [PMID: 26806045] - Isabel Andrade, Lèlita Santos, Fernando Ramos. Cholesterol absorption and synthesis markers in Portuguese hypercholesterolemic adults: A cross-sectional study.
European journal of internal medicine.
2016 Mar; 28(?):85-90. doi:
10.1016/j.ejim.2015.10.022
. [PMID: 26577223] - Andrea Mignarri, Alessandro Magni, Marina Del Puppo, Gian Nicola Gallus, Ingemar Björkhem, Antonio Federico, Maria Teresa Dotti. Evaluation of cholesterol metabolism in cerebrotendinous xanthomatosis.
Journal of inherited metabolic disease.
2016 Jan; 39(1):75-83. doi:
10.1007/s10545-015-9873-1
. [PMID: 26153518] - Dylan S MacKay, Peter K Eck, Sarah K Gebauer, David J Baer, Peter Jh Jones. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial.
The American journal of clinical nutrition.
2015 Oct; 102(4):951-7. doi:
10.3945/ajcn.115.109231
. [PMID: 26333513] - Valerio Leoni, Claudio Caccia. The impairment of cholesterol metabolism in Huntington disease.
Biochimica et biophysica acta.
2015 Aug; 1851(8):1095-105. doi:
10.1016/j.bbalip.2014.12.018
. [PMID: 25596342] - Suzy A A Comhair, Jonathan McDunn, Carole Bennett, Jade Fettig, Serpil C Erzurum, Satish C Kalhan. Metabolomic Endotype of Asthma.
Journal of immunology (Baltimore, Md. : 1950).
2015 Jul; 195(2):643-50. doi:
10.4049/jimmunol.1500736
. [PMID: 26048149] - Fredrik Rosqvist, Annika Smedman, Helena Lindmark-Månsson, Marie Paulsson, Paul Petrus, Sara Straniero, Mats Rudling, Ingrid Dahlman, Ulf Risérus. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study.
The American journal of clinical nutrition.
2015 Jul; 102(1):20-30. doi:
10.3945/ajcn.115.107045
. [PMID: 26016870] - Hyun-Hwa Son, Shin Hye Kim, Ju-Yeon Moon, Bong Chul Chung, Mi Jung Park, Man Ho Choi. Serum sterol profiling reveals increased cholesterol biosynthesis in childhood obesity.
The Journal of steroid biochemistry and molecular biology.
2015 May; 149(?):138-45. doi:
10.1016/j.jsbmb.2015.02.012
. [PMID: 25725317] - Dylan S Mackay, Sarah K Gebauer, Peter K Eck, David J Baer, Peter J H Jones. Lathosterol-to-cholesterol ratio in serum predicts cholesterol-lowering response to plant sterol consumption in a dual-center, randomized, single-blind placebo-controlled trial.
The American journal of clinical nutrition.
2015 Mar; 101(3):432-9. doi:
10.3945/ajcn.114.095356
. [PMID: 25733626] - Rika Naruse, Ken-ichiro Hori, Tomoko Terasawa, Kenji Hara, Mariko Suetsugu, Kohzo Takebayashi, Kimio Morita, Yoshimasa Aso, Toshihiko Inukai. Alterations of plant sterols, lathosterol, oxidative stress and inflammatory markers after the combination therapy of ezetimibe and statin drugs in type 2 diabetic patients.
Obesity research & clinical practice.
2015 Jan; 9(1):67-74. doi:
10.1016/j.orcp.2014.02.001
. [PMID: 25660177] - Kazutaka Aoki, Takahiro Ijima, Hiroshi Kamiyama, Kazunari Kamiko, Yasuo Terauchi. Anagliptin decreases serum lathosterol level in patients with type 2 diabetes: a pilot study.
Expert opinion on pharmacotherapy.
2015; 16(12):1749-54. doi:
10.1517/14656566.2015.1057120
. [PMID: 26098722] - Helena E Miettinen, Kristiina Rönö, Saila Koivusalo, Beata Stach-Lempinen, Maritta Pöyhönen-Alho, Johan G Eriksson, Timo P Hiltunen, Helena Gylling. Elevated serum squalene and cholesterol synthesis markers in pregnant obese women with gestational diabetes mellitus.
