Mesoridazine (BioDeep_00000001491)

 

Secondary id: BioDeep_00000405894

human metabolite blood metabolite Chemicals and Drugs natural product


代谢物信息卡片


2-Methanesulphinyl-10-[2-(1-methyl-piperidin-2-yl)-ethyl]-10H-phenothiazine

化学式: C21H26N2OS2 (386.1486)
中文名称: 美索哒嗪
谱图信息: 最多检出来源 Homo sapiens(blood) 48.33%

分子结构信息

SMILES: CN1CCCCC1CCN1C2=CC=CC=C2SC2=C1C=C(C=C2)S(C)=O
InChI: InChI=1S/C21H26N2OS2/c1-22-13-6-5-7-16(22)12-14-23-18-8-3-4-9-20(18)25-21-11-10-17(26(2)24)15-19(21)23/h3-4,8-11,15-16H,5-7,12-14H2,1-2H3

描述信息

Mesoridazine is only found in individuals that have used or taken this drug. It is a phenothiazine antipsychotic with effects similar to chlorpromazine. [PubChem]Based upon animal studies, mesoridazine, as with other phenothiazines, acts indirectly on reticular formation, whereby neuronal activity into reticular formation is reduced without affecting its intrinsic ability to activate the cerebral cortex. In addition, the phenothiazines exhibit at least part of their activities through depression of hypothalamic centers. Neurochemically, the phenothiazines are thought to exert their effects by a central adrenergic blocking action.
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AC - Phenothiazines with piperidine structure
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants
C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

同义名列表

21 个代谢物同义名

2-Methanesulphinyl-10-[2-(1-methyl-piperidin-2-yl)-ethyl]-10H-phenothiazine; 2-Methanesulfinyl-10-[2-(1-methyl-piperidin-2-yl)-ethyl]-10H-phenothiazine; 2-methanesulfinyl-10-[2-(1-methylpiperidin-2-yl)ethyl]-10H-phenothiazine; 10-(2(1-Methyl-2-piperidyl)ethyl)-2-(methylsulphinyl)phenothiazine; 10-(2-(1-Methyl-2-piperidyl)ethyl)-2-methylsulphinyl phenothiazine; 10-(2-(1-Methyl-2-piperidyl)ethyl)-2-methylsulfinyl phenothiazine; 10-(2(1-Methyl-2-piperidyl)ethyl)-2-(methylsulfinyl)phenothiazine; Thioridazine thiomethyl sulphoxide; Thioridazien thiomethyl sulfoxide; Thioridazine monosulfoxide analog; Thioridazine thiomethyl sulfoxide; Thioridazine-2-sulphoxide; Thioridazine-2-sulfoxide; Mesoridazinum; mesoridazine; Mesoridazina; Serentil; Lidanar; TPS-23; TPS23; Mesoridazine



