S-Lactoylglutathione (BioDeep_00000001432)
Secondary id: BioDeep_00000400310, BioDeep_00001869107
natural product human metabolite PANOMIX_OTCML-2023 Endogenous
代谢物信息卡片
化学式: C13H21N3O8S (379.1049)
中文名称: S-乳酰谷胱甘肽
谱图信息:
最多检出来源 Homo sapiens(otcml) 26.94%
分子结构信息
SMILES: CC(C(=O)SCC(C(=O)NCC(=O)O)NC(=O)CCC(C(=O)O)N)O
InChI: InChI=1S/C13H21N3O8S/c1-6(17)13(24)25-5-8(11(21)15-4-10(19)20)16-9(18)3-2-7(14)12(22)23/h6-8,17H,2-5,14H2,1H3,(H,15,21)(H,16,18)(H,19,20)(H,22,23)/t6-,7+,8+/m1/s1
描述信息
S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442). [HMDB]. S-Lactoylglutathione is found in many foods, some of which are blackcurrant, oat, pomegranate, and brussel sprouts.
S-Lactoylglutathione is a substrate of lactoylglutathione lyase [EC 4.4.1.5] in pyruvate metabolism (KEGG). Another enzyme, glyoxalase I, synthesizes this compound by converting methylglyoxal and reduced glutathione to S-lactoylglutathione. S-D-lactoylglutathione can be hydrolysed by thiolesterases to reduced glutathione and D-lactate but also converted to N-D-lactoylcysteinylglycine and N-D-lactoylcysteine by gamma-glutamyl transferase and dipeptidase (PMID: 8632674). S-lactoylglutathione has also been shown to modulate microtubule assembly (PMID: 690442).
Acquisition and generation of the data is financially supported in part by CREST/JST.
D000970 - Antineoplastic Agents
KEIO_ID L016; [MS3] KO009026
KEIO_ID L016; [MS2] KO009024
KEIO_ID L016
同义名列表
17 个代谢物同义名
(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-{[(2R)-2-hydroxypropanoyl]sulfanyl}ethyl]carbamoyl}butanoic acid; N-(N-L-gamma-Glutamyl-S-(2-hydroxy-1-oxopropyl)-L-cysteinyl)-glycine; S-[(2R)-2-Hydroxypropanoyl]-gamma-L-glutamyl-L-cysteinylglycine; S-delta-Lactoyl-glutathione; S-delta-Lactoylglutathione; delta-Lactoylglutathione; (R)-S-Lactoylglutathione; S-D-Lactoyl-glutathione; S-D-Lactoylglutathione; S-Lactoyl-glutathione; S-Lactate glutathione; S-Lactateglutathione; S-Lactoylglutathione; D-Lactoylglutathione; S-Lactylglutathione; NSC651836; S-Lactoylglutathione
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:15694
- KEGG: C03451
- PubChem: 440018
- PubChem: 6272
- PubChem: 1083
- HMDB: HMDB0001066
- Metlin: METLIN3511
- MetaCyc: S-LACTOYL-GLUTATHIONE
- KNApSAcK: C00019550
- foodb: FDB022405
- chemspider: 389032
- CAS: 25138-66-3
- CAS: 41656-56-8
- MoNA: KO009027
- MoNA: KO001293
- MoNA: KO009029
- MoNA: KO001290
- MoNA: KO009028
- MoNA: PR100314
- MoNA: PS068306
- MoNA: PS068305
- MoNA: PS068301
- MoNA: KO003299
- MoNA: KO003298
- MoNA: KO001291
- MoNA: PS068302
- MoNA: PS068303
- MoNA: KO001292
- MoNA: KO003300
- MoNA: KO009026
- MoNA: KO009025
- MoNA: KO009030
- MoNA: PR100746
- MoNA: KO003297
- MoNA: KO001294
- MoNA: KO009024
- MoNA: KO003301
- PMhub: MS000000499
- 3DMET: B01661
- NIKKAJI: J524.698I
- RefMet: S-Lactoylglutathione
分类词条
相关代谢途径
Reactome(3)
BioCyc(0)
PlantCyc(0)
代谢反应
103 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
(R)-S-LGSH ⟶ GSH + LACT
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
CoA + NAD + PYR ⟶ Ac-CoA + NADH + carbon dioxide
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
CoA + NAD + PYR ⟶ Ac-CoA + NADH + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(2)
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- (R)-S-Lactoyl-glutathione = Glutathione + Methyl-glyoxal ( Pyruvate metabolism ):
(R)-S-Lactoyl-glutathione ⟶ Glutathione + Methyl-glyoxal
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(29)
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvaldehyde Degradation:
S-Lactoylglutathione + Water ⟶ D-Lactic acid + Glutathione + Hydrogen Ion
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
PharmGKB(0)
3 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Gerry Aplang Jana, Latifa Al Kharusi, Ramanjulu Sunkar, Rashid Al-Yahyai, Mahmoud W Yaish. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments.