Journal of lipid research.
2014 Dec; 55(12):2644-54. doi:
10.1194/jlr.p049510
. [PMID: 25301963] - Eric J Niesor, David Kallend, Darren Bentley, John J P Kastelein, G Kees Hovingh, Erik S G Stroes. Treatment of low HDL-C subjects with the CETP modulator dalcetrapib increases plasma campesterol only in those without ABCA1 and/or ApoA1 mutations.
Lipids.
2014 Dec; 49(12):1245-9. doi:
10.1007/s11745-014-3956-x
. [PMID: 25281277] - Pere Leyes, Esteban Martínez, María Larrousse, Montserrat Cofán, Joan Trabal, Ana María Pérez-Heras, María T Forga, Emilio Ros. Effects of ezetimibe on cholesterol metabolism in HIV-infected patients with protease inhibitor-associated dyslipidemia: a single-arm intervention trial.
BMC infectious diseases.
2014 Sep; 14(?):497. doi:
10.1186/1471-2334-14-497
. [PMID: 25209653] - Sanne M van der Made, Elton R Kelly, Tos T J M Berendschot, Aize Kijlstra, Dieter Lütjohann, Jogchum Plat. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration.
The Journal of nutrition.
2014 Sep; 144(9):1370-7. doi:
10.3945/jn.114.195503
. [PMID: 24991045] - Rocío Mateo-Gallego, Sofía Perez-Calahorra, Montserrat Cofán, Lucía Baila-Rueda, Ana Cenarro, Emilio Ros, José Puzo, Fernando Civeira. Serum lipid responses to weight loss differ between overweight adults with familial hypercholesterolemia and those with familial combined hyperlipidemia.
The Journal of nutrition.
2014 Aug; 144(8):1219-26. doi:
10.3945/jn.114.191775
. [PMID: 24899155] - C van de Kraats, J Killestein, V Popescu, E Rijkers, H Vrenken, D Lütjohann, F Barkhof, C H Polman, C E Teunissen. Oxysterols and cholesterol precursors correlate to magnetic resonance imaging measures of neurodegeneration in multiple sclerosis.
Multiple sclerosis (Houndmills, Basingstoke, England).
2014 Apr; 20(4):412-7. doi:
10.1177/1352458513499421
. [PMID: 23959711] - Alan H B Wu, Weiming Ruan, John Todd, Kara L Lynch. Biological variation of β-sitosterol, campesterol, and lathosterol as cholesterol absorption and synthesis biomarkers.
Clinica chimica acta; international journal of clinical chemistry.
2014 Mar; 430(?):43-7. doi:
10.1016/j.cca.2013.12.040
. [PMID: 24394292] - Lucia Carulli, Marina Del Puppo, Claudia Anzivino, Lisa Zambianchi, Chiara Gabbi, Enrica Baldelli, Maria Rosaria Odoardi, Paola Loria, Nicola Carulli, Marco Bertolotti. In vivo degradation of cholesterol to bile acids is reduced in patients receiving parenteral nutrition.
JPEN. Journal of parenteral and enteral nutrition.
2014 Feb; 38(2):220-6. doi:
10.1177/0148607113476751
. [PMID: 23426743] - Mika Sonoda, Testuo Shoji, Eiji Kimoto, Yujiro Okute, Hideaki Shima, Toshihide Naganuma, Koka Motoyama, Tomoaki Morioka, Katsuhito Mori, Shinya Fukumoto, Atsushi Shioi, Hidenori Koyama, Masanori Emoto, Masaaki Inaba. Kidney function, cholesterol absorption and remnant lipoprotein accumulation in patients with diabetes mellitus.
Journal of atherosclerosis and thrombosis.
2014; 21(4):346-54. doi:
10.5551/jat.20594
. [PMID: 24335047] - Jogchum Plat, Tim Hendrikx, Veerle Bieghs, Mike L J Jeurissen, Sofie M A Walenbergh, Patrick J van Gorp, Els De Smet, Maurice Konings, Anita C E Vreugdenhil, Yasmin Dias Guichot, Sander S Rensen, Wim A Buurman, Jan Willem M Greve, Dieter Lütjohann, Ronald P Mensink, Ronit Shiri-Sverdlov. Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans.
