Aurantio-obtusin (BioDeep_00000000360)

 

Secondary id: BioDeep_00000864921, BioDeep_00001867492

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


1,3,7-TRIHYDROXY-2,8-DIMETHOXY-6-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

化学式: C17H14O7 (330.0739)
中文名称: 橙黄决明素
谱图信息: 最多检出来源 Homo sapiens(blood) 96.88%

分子结构信息

SMILES: C12C(OC)=C(O)C(C)=CC=1C(=O)C1=C(C(O)=C(OC)C(O)=C1)C2=O
InChI: InChI=1S/C17H14O7/c1-6-4-7-11(17(24-3)12(6)19)14(21)10-8(13(7)20)5-9(18)16(23-2)15(10)22/h4-5,18-19,22H,1-3H3

描述信息

Aurantio-obtusin is a trihydroxyanthraquinone that is 1,3,7-trihydroxy-9,10-anthraquinone which is by methoxy groups at positions 2 and 8, and by a methyl group at position 6.
Aurantio-obtusin is a natural product found in Senna obtusifolia and Senna tora with data available.
Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].
Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].

同义名列表

8 个代谢物同义名

1,3,7-TRIHYDROXY-2,8-DIMETHOXY-6-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE; 9,10-Anthracenedione, 1,3,7-trihydroxy-2,8-dimethoxy-6-methyl-; 1,3,7-trihydroxy-2,8-dimethoxy-6-methylanthracene-9,10-dione; 1,3,7-Trihydroxy-2,8-dimethoxy-6-methyl-9,10-anthracenedione; 1,3,7-trihydroxy-2,8-dimethoxy-6-methylanthraquinone; Aurantio-obtusin; AURANTIOOBTUSIN; Aurantio-obtusin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