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AXIN2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, FDPS, GJA1, GRK2, NOX3, NOX4, RPL22
Endoplasmic reticulum membrane 9 CYBB, CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, GJA1, NOX4, NOX5
Nucleus 4 AXIN2, GJA1, NOX4, RPL22
cytosol 5 AXIN2, FDPS, GJA1, GRK2, RPL22
dendrite 3 CYBB, DRD2, HTR2C
phagocytic vesicle 1 CYBB
centrosome 1 AXIN2
nucleoplasm 2 FDPS, GJA1
Cell membrane 10 CYBB, DRD2, GJA1, GRK2, HTR2C, KCNH2, NOX1, NOX3, NOX4, NOX5
Multi-pass membrane protein 9 CYBB, DRD2, GJA1, HTR2C, KCNH2, NOX1, NOX3, NOX4, NOX5
Golgi apparatus membrane 1 DRD2
Synapse 3 DRD2, GRK2, HTR2C
cell junction 1 GJA1
cell surface 1 KCNH2
glutamatergic synapse 2 DRD2, RPL22
Golgi apparatus 2 ATRN, GJA1
Golgi membrane 2 DRD2, GJA1
neuronal cell body 1 CYBB
postsynapse 1 GRK2
presynaptic membrane 1 DRD2
Presynapse 2 GRK2, RPL22
acrosomal vesicle 1 DRD2
plasma membrane 14 ATRN, AXIN2, CYBB, CYP2C19, CYP2C9, DRD2, GJA1, GRK2, HTR2C, KCNH2, NOX1, NOX3, NOX4, NOX5
synaptic vesicle membrane 1 DRD2
Membrane 9 CYBB, CYP2D6, CYP3A4, FDPS, GRK2, KCNH2, NOX1, NOX4, NOX5
apical plasma membrane 1 GJA1
axon 1 DRD2
extracellular exosome 3 ATRN, NOX3, RPL22
endoplasmic reticulum 4 CYP2D6, GJA1, NOX4, NOX5
extracellular space 2 ATRN, TG
perinuclear region of cytoplasm 2 KCNH2, NOX4
gap junction 1 GJA1
intercalated disc 1 GJA1
mitochondrion 3 CYP2D6, GJA1, NOX4
intracellular membrane-bounded organelle 6 CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, GJA1
Microsome membrane 4 CYP1A2, CYP2C9, CYP2D6, CYP3A4
Single-pass type I membrane protein 1 ATRN
Secreted 1 TG
extracellular region 1 TG
Single-pass membrane protein 1 CYP2D6
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 1 FDPS
anchoring junction 1 NOX1
ciliary membrane 1 DRD2
dendritic spine 1 DRD2
perikaryon 1 DRD2
beta-catenin destruction complex 1 AXIN2
nucleolus 1 NOX4
Early endosome 1 NOX1
postsynaptic membrane 1 DRD2
Cytoplasm, perinuclear region 1 NOX4
Membrane raft 1 GJA1
Cell junction, focal adhesion 1 NOX4
focal adhesion 3 GJA1, NOX4, RPL22
GABA-ergic synapse 1 DRD2
Peroxisome 1 FDPS
Cell junction, gap junction 1 GJA1
connexin complex 1 GJA1
contractile muscle fiber 1 GJA1
fascia adherens 1 GJA1
intermediate filament 1 GJA1
lateral plasma membrane 2 DRD2, GJA1
cilium 2 DRD2, GRK2
cell projection 1 NOX1
phagocytic vesicle membrane 1 CYBB
[Isoform 5]: Cytoplasm 1 NOX4
Nucleus, nucleolus 1 NOX4
non-motile cilium 1 DRD2
[Isoform 3]: Secreted 1 ATRN
sperm flagellum 1 DRD2
nuclear envelope 1 CYBB
monoatomic ion channel complex 2 CYBB, KCNH2
specific granule membrane 1 CYBB
tertiary granule membrane 1 CYBB
Golgi-associated vesicle membrane 1 GJA1
[Isoform 3]: Cytoplasm 1 NOX4
inward rectifier potassium channel complex 1 KCNH2
voltage-gated potassium channel complex 1 KCNH2
axon terminus 1 DRD2
endocytic vesicle 1 DRD2
tight junction 1 GJA1
perinuclear endoplasmic reticulum 2 CYBB, NOX4
ribonucleoprotein complex 1 RPL22
[Isoform 1]: Cell membrane 1 ATRN
dopaminergic synapse 1 DRD2
cytosolic ribosome 1 RPL22
[Isoform 4]: Nucleus 1 NOX4
cell-cell contact zone 1 GJA1
ribosome 1 RPL22
NADPH oxidase complex 5 CYBB, NOX1, NOX3, NOX4, NOX5
cytosolic large ribosomal subunit 1 RPL22
Cell projection, invadopodium membrane 1 NOX1
[Isoform 6]: Cytoplasm 1 NOX4
G protein-coupled receptor complex 1 DRD2
cytoplasmic side of mitochondrial outer membrane 1 GRK2
G protein-coupled serotonin receptor complex 1 HTR2C
[Isoform v2]: Endoplasmic reticulum 1 NOX5
[Isoform v5]: Endoplasmic reticulum 1 NOX5