PloS one.
2014; 9(10):e110758. doi:
10.1371/journal.pone.0110758
. [PMID: 25356831] - V Conway, P Couture, C Richard, S F Gauthier, Y Pouliot, B Lamarche. Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2013 Dec; 23(12):1255-62. doi:
10.1016/j.numecd.2013.03.003
. [PMID: 23786821] - M C G J Brouwers, R J Konrad, T M van Himbergen, A Isaacs, S Otokozawa, J S Troutt, E J Schaefer, M M J van Greevenbroek, A F H Stalenhoef, J de Graaf. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2013 Nov; 23(11):1115-21. doi:
10.1016/j.numecd.2012.11.008
. [PMID: 23333725] - Alyse S Goldberg, Marianne K DeGorter, Matthew R Ban, Richard B Kim, Robert A Hegele. Efficacy and plasma drug concentrations with nondaily dosing of rosuvastatin.
The Canadian journal of cardiology.
2013 Aug; 29(8):915-9. doi:
10.1016/j.cjca.2012.12.015
. [PMID: 23465343] - Kenya Nasu, Mitsuyasu Terashima, Maoto Habara, Euihong Ko, Tsuyoshi Ito, Daisuke Yokota, Shuichi Ishizuka, Tairo Kurita, Masashi Kimura, Yoshihisa Kinoshita, Yasushi Asakura, Etsuo Tsuchikane, Osamu Katoh, Takahiko Suzuki. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography.
JACC. Cardiovascular interventions.
2013 Jul; 6(7):746-55. doi:
10.1016/j.jcin.2013.02.018
. [PMID: 23769651] - Olga Renner, Dieter Lütjohann, Dominique Richter, André Strohmeyer, Silke Schimmel, Oliver Müller, Eduard F Stange, Simone Harsch. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease.
BMC gastroenterology.
2013 Feb; 13(?):30. doi:
10.1186/1471-230x-13-30
. [PMID: 23406058] - Artyom Kopp. Evolutionary genetics: no coming back from neverland.
Current biology : CB.
2012 Dec; 22(23):R1004-6. doi:
10.1016/j.cub.2012.10.040
. [PMID: 23218006] - Nuntakorn Thongtang, Jianxin Lin, Ernst J Schaefer, Robert S Lowe, Joanne E Tomassini, Arvind K Shah, Andrew M Tershakovec. Effects of ezetimibe added to statin therapy on markers of cholesterol absorption and synthesis and LDL-C lowering in hyperlipidemic patients.
Atherosclerosis.
2012 Dec; 225(2):388-96. doi:
10.1016/j.atherosclerosis.2012.09.001
. [PMID: 23040830] - S Matysik, H H Klünemann, G Schmitz. Gas chromatography-tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors.
Clinical chemistry.
2012 Nov; 58(11):1557-64. doi:
10.1373/clinchem.2012.189605
. [PMID: 22997279] - Kozo Okada, Noriaki Iwahashi, Tsutomu Endo, Hideo Himeno, Kazuki Fukui, Shunichi Kobayashi, Makoto Shimizu, Yuji Iwasawa, Yukiko Morita, Atsushi Wada, Tomohiko Shigemasa, Yasuyuki Mochida, Tomoaki Shimizu, Reimin Sawada, Kazuaki Uchino, Satoshi Umemura, Kazuo Kimura. Long-term effects of ezetimibe-plus-statin therapy on low-density lipoprotein cholesterol levels as compared with double-dose statin therapy in patients with coronary artery disease.
Atherosclerosis.
2012 Oct; 224(2):454-6. doi:
10.1016/j.atherosclerosis.2012.07.036
. [PMID: 22892323] - D S MacKay, P Jones. Limitations of lathosterol to plant sterol ratios and serum plant sterols as surrogate markers for cholesterol absorption during plant sterol supplementation.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2012 Sep; 22(9):e21. doi:
10.1016/j.numecd.2011.11.007
. [PMID: 22795297] - Cheng-Xian Guo, Qi Pei, Ji-Ye Yin, Xiang-Dong Peng, Bo-Ting Zhou, Ying-Chun Zhao, Lan-Xiang Wu, Xiang-Guang Meng, Guo Wang, Qing Li, Dong-Sheng Ouyang, Zhao-Qian Liu, Wei Zhang, Hong-Hao Zhou. Effects of Ginkgo biloba extracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices.