22 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ACSL4, BCL2, NLRP3, PIK3CA, PTGS2, SLC2A2, SREBF1, TFEB, TJP1
Peripheral membrane protein 3 GORASP1, PTGS2, TJP1
Endoplasmic reticulum membrane 4 ACSL4, BCL2, PTGS2, SREBF1
Nucleus 6 BCL2, NLRP3, PPARA, SREBF1, TFEB, TJP1
cytosol 8 ACOX1, BCL2, GPT, NLRP3, PIK3CA, SREBF1, TFEB, TJP1
nucleoplasm 2 PPARA, SREBF1
Cell membrane 4 ACSL4, AVPR1A, SLC2A2, TJP1
Cytoplasmic side 2 GORASP1, TJP1
lamellipodium 1 PIK3CA
Multi-pass membrane protein 4 AVPR1A, SLC2A2, SREBF1, UCP1
Golgi apparatus membrane 3 GORASP1, NLRP3, SREBF1
cell junction 1 TJP1
cell surface 1 ADIPOQ
Golgi apparatus 1 GORASP1
Golgi membrane 4 GORASP1, INS, NLRP3, SREBF1
lysosomal membrane 1 TFEB
mitochondrial inner membrane 1 UCP1
Cytoplasm, cytosol 2 NLRP3, TFEB
endosome 1 AVPR1A
plasma membrane 5 ACSL4, AVPR1A, PIK3CA, SLC2A2, TJP1
Membrane 5 ACOX1, ACSL4, BCL2, NLRP3, SLC2A2
apical plasma membrane 2 SLC2A2, TJP1
basolateral plasma membrane 1 TJP1
brush border 1 SLC2A2
caveola 1 PTGS2
extracellular exosome 2 ACSL4, GPT
Lysosome membrane 1 TFEB
endoplasmic reticulum 6 ACSL4, ADIPOQ, BCL2, NLRP3, PTGS2, SREBF1
extracellular space 5 ADIPOQ, CCL2, IL4, IL6, INS
perinuclear region of cytoplasm 1 PIK3CA
Cell junction, tight junction 1 TJP1
adherens junction 1 TJP1
apicolateral plasma membrane 1 TJP1
bicellular tight junction 1 TJP1
gap junction 1 TJP1
intercalated disc 2 PIK3CA, TJP1
intercellular canaliculus 1 TJP1
mitochondrion 5 ACSL4, BCL2, NLRP3, TJP1, UCP1
protein-containing complex 4 BCL2, PTGS2, SREBF1, TJP1
Microsome membrane 2 ACSL4, PTGS2
Secreted 6 ADIPOQ, CCL2, IL4, IL6, INS, NLRP3
extracellular region 6 ADIPOQ, CCL2, IL4, IL6, INS, NLRP3
Mitochondrion outer membrane 2 ACSL4, BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 ACSL4, BCL2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
apical part of cell 1 TJP1
cell-cell junction 1 SLC2A2
Mitochondrion inner membrane 1 UCP1
pore complex 1 BCL2
cis-Golgi network 1 GORASP1
Peroxisome 1 ACOX1
collagen trimer 1 ADIPOQ
peroxisomal matrix 1 ACOX1
peroxisomal membrane 2 ACOX1, ACSL4
collagen-containing extracellular matrix 1 ADIPOQ
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 3 PPARA, SREBF1, TFEB
cell projection 1 TJP1
Cell projection, podosome 1 TJP1
podosome 1 TJP1
nuclear envelope 1 SREBF1
Endomembrane system 1 NLRP3
endosome lumen 1 INS
Lipid droplet 1 ACSL4
microtubule organizing center 1 NLRP3
mitochondria-associated endoplasmic reticulum membrane contact site 1 ACSL4
Cytoplasmic vesicle membrane 1 SREBF1
myelin sheath 1 BCL2
Peroxisome membrane 1 ACSL4
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 AVPR1A
transport vesicle 1 INS
tight junction 1 TJP1
Single-pass type III membrane protein 1 ACSL4
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
ER to Golgi transport vesicle membrane 1 SREBF1
apical junction complex 1 TJP1
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Qiang Huang, Meiling Fan, Fenglan Ji, Yuqi Wang, Hongyue Ding, Jie Xu, Xin Wang, Bo Liu, Bei Wang, Xinmiao Yu, Zhidong Qiu, Fan Yao. The safety evaluation of Shenze Shugan capsule and mechanism of apoptosis induced by five potentially nephrotoxic components. Journal of ethnopharmacology. 2024 Jan; 324(?):117777. doi: 10.1016/j.jep.2024.117777. [PMID: 38219879]
  • Dan Zhu, Na Zheng, Kebin Deng, Liangchang Li. Aurantio-obtusin Alleviates Dry Eye Disease by Targeting NF-κB/NLRP3 Signaling in Rodent Models. Biochemical genetics. 2023 Aug; ?(?):. doi: 10.1007/s10528-023-10471-0. [PMID: 37633872]