文献列表

  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Sungwoo Hyung, Wonji Pyeon, Ji Eun Park, Yoo-Kyung Song, Suk-Jae Chung. The conditional stimulation of rat organic cation transporter 2, but not its human ortholog, by mesoridazine: the possibility of the involvement of the high-affinity binding site of the transporter in the stimulation. The Journal of pharmacy and pharmacology. 2017 Nov; 69(11):1513-1523. doi: 10.1111/jphp.12799. [PMID: 28809437]
  • So Hee Im, Myoung Joo Park, Hyewon Seo, Sung Heum Choi, Sang Kyum Kim, Sung-Hoon Ahn. Determination of mesoridazine by liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic study in rats. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2014 May; 958(?):117-23. doi: 10.1016/j.jchromb.2014.03.020. [PMID: 24732149]
  • Ana M Chamoun-Emanuelli, Eve-Isabelle Pecheur, Rudo L Simeon, Da Huang, Paul S Cremer, Zhilei Chen. Phenothiazines inhibit hepatitis C virus entry, likely by increasing the fluidity of cholesterol-rich membranes. Antimicrobial agents and chemotherapy. 2013 Jun; 57(6):2571-81. doi: 10.1128/aac.02593-12. [PMID: 23529728]
  • R Miller. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part II. Current neuropharmacology. 2009 Dec; 7(4):315-30. doi: 10.2174/157015909790031184. [PMID: 20514211]
  • Pedro Dorado, Eva M Peñas-LLedó, Alfredo de la Rubia, Adrián LLerena. Relevance of CYP2D6 -1584C>G polymorphism for thioridazine:mesoridazine plasma concentration ratio in psychiatric patients. Pharmacogenomics. 2009 Jul; 10(7):1083-9. doi: 10.2217/pgs.09.57. [PMID: 19604081]
  • Zenichiro Kato, Mitsuhiro Nakamura, Yuka Yamagishi, Takahide Teramoto, Naomi Kondo. Pediatric thioridazine poisoning as a result of a pharmacy compounding error. Pediatric reports. 2009 Jun; 1(1):e9. doi: 10.4081/pr.2009.e9. [PMID: 21589825]
  • Hong Wan, Madeleine Ahman, Anders G Holmén. Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs. Journal of medicinal chemistry. 2009 Mar; 52(6):1693-700. doi: 10.1021/jm801441s. [PMID: 19256501]
  • R H K Thanacoody, A K Daly, J G Reilly, I N Ferrier, S H L Thomas. Factors affecting drug concentrations and QT interval during thioridazine therapy. Clinical pharmacology and therapeutics. 2007 Nov; 82(5):555-65. doi: 10.1038/sj.clpt.6100195. [PMID: 17460606]
  • I S M Salih, R H K Thanacoody, G A McKay, S H L Thomas. Comparison of the effects of thioridazine and mesoridazine on the QT interval in healthy adults after single oral doses. Clinical pharmacology and therapeutics. 2007 Nov; 82(5):548-54. doi: 10.1038/sj.clpt.6100194. [PMID: 17410120]
  • Pedro Dorado, Roland Berecz, Eva M Peñas-Lledó, Alfredo de la Rubia, Adrián Llerena. No effect of the CYP1A2*1F genotype on thioridazine, mesoridazine, sulforidazine plasma concentrations in psychiatric patients. European journal of clinical pharmacology. 2007 May; 63(5):527-8. doi: 10.1007/s00228-007-0284-6. [PMID: 17345072]
  • James T Limberis, Zhi Su, Bryan F Cox, Gary A Gintant, Ruth L Martin. Altering extracellular potassium concentration does not modulate drug block of human ether-a-go-go-related gene (hERG) channels. Clinical and experimental pharmacology & physiology. 2006 Nov; 33(11):1059-65. doi: 10.1111/j.1440-1681.2006.04487.x. [PMID: 17042915]
  • Stephen R Marder, Susan M Essock, Alexander L Miller, Robert W Buchanan, Daniel E Casey, John M Davis, John M Kane, Jeffrey A Lieberman, Nina R Schooler, Nancy Covell, Scott Stroup, Ellen M Weissman, Donna A Wirshing, Catherine S Hall, Leonard Pogach, Xavier Pi-Sunyer, J Thomas Bigger, Alan Friedman, David Kleinberg, Steven J Yevich, Bonnie Davis, Steven Shon. Physical health monitoring of patients with schizophrenia. The American journal of psychiatry. 2004 Aug; 161(8):1334-49. doi: 10.1176/appi.ajp.161.8.1334. [PMID: 15285957]