Xenobiotica; the fate of foreign compounds in biological systems.
2012 Aug; 42(8):784-90. doi:
10.3109/00498254.2012.661100
. [PMID: 22381135] - Gero P Hooff, W Gibson Wood, Ji-Hyun Kim, Urule Igbavboa, Wei-Yi Ong, Walter E Muller, Gunter P Eckert. Brain isoprenoids farnesyl pyrophosphate and geranylgeranyl pyrophosphate are increased in aged mice.
Molecular neurobiology.
2012 Aug; 46(1):179-85. doi:
10.1007/s12035-012-8285-6
. [PMID: 22692983] - Jeffrey G McDonald, Daniel D Smith, Ashlee R Stiles, David W Russell. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma.
Journal of lipid research.
2012 Jul; 53(7):1399-409. doi:
10.1194/jlr.d022285
. [PMID: 22517925] - Graziana Lupattelli, Donatella Siepi, Stefano De Vuono, Anna Rita Roscini, Federica Crisanti, Domenico Covelli, Matteo Pirro, Elmo Mannarino. Cholesterol metabolism differs after statin therapy according to the type of hyperlipemia.
Life sciences.
2012 Jun; 90(21-22):846-50. doi:
10.1016/j.lfs.2012.03.038
. [PMID: 22554491] - Kyrill S Rogacev, Tobias Pinsdorf, Oliver Weingärtner, Markus K Gerhart, Elena Welzel, Kai van Bentum, Julius Popp, Andreas Menzner, Danilo Fliser, Dieter Lütjohann, Gunnar H Heine. Cholesterol synthesis, cholesterol absorption, and mortality in hemodialysis patients.
Clinical journal of the American Society of Nephrology : CJASN.
2012 Jun; 7(6):943-8. doi:
10.2215/cjn.05170511
. [PMID: 22461539] - Nina Gårevik, Cristine Skogastierna, Anders Rane, Lena Ekström. Single dose testosterone increases total cholesterol levels and induces the expression of HMG CoA reductase.
Substance abuse treatment, prevention, and policy.
2012 Mar; 7(?):12. doi:
10.1186/1747-597x-7-12
. [PMID: 22433938] - Caroline Richard, Patrick Couture, Sophie Desroches, Suzanne Benjannet, Nabil G Seidah, Alice H Lichtenstein, Benoît Lamarche. Effect of the Mediterranean diet with and without weight loss on surrogate markers of cholesterol homeostasis in men with the metabolic syndrome.
The British journal of nutrition.
2012 Mar; 107(5):705-11. doi:
10.1017/s0007114511003436
. [PMID: 21787450] - G Lupattelli, M Pirro, D Siepi, M R Mannarino, A R Roscini, G Vaudo, L Pasqualini, G Schillaci, E Mannarino. Non-cholesterol sterols in different forms of primary hyperlipemias.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2012 Mar; 22(3):231-6. doi:
10.1016/j.numecd.2010.05.010
. [PMID: 20708389] - A Besga, A Cedazo-Minguez, I Kåreholt, A Solomon, I Björkhem, B Winblad, V Leoni, B Hooshmand, G Spulber, A Gonzalez-Pinto, M Kivipelto, L O Wahlund. Differences in brain cholesterol metabolism and insulin in two subgroups of patients with different CSF biomarkers but similar white matter lesions suggest different pathogenic mechanisms.
Neuroscience letters.
2012 Feb; 510(2):121-6. doi:
10.1016/j.neulet.2012.01.017
. [PMID: 22281444] - Graziana Lupattelli, Matteo Pirro, Massimo R Mannarino, Donatella Siepi, Anna R Roscini, Giuseppe Schillaci, Elmo Mannarino. Visceral fat positively correlates with cholesterol synthesis in dyslipidaemic patients.
European journal of clinical investigation.