  • Yi-Jie Li, Rui-Yu Wu, Run-Ping Liu, Kai-Yi Wu, Ming-Ning Ding, Rong Sun, Yi-Qing Gu, Fei Zhou, Jian-Zhi Wu, Qi Zheng, Shu-Ni Duan, Rong-Rong Li, Yin-Hao Zhang, Fang-Hong Li, Xiaojiaoyang Li. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta pharmacologica Sinica. 2023 Apr; ?(?):. doi: 10.1038/s41401-023-01089-4. [PMID: 37095199]
  • Manjiang Hu, Yizhou Zhong, Jun Liu, Shaozhen Zheng, Li Lin, Xi Lin, Boxuan Liang, Yuji Huang, Hongyi Xian, Zhiming Li, Bingli Zhang, Bo Wang, Hao Meng, Jiaxin Du, Rongyi Ye, Zhi Lu, Xifei Yang, Xingfen Yang, Zhenlie Huang. An adverse outcome pathway-based approach to assess aurantio-obtusin-induced hepatotoxicity. Toxicology. 2022 08; 478(?):153293. doi: 10.1016/j.tox.2022.153293. [PMID: 35995123]
  • Yue Li, Dongming Yan, Jingyi Jin, Bo Tan, Xi Chen, Bin Zou, Guochao Song, Fengyi Weng, Chenghai Liu, Furong Qiu. Clarify the potential cholestatic hepatotoxicity components from Chinese Herb Medicine and metabolism's role via hBSEP vesicles and S9/hBSEP vesicles. Toxicology in vitro : an international journal published in association with BIBRA. 2022 Apr; 80(?):105324. doi: 10.1016/j.tiv.2022.105324. [PMID: 35101544]
  • Renjun Mao, Zhenqing Bai, Jiawen Wu, Ruilian Han, Xuemin Zhang, Weiguo Chai, Zongsuo Liang. Transcriptome and HPLC Analysis Reveal the Regulatory Mechanisms of Aurantio-Obtusin in Space Environment-Induced Senna obtusifolia Lines. International journal of environmental research and public health. 2022 01; 19(2):. doi: 10.3390/ijerph19020898. [PMID: 35055719]
  • Cong-Ying Guo, Wei-Tao Liao, Rui-Jin Qiu, Dan-Shui Zhou, Wei-Ju Ni, Cui-Ping Yu, Yu Zeng. Aurantio-obtusin improves obesity and insulin resistance induced by high-fat diet in obese mice. Phytotherapy research : PTR. 2021 Jan; 35(1):346-360. doi: 10.1002/ptr.6805. [PMID: 32749748]
  • Shun-Li Xiao, Liang-Jun Guan, Ren-Feng Jiang, Xiang-Gen Wang, Xing Li, Wei Cai. The Metabolism and Pharmacokinetics of Rhein and Aurantio-Obtusin. Current drug metabolism. 2020; 21(12):960-968. doi: 10.2174/1389200221666200719002128. [PMID: 32682364]
  • Bing Yang, Li Xie, Siying Peng, Kanping Sun, Junjie Jin, Yanping Zhen, Kunming Qin, Baochang Cai. Nine components pharmacokinetic study of rat plasma after oral administration raw and prepared Semen Cassiae in normal and acute liver injury rats. Journal of separation science. 2019 Jul; 42(14):2341-2350. doi: 10.1002/jssc.201900007. [PMID: 31037812]
  • Jingyi Hou, Yu Gu, Shuai Zhao, Mengqi Huo, Shifeng Wang, Yanling Zhang, Yanjiang Qiao, Xi Li. Anti-Inflammatory Effects of Aurantio-Obtusin from Seed of Cassia obtusifolia L. through Modulation of the NF-κB Pathway. Molecules (Basel, Switzerland). 2018 Nov; 23(12):. doi: 10.3390/molecules23123093. [PMID: 30486383]
  • Yin Deng, Hui Zheng, Zicheng Yan, Dongying Liao, Chaolin Li, Jiayu Zhou, Hai Liao. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. International journal of molecular sciences. 2018 Aug; 19(9):. doi: 10.3390/ijms19092476. [PMID: 30134624]
  • Ki Sun Kwon, Ju Hee Lee, Kyung Su So, Byung Kyu Park, Hyun Lim, Jae Sue Choi, Hyun Pyo Kim. Aurantio-obtusin, an anthraquinone from cassiae semen, ameliorates lung inflammatory responses. Phytotherapy research : PTR. 2018 Aug; 32(8):1537-1545. doi: 10.1002/ptr.6082. [PMID: 29675883]
  • Chaohong Nie, Fugeng Zhang, Xiaowei Ma, Rui Guo, Shuiping Zhou, Libin Zhao, Haiyu Xu, Xuefeng Xiao, Zhuju Wang. Determination of quality markers of Xuezhiling tablet for hyperlipidemia treatment. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 May; 44(?):231-238. doi: 10.1016/j.phymed.2018.03.004. [PMID: 29631806]