  • Zhi Su, Ruth Martin, Bryan F Cox, Gary Gintant. Mesoridazine: an open-channel blocker of human ether-a-go-go-related gene K+ channel. Journal of molecular and cellular cardiology. 2004 Jan; 36(1):151-60. doi: 10.1016/j.yjmcc.2003.10.017. [PMID: 14734057]
  • Roland Berecz, Alfredo de la Rubia, Pedro Dorado, Pedro Fernández-Salguero, Marja-Liisa Dahl, Adrián LLerena. Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. European journal of clinical pharmacology. 2003 May; 59(1):45-50. doi: 10.1007/s00228-003-0576-4. [PMID: 12682803]
  • A LLerena, R Berecz, A de la Rubia, P Fernández-Salguero, P Dorado. Effect of thioridazine dosage on the debrisoquine hydroxylation phenotype in psychiatric patients with different CYP2D6 genotypes. Therapeutic drug monitoring. 2001 Dec; 23(6):616-20. doi: 10.1097/00007691-200112000-00004. [PMID: 11802093]
  • L Rauser, J E Savage, H Y Meltzer, B L Roth. Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. The Journal of pharmacology and experimental therapeutics. 2001 Oct; 299(1):83-9. doi: . [PMID: 11561066]
  • L Amaral, J E Kristiansen, M Viveiros, J Atouguia. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. The Journal of antimicrobial chemotherapy. 2001 May; 47(5):505-11. doi: 10.1093/jac/47.5.505. [PMID: 11328759]
  • J A Carrillo, S I Ramos, A G Herraiz, A Llerena, J A Agundez, R Berecz, M Duran, J Benítez. Pharmacokinetic interaction of fluvoxamine and thioridazine in schizophrenic patients. Journal of clinical psychopharmacology. 1999 Dec; 19(6):494-9. doi: 10.1097/00004714-199912000-00002. [PMID: 10587283]
  • W A Daniel, M Syrek, A Mach, J Wójcikowski, J Boksa. Pharmacokinetics of thioridazine and its metabolites in blood plasma and the brain of rats after acute and chronic treatment. Polish journal of pharmacology. 1997 Nov; 49(6):439-52. doi: NULL. [PMID: 9566048]
  • C B Eap, T W Guentert, M Schãublin-Loidl, M Stabl, L Koeb, K Powell, P Baumann. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clinical pharmacology and therapeutics. 1996 Mar; 59(3):322-31. doi: 10.1016/s0009-9236(96)80010-5. [PMID: 8653995]
  • G Lin, E M Hawes, G McKay, E D Korchinski, K K Midha. The metabolism of piperidine-type phenothiazine antipsychotic agents. III. Mesoridazine in dog, human and rat. Xenobiotica; the fate of foreign compounds in biological systems. 1993 Jan; 23(1):37-52. doi: 10.3109/00498259309059360. [PMID: 8097900]
  • C B Eap, A Souche, L Koeb, P Baumann. Light-induced racemization: artifacts in the analysis of the diastereoisomeric pairs of thioridazine 5-sulfoxide in the plasma and urine of patients treated with thioridazine. Therapeutic drug monitoring. 1991 Jul; 13(4):356-62. doi: . [PMID: 1780970]
  • C von Bahr, G Movin, C Nordin, A Lidén, M Hammarlund-Udenaes, A Hedberg, H Ring, F Sjöqvist. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clinical pharmacology and therapeutics. 1991 Mar; 49(3):234-40. doi: 10.1038/clpt.1991.22. [PMID: 2007317]
  • B S Chakraborty, K K Midha, G McKay, E M Hawes, J W Hubbard, E D Korchinski, M G Choc, W T Robinson. Single dose kinetics of thioridazine and its two psychoactive metabolites in healthy humans: a dose proportionality study. Journal of pharmaceutical sciences. 1989 Oct; 78(10):796-801. doi: 10.1002/jps.2600781003. [PMID: 2600782]
  • P A Marrs-Simon, M Zell-Kanter, D L Kendzierski, J B Leikin. Cardiotoxic manifestations of mesoridazine overdose. Annals of emergency medicine. 1988 Oct; 17(10):1074-8. doi: 10.1016/s0196-0644(88)80448-7. [PMID: 3177997]
  • B S Chakraborty, E M Hawes, G McKay, J W Hubbard, E D Korchinski, K K Midha, M G Choc, W T Robinson. S-oxidation of thioridazine to psychoactive metabolites: an oral dose-proportionality study in healthy volunteers. Drug metabolism and drug interactions. 1988; 6(3-4):425-37. doi: 10.1515/dmdi.1988.6.3-4.425. [PMID: 3271648]