2012 Feb; 42(2):164-70. doi:
10.1111/j.1365-2362.2011.02572.x
. [PMID: 21793822] - Veerle Bieghs, Fons Verheyen, Patrick J van Gorp, Tim Hendrikx, Kristiaan Wouters, Dieter Lütjohann, Marion J J Gijbels, Maria Febbraio, Christoph J Binder, Marten H Hofker, Ronit Shiri-Sverdlov. Internalization of modified lipids by CD36 and SR-A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells.
PloS one.
2012; 7(3):e34378. doi:
10.1371/journal.pone.0034378
. [PMID: 22470565] - Gavin Tansley, Daniel T Holmes, Dieter Lütjohann, Elizabeth Head, Cheryl L Wellington. Sterol lipid metabolism in down syndrome revisited: down syndrome is associated with a selective reduction in serum brassicasterol levels.
Current gerontology and geriatrics research.
2012; 2012(?):179318. doi:
10.1155/2012/179318
. [PMID: 22649448] - Kotaro Nochioka, Shin-ichi Tanaka, Masanobu Miura, Do E Zhulanqiqige, Yoshihiro Fukumoto, Nobuyuki Shiba, Hiroaki Shimokawa. Ezetimibe improves endothelial function and inhibits Rho-kinase activity associated with inhibition of cholesterol absorption in humans.
Circulation journal : official journal of the Japanese Circulation Society.
2012; 76(8):2023-30. doi:
10.1253/circj.cj-12-0331
. [PMID: 22640986] - Mikio Fukushima, Shin-ichiro Miura, Ryoko Mitsutake, Takao Fukushima, Katsuhiko Fukushima, Keijiro Saku. Cholesterol metabolism in patients with hemodialysis in the presence or absence of coronary artery disease.
Circulation journal : official journal of the Japanese Circulation Society.
2012; 76(8):1980-6. doi:
10.1253/circj.cj-11-1302
. [PMID: 22664756] - Noboru Tamaki, Hiroaki Ueno, Yuta Morinaga, Tomomi Shiiya, Masamitsu Nakazato. Ezetimibe ameliorates atherosclerotic and inflammatory markers, atherogenic lipid profiles, insulin sensitivity, and liver dysfunction in Japanese patients with hypercholesterolemia.
Journal of atherosclerosis and thrombosis.
2012; 19(6):532-8. doi:
10.5551/jat.10835
. [PMID: 22353686] - Guenther Silbernagel, Dieter Lütjohann, Juergen Machann, Sabrina Meichsner, Konstantinos Kantartzis, Fritz Schick, Hans-Ulrich Häring, Norbert Stefan, Andreas Fritsche. Cholesterol synthesis is associated with hepatic lipid content and dependent on fructose/glucose intake in healthy humans.
Experimental diabetes research.
2012; 2012(?):361863. doi:
10.1155/2012/361863
. [PMID: 22203835] - David Saraiva, Rute Semedo, Maria da Conceição Castilho, José Manuel Silva, Fernando Ramos. Selection of the derivatization reagent--the case of human blood cholesterol, its precursors and phytosterols GC-MS analyses.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Dec; 879(32):3806-11. doi:
10.1016/j.jchromb.2011.10.021
. [PMID: 22088355] - C Gälman, B Angelin, M Rudling. Pronounced variation in bile acid synthesis in humans is related to gender, hypertriglyceridaemia and circulating levels of fibroblast growth factor 19.
Journal of internal medicine.
2011 Dec; 270(6):580-8. doi:
10.1111/j.1365-2796.2011.02466.x
. [PMID: 22003820] - Eric J Niesor, Evelyne Chaput, Andreas Staempfli, Denise Blum, Michael Derks, David Kallend. Effect of dalcetrapib, a CETP modulator, on non-cholesterol sterol markers of cholesterol homeostasis in healthy subjects.
Atherosclerosis.
2011 Dec; 219(2):761-7. doi:
10.1016/j.atherosclerosis.2011.09.017
. [PMID: 21982411] - Matthew G K Benesch, David A Mannock, Ruthven N A H Lewis, Ronald N McElhaney. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
Biochemistry.