  • Xue Wang, Lifeng Han, Gentao Li, Wei Peng, Xiumei Gao, Curtis D Klaassen, Guanwei Fan, Youcai Zhang. From the Cover: Identification of Natural Products as Inhibitors of Human Organic Anion Transporters (OAT1 and OAT3) and Their Protective Effect on Mercury-Induced Toxicity. Toxicological sciences : an official journal of the Society of Toxicology. 2018 02; 161(2):321-334. doi: 10.1093/toxsci/kfx216. [PMID: 29045746]
  • Jianming Liu, Xuyang Yan, Yuanyuan Yue, Shufang Zhao. Investigation of the interaction of aurantio-obtusin with human serum albumin by spectroscopic and molecular docking methods. Luminescence : the journal of biological and chemical luminescence. 2018 Feb; 33(1):104-111. doi: 10.1002/bio.3378. [PMID: 28745001]
  • Valentine C Mbatchou, David P Tchouassi, Rita A Dickson, Kofi Annan, Abraham Y Mensah, Isaac K Amponsah, Julia W Jacob, Xavier Cheseto, Solomon Habtemariam, Baldwyn Torto. Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasites & vectors. 2017 Nov; 10(1):562. doi: 10.1186/s13071-017-2512-y. [PMID: 29126433]
  • Myungsuk Kim, Sue Ji Lim, Hee-Ju Lee, Chu Won Nho. Cassia tora Seed Extract and Its Active Compound Aurantio-obtusin Inhibit Allergic Responses in IgE-Mediated Mast Cells and Anaphylactic Models. Journal of agricultural and food chemistry. 2015 Oct; 63(41):9037-46. doi: 10.1021/acs.jafc.5b03836. [PMID: 26434611]
  • Nan Zhang, Ning Dong, Li Pang, Hong Xu, Honglei Ji. Quantitative determination and pharmacokinetic study of aurantio-obtusin in rat plasma by liquid chromatography-mass spectrometry. Journal of chromatographic science. 2014 Oct; 52(9):1059-64. doi: 10.1093/chromsci/bmt159. [PMID: 24149003]
  • Bao-Li Mi, Qi Sun, Yan-Qing Qu, Xiao-Xu Gao, Zhen-Wen Yu, Guang-Bo Ge, Shan-Shan Cai, Jie Zhang, Yan-Chao Zheng, Zhen-Qiu Zhang. Glucuronidation of aurantio-obtusin: identification of human UDP-glucuronosyltransferases and species differences. Xenobiotica; the fate of foreign compounds in biological systems. 2014 Aug; 44(8):716-21. doi: 10.3109/00498254.2014.895881. [PMID: 24618000]
  • Lijia Xu, Chi-On Chan, Ching-Ching Lau, Zhiling Yu, Daniel K W Mok, Sibao Chen. Simultaneous determination of eight anthraquinones in Semen Cassiae by HPLC-DAD. Phytochemical analysis : PCA. 2012 Mar; 23(2):110-6. doi: 10.1002/pca.1331. [PMID: 21618311]
  • Jeongsu Nam, Hyunju Choi. Effect of butanol fraction from Cassia tora L. seeds on glycemic control and insulin secretion in diabetic rats. Nutrition research and practice. 2008; 2(4):240-6. doi: 10.4162/nrp.2008.2.4.240. [PMID: 20016725]
  • Dae Sik Jang, Ga Young Lee, Young Sook Kim, Yun Mi Lee, Chan-Sik Kim, Jeong Lim Yoo, Jin Sook Kim. Anthraquinones from the seeds of Cassia tora with inhibitory activity on protein glycation and aldose reductase. Biological & pharmaceutical bulletin. 2007 Nov; 30(11):2207-10. doi: 10.1248/bpb.30.2207. [PMID: 17978503]
  • Ali Mahmoud El-Halawany, Mi Hwa Chung, Norio Nakamura, Chao-Mei Ma, Tsutomu Nishihara, Masao Hattori. Estrogenic and anti-estrogenic activities of Cassia tora phenolic constituents. Chemical & pharmaceutical bulletin. 2007 Oct; 55(10):1476-82. doi: 10.1248/cpb.55.1476. [PMID: 17917292]
  • H S Yun-Choi, J H Kim, M Takido. Potential inhibitors of platelet aggregation from plant sources, V. Anthraquinones from seeds of Cassia obtusifolia and related compounds. Journal of natural products. 1990 May; 53(3):630-3. doi: 10.1021/np50069a014. [PMID: 2213033]