  • M L Rao, W A Brown, R Wagner. Radioreceptor assay and high-performance liquid chromatography yield similar results for serum thioridazine and its major metabolites. Therapeutic drug monitoring. 1988; 10(2):184-7. doi: 10.1097/00007691-198802000-00012. [PMID: 3381236]
  • B S Chakraborty, E M Hawes, K K Midha. Development of a radioimmunoassay procedure for mesoridazine and its comparison with a high-performance liquid chromatographic method. Therapeutic drug monitoring. 1987 Dec; 9(4):464-71. doi: 10.1097/00007691-198712000-00018. [PMID: 3424415]
  • B S Chakraborty, M S Sardessai, T J Jaworski, K K Midha, E M Hawes. Synthesis and properties of haptens for the development of radioimmunoassays for thioridazine, mesoridazine, and sulforidazine. Pharmaceutical research. 1987 Jun; 4(3):207-13. doi: 10.1023/a:1016451926984. [PMID: 3509283]
  • R M Greendyke, D R Kanter. Plasma propranolol levels and their effect on plasma thioridazine and haloperidol concentrations. Journal of clinical psychopharmacology. 1987 Jun; 7(3):178-82. doi: NULL. [PMID: 3597804]
  • A S Papadopoulos, J L Crammer. Sulphoxide metabolites of thioridazine in man. Xenobiotica; the fate of foreign compounds in biological systems. 1986 Dec; 16(12):1097-107. doi: 10.3109/00498258609038987. [PMID: 3798957]
  • A S Papadopoulos, J L Crammer, D A Cowan. Phenolic metabolites of thioridazine in man. Xenobiotica; the fate of foreign compounds in biological systems. 1985 Apr; 15(4):309-16. doi: 10.3109/00498258509045365. [PMID: 4024665]
  • R C Smith, R Baumgartner, G K Ravichandran, A Shvartsburd, J C Schoolar, P Allen, R Johnson. Plasma and red cell levels of thioridazine and clinical response in schizophrenia. Psychiatry research. 1984 Aug; 12(4):287-96. doi: 10.1016/0165-1781(84)90045-3. [PMID: 6594712]
  • E C Dinovo, H Pollak, L A Gottschalk. Partitioning of thioridazine and mesoridazine in human blood fractions. Methods and findings in experimental and clinical pharmacology. 1984 Mar; 6(3):143-6. doi: NULL. [PMID: 6748818]
  • A Shvartsburd, V Nwokeafor, R C Smith. Red blood cell and plasma levels of thioridazine and mesoridazine in schizophrenic patients. Psychopharmacology. 1984; 82(1-2):55-61. doi: 10.1007/bf00426381. [PMID: 6420831]
  • C E Wells, E C Juenge, W B Furman. Simultaneous assay of thioridazine and its major metabolites in plasma at single dosage levels with a novel report of two ring sulfoxides of thioridazine. Journal of pharmaceutical sciences. 1983 Jun; 72(6):622-5. doi: 10.1002/jps.2600720611. [PMID: 6875822]
  • S C Bogema, N Narasimhachari, M Mumtaz, S Goldin, R O Friedel. Separation and quantitation of cis- and trans-thiothixene in human plasma by high-performance liquid chromatography. Journal of chromatography. 1982 Dec; 233(?):257-67. doi: 10.1016/s0378-4347(00)81752-1. [PMID: 7161337]
  • D V Jeste, M Linnoila, R L Wagner, R J Wyatt. Serum neuroleptic concentrations and tardive dyskinesia. Psychopharmacology. 1982; 76(4):377-80. doi: 10.1007/bf00449128. [PMID: 6126895]
  • K Väisänen, M Viukari, R Rimón, P Räisänen. Haloperidol, thioridazine and placebo in mentally subnormal patients-serum levels and clinical effects. Acta psychiatrica Scandinavica. 1981 Mar; 63(3):262-71. doi: 10.1111/j.1600-0447.1981.tb00673.x. [PMID: 7015792]
  • S H Unger, G H Chiang. Octanol-physiological buffer distribution coefficients of lipophilic amines by reversed-phase high-performance liquid chromatography and their correlation with biological activity. Journal of medicinal chemistry. 1981 Mar; 24(3):262-70. doi: 10.1021/jm00135a006. [PMID: 6167716]
  • M Linnoila, M Viukari, K Vaisanen, J Auvinen. Effect of anticonvulsants on plasma haloperidol and thioridazine levels. The American journal of psychiatry. 1980 Jul; 137(7):819-21. doi: 10.1176/ajp.137.7.819. [PMID: 6770696]