2011 Nov; 50(46):9982-97. doi:
10.1021/bi200721j
. [PMID: 21951051] - Pathmaja Paramsothy, Robert H Knopp, Steven E Kahn, Barbara M Retzlaff, Brian Fish, Lina Ma, Richard E Ostlund. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity.
The American journal of clinical nutrition.
2011 Nov; 94(5):1182-8. doi:
10.3945/ajcn.110.006668
. [PMID: 21940599] - G Lupattelli, S De Vuono, E Mannarino. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2011 Sep; 21(9):620-7. doi:
10.1016/j.numecd.2011.04.010
. [PMID: 21855307] - M Cofán, V Escurriol, A L García-Otín, C Moreno-Iribas, N Larrañaga, M J Sánchez, M J Tormo, M L Redondo, C A González, D Corella, M Pocoví, F Civeira, E Ros. Association of plasma markers of cholesterol homeostasis with metabolic syndrome components. A cross-sectional study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2011 Sep; 21(9):651-7. doi:
10.1016/j.numecd.2010.01.005
. [PMID: 20554170] - Marie-Ève Labonté, Patrick Couture, Paul Paquin, Yvan Chouinard, Simone Lemieux, Benoît Lamarche. Comparison of the impact of trans fatty acids from ruminant and industrial sources on surrogate markers of cholesterol homeostasis in healthy men.
Molecular nutrition & food research.
2011 Sep; 55 Suppl 2(?):S241-7. doi:
10.1002/mnfr.201000492
. [PMID: 21656668] - Oliver Weingärtner, Dieter Lütjohann, Tim Vanmierlo, Stephanie Müller, Laureen Günther, Wolfgang Herrmann, Michael Böhm, Ulrich Laufs, Markus Herrmann. Markers of enhanced cholesterol absorption are a strong predictor for cardiovascular diseases in patients without diabetes mellitus.
Chemistry and physics of lipids.
2011 Sep; 164(6):451-6. doi:
10.1016/j.chemphyslip.2011.03.008
. [PMID: 21501602] - Maarit Hallikainen, Sudhir Kurl, Markku Laakso, Tatu A Miettinen, Helena Gylling. Plant stanol esters lower LDL cholesterol level in statin-treated subjects with type 1 diabetes by interfering the absorption and synthesis of cholesterol.
Atherosclerosis.
2011 Aug; 217(2):473-8. doi:
10.1016/j.atherosclerosis.2011.03.041
. [PMID: 21514589] - Oliver Weingärtner, Christof Ulrich, Dieter Lütjohann, Kenan Ismail, Stephan H Schirmer, Tim Vanmierlo, Michael Böhm, Ulrich Laufs. Differential effects on inhibition of cholesterol absorption by plant stanol and plant sterol esters in apoE-/- mice.
Cardiovascular research.
2011 Jun; 90(3):484-92. doi:
10.1093/cvr/cvr020
. [PMID: 21257611] - Davide Noto, Angelo B Cefalù, Giacoma Barraco, Francesca Fayer, Mariangela Minà, Pin Yue, Patrizia Tarugi, Gustav Schonfeld, Maurizio R Averna. Plasma non-cholesterol sterols in primary hypobetalipoproteinemia.
Atherosclerosis.
2011 Jun; 216(2):409-13. doi:
10.1016/j.atherosclerosis.2010.10.050
. [PMID: 21492858] - O Guardamagna, F Abello, V Baracco, G Federici, P Bertucci, A Mozzi, L Mannucci, A Gnasso, C Cortese. Primary hyperlipidemias in children: effect of plant sterol supplementation on plasma lipids and markers of cholesterol synthesis and absorption.
Acta diabetologica.
2011 Jun; 48(2):127-33. doi:
10.1007/s00592-010-0233-1
. [PMID: 21057823] - Tim Vanmierlo, Kris Rutten, Leonie C van Vark-van der Zee, Silvia Friedrichs, Vincent W Bloks, Arjan Blokland, Frans C Ramaekers, Eric Sijbrands, Harry Steinbusch, Jos Prickaerts, Folkert Kuipers, Dieter Lütjohann, Monique Mulder. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice.