Plant signaling & behavior.
2019; 14(11):1663112. doi:
10.1080/15592324.2019.1663112
. [PMID: 31505987] - Ajit Ghosh, Ashwani Pareek, Sudhir K Sopory, Sneh L Singla-Pareek. A glutathione responsive rice glyoxalase II, OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool.
The Plant journal : for cell and molecular biology.
2014 Oct; 80(1):93-105. doi:
10.1111/tpj.12621
. [PMID: 25039836] - Ioannis S Minas, Georgia Tanou, Maya Belghazi, Dominique Job, George A Manganaris, Athanassios Molassiotis, Miltiadis Vasilakakis. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening.
Journal of experimental botany.
2012 Apr; 63(7):2449-64. doi:
10.1093/jxb/err418
. [PMID: 22268155] - Miklós Péter Kalapos. S-D-lactoylglutathione as a potential state marker for hemolysis.
Medical hypotheses.
2011 Oct; 77(4):479-80. doi:
10.1016/j.mehy.2011.06.014
. [PMID: 21723671] - Ananda Mustafiz, Khirod K Sahoo, Sneh L Singla-Pareek, Sudhir K Sopory. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants.
Methods in molecular biology (Clifton, N.J.).
2010; 639(?):95-118. doi:
10.1007/978-1-60761-702-0_6
. [PMID: 20387042] - Y Usui, M Nakase, H Hotta, A Urisu, N Aoki, K Kitajima, T Matsuda. A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I.
The Journal of biological chemistry.
2001 Apr; 276(14):11376-81. doi:
10.1074/jbc.m010337200
. [PMID: 11139585] - T Neuefeind, R Huber, H Dasenbrock, L Prade, B Bieseler. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism.
Journal of molecular biology.
1997 Dec; 274(4):446-53. doi:
10.1006/jmbi.1997.1402
. [PMID: 9417926] - A C McLellan, S A Phillips, P J Thornalley. The assay of S-D-lactoylglutathione in biological systems.
Biochemical Society transactions.
1993 May; 21(2):164S. doi:
10.1042/bst021164s
. [PMID: 8359417] - L Edwards, J D Clelland, P J Thornalley. Characteristics of the inhibition of human promyelocytic leukaemia HL60 cell growth by S-D-lactoylglutathione in vitro.
Leukemia research.
1993 Apr; 17(4):305-10. doi:
10.1016/0145-2126(93)90017-f
. [PMID: 8487580] - M P Kalapos, T Garzó, F Antoni, J Mandl. Accumulation of S-D-lactoylglutathione and transient decrease of glutathione level caused by methylglyoxal load in isolated hepatocytes.
Biochimica et biophysica acta.
1992 Jun; 1135(2):159-64. doi:
10.1016/0167-4889(92)90132-u
. [PMID: 1616937] - P J Thornalley, V Della Bianca, P Bellavite, F Rossi. S-D-lactoylglutathione in resting and activated human neutrophils.
Biochemical and biophysical research communications.
1987 Jun; 145(2):769-74. doi:
10.1016/0006-291x(87)91031-x
. [PMID: 3593370] - I V Berezin, B M Kershengol'ts, N N Ugarova. [Microenvironment of enzymes as 1 of the factors determining enzyme stability. Stabilization of soluble and immobilized horseradish peroxidase].
Doklady Akademii nauk SSSR.
1975 Aug; 223(5):1256-9. doi:
NULL
. [PMID: 223]