  • A S Papadopoulos, T G Chand, J L Crammer, S Lader. A pilot of plasma thioridazine and metabolites in chronically treated patients. The British journal of psychiatry : the journal of mental science. 1980 Jun; 136(?):591-6. doi: 10.1192/bjp.136.6.591. [PMID: 7388266]
  • M Linnolia, M Viukari, K Vaisanen, J Auvinen. Plasma neuroleptic and prolactin levels in mentally retarded patients. Acta pharmacologica et toxicologica. 1980 Feb; 46(2):159-60. doi: 10.1111/j.1600-0773.1980.tb02437.x. [PMID: 6102427]
  • K Väisänen, R Rimón, P Räisänen, M Viukari. A controlled double-blind study of haloperidol versus thioridazine in the treatment of restless mentally subnormal patients. Serum levels and clinical effects. Acta psychiatrica Belgica. 1979 Nov; 79(6):673-85. doi: . [PMID: 554446]
  • K A Freedberg, R B Innis, I Creese, S H Snyder. Antischizophrenic drugs: differential plasma protein binding and therapeutic activity. Life sciences. 1979 Jun; 24(26):2467-73. doi: 10.1016/0024-3205(79)90457-0. [PMID: 39211]
  • I S Forrest, D E Green, A Blum, M T Serra, K O Loeffler. Studies on thioridazine and mesoridazine metabolism. II. In vivo metabolism of tritiated drugs in rhesus monkeys. Communications in psychopharmacology. 1979; 3(5):323-7. doi: NULL. [PMID: 121276]
  • T B Cooper. Plasma level monitoring of antipsychotic drugs. Clinical pharmacokinetics. 1978 Jan; 3(1):14-38. doi: 10.2165/00003088-197803010-00002. [PMID: 25154]
  • L A Gottschalk, E C Dinovo, B R Nandi. The assay of plasma concentration of thioridazine and its metabolites as a function of time. Communications in psychopharmacology. 1978; 2(6):475-9. doi: NULL. [PMID: 747914]
  • A Hulshoff, J H Perrin. Quantitative correlations between albumin binding constants and chromatographic Rm values of phenothiazine derivatives. Journal of medicinal chemistry. 1977 Mar; 20(3):430-9. doi: 10.1021/jm00213a022. [PMID: 576620]
  • E C Dinovo, L A Gottschalk, B R Nandi, P G Geddes. GLC analysis of thioridazine, mesoridazine, and their metabolites. Journal of pharmaceutical sciences. 1976 May; 65(5):667-9. doi: 10.1002/jps.2600650509. [PMID: 932933]
  • L A Gottschalk, E Dinovo, R Bierner. Plasma levels of mesoridazine and its metabolites and clinical response in acute schizophrenia after a single intramuscular drug dose. Psychopharmacology bulletin. 1975 Oct; 11(4):33-4. doi: NULL. [PMID: 812135]
  • W Lindner, R W Frei, W Santi. Combined ultraviolet-fluorescence detection in high-pressure liquid chromatography of pharmaceuticals. Journal of chromatography. 1975 Sep; 111(2):365-71. doi: 10.1016/s0021-9673(00)99286-0. [PMID: 1159014]
  • F A Vandeheeren, F M Belpaire. Albumin binding of thioridazine and some of its metabolites. Archives internationales de pharmacodynamie et de therapie. 1975 Mar; 214(1):86-91. doi: . [PMID: 1171660]
  • L D Gruenke, J C Craig. Identification of a metabolite of thioridazine and mesoridazine from human plasma. Research communications in chemical pathology and pharmacology. 1975 Feb; 10(2):221-5. doi: NULL. [PMID: 1162173]
  • F M Belpaire, F A Vanderheeren, M G Bogaert. Binding of thioridazine and some of its metabolites to human serum protein and human albumin. Arzneimittel-Forschung. 1975; 25(12):1969-71. doi: NULL. [PMID: 1243669]
  • K D Charalampous, P C Johnson, V Estevez. Absorption and excretion of thioridazine and mesoridazine in man. Diseases of the nervous system. 1974 Nov; 35(11):494-6. doi: . [PMID: 17896456]
  • E C Dinovo, L A Gottschalk, E P Noble, R Biener. Isolation of a possible new metabolite of thioridazine and mesoridazine from human plasma. Research communications in chemical pathology and pharmacology. 1974 Mar; 7(3):489-96. doi: NULL. [PMID: 4824823]
  • R M Ritter, P A Tatum. Two studies of the effects of mesoridazine. The Journal of clinical pharmacology and new drugs. 1972 Aug; 12(8):349-55. doi: 10.1002/j.1552-4604.1972.tb00179.x. [PMID: 4560030]