Plant foods for human nutrition (Dordrecht, Netherlands).
2011 Jun; 66(2):149-56. doi:
10.1007/s11130-011-0219-3
. [PMID: 21431910] - Reijo S Tilvis, Jaakko N Valvanne, Timo E Strandberg, Tatu A Miettinen. Prognostic significance of serum cholesterol, lathosterol, and sitosterol in old age; a 17-year population study.
Annals of medicine.
2011 Jun; 43(4):292-301. doi:
10.3109/07853890.2010.546363
. [PMID: 21254906] - V Leoni, C Mariotti, L Nanetti, E Salvatore, F Squitieri, A R Bentivoglio, M Bandettini di Poggio, M Bandettini Del Poggio, S Piacentini, D Monza, M Valenza, E Cattaneo, S Di Donato. Whole body cholesterol metabolism is impaired in Huntington's disease.
Neuroscience letters.
2011 May; 494(3):245-9. doi:
10.1016/j.neulet.2011.03.025
. [PMID: 21406216] - P Vyroubal, R Hyspler, A Tichá, J Samek, J Cerman, E Havel, J Bajnárek, Z Zadák. [Disturbance of synthesis of cholesterol and its precursors in clinically serious conditions].
Vnitrni lekarstvi.
2011 May; 57(5):441-50. doi:
. [PMID: 21695924]
- Kazuhiro Hojo, Hideki Hakamata, Fumiyo Kusu. Simultaneous determination of serum lathosterol and cholesterol by semi-micro high-performance liquid chromatography with electrochemical detection.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2011 Apr; 879(11-12):751-5. doi:
10.1016/j.jchromb.2011.02.017
. [PMID: 21398191] - Isabel De Castro-Orós, Sandra Pampín, Montserrat Cofán, Pilar Mozas, Xavier Pintó, Jordi Salas-Salvadó, Jose C Rodríguez-Rey, Emilio Ros, Fernando Civeira, Miguel Pocoví. Promoter variant -204A > C of the cholesterol 7α-hydroxylase gene: association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells.
Clinical nutrition (Edinburgh, Scotland).
2011 Apr; 30(2):239-46. doi:
10.1016/j.clnu.2010.07.020
. [PMID: 20884100] - T A Miettinen, M Nissinen, M Lepäntalo, A Albäck, M Railo, P Vikatmaa, M Kaste, S Mustanoja, H Gylling. Non-cholesterol sterols in serum and endarterectomized carotid arteries after a short-term plant stanol and sterol ester challenge.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2011 Mar; 21(3):182-8. doi:
10.1016/j.numecd.2009.09.006
. [PMID: 20096545] - André J Tremblay, Benoît Lamarche, Valéry Lemelin, Lizbeth Hoos, Suzanne Benjannet, Nabil G Seidah, Harry R Davis, Patrick Couture. Atorvastatin increases intestinal expression of NPC1L1 in hyperlipidemic men.
Journal of lipid research.
2011 Mar; 52(3):558-65. doi:
10.1194/jlr.m011080
. [PMID: 21123766] - Danni Cheng, Andrew M Jenner, Guanghou Shui, Wei Fun Cheong, Todd W Mitchell, Jessica R Nealon, Woojin S Kim, Heather McCann, Markus R Wenk, Glenda M Halliday, Brett Garner. Lipid pathway alterations in Parkinson's disease primary visual cortex.
PloS one.
2011 Feb; 6(2):e17299. doi:
10.1371/journal.pone.0017299
. [PMID: 21387008] - Robert J Konrad, Jason S Troutt, Guoqing Cao. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents.
Lipids in health and disease.
2011 Feb; 10(?):38. doi:
10.1186/1476-511x-10-38
. [PMID: 21352602] - Estelle Wolff, Marie-France Vergnes, Catherine Defoort, Richard Planells, Henri Portugal, Alain Nicolay, Denis Lairon. Cholesterol absorption status and fasting plasma cholesterol are modulated by the microsomal triacylglycerol transfer protein -493 G/T polymorphism and the usual diet in women.
Genes & nutrition.
2011 Feb; 6(1):71-9. doi:
10.1007/s12263-010-0174-x
. [PMID: 21437032]