5-Hydroxyferulic acid (BioDeep_00000000705)

 

Secondary id: BioDeep_00000866323

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


2-Propenoic acid, 3-(3,4-dihydroxy-5-methoxyphenyl)-, (2E)-

化学式: C10H10O5 (210.0528)
中文名称: 5-羟基阿魏酸
谱图信息: 最多检出来源 Viridiplantae(plant) 32.57%

分子结构信息

SMILES: c1(cc(cc(c1O)O)/C=C/C(=O)O)OC
InChI: InChI=1S/C10H10O5/c1-15-8-5-6(2-3-9(12)13)4-7(11)10(8)14/h2-5,11,14H,1H3,(H,12,13)/b3-2+

描述信息

5-Hydroxyferulic acid (CAS: 1782-55-4), also known as 3-(3,4-dihydroxy-5-methoxy)-2-propenoic acid, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing a cinnamic acid where the benzene ring is hydroxylated. Outside of the human body, 5-hydroxyferulic acid has been detected, but not quantified in, several different foods, such as common salsifies, napa cabbages, sparkleberries, nectarines, and Chinese chestnuts. This could make 5-hydroxyferulic acid a potential biomarker for the consumption of these foods. 5-Hydroxyferulic acid is found in green vegetables. 5-Hydroxyferulic acid is isolated from bamboo (Phyllostachys edulis).
5-hydroxyferulic acid is ferulic acid in which the ring hydrogen at position 5 is substituted by a hydroxy group. It is a hydroxycinnamic acid and a methoxycinnamic acid. It is a conjugate acid of a 5-hydroxyferulate.
5-Hydroxyferulic acid is a natural product found in Arabidopsis thaliana, Sabia japonica, and other organisms with data available.
Isolated from bamboo (Phyllostachys edulis). 5-Hydroxyferulic acid is found in many foods, some of which are napa cabbage, chervil, common bean, and saskatoon berry.
5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].
5-Hydroxyferulic acid is a hydroxycinnamic acid and is a metabolite of the phenylpropanoid pathway. 5-Hydroxyferulic acid is a precursor in the biosynthesis of sinapic acid and is also a COMT non-esterifed substrate[1][2][3].

同义名列表

33 个代谢物同义名

2-Propenoic acid, 3-(3,4-dihydroxy-5-methoxyphenyl)-, (2E)-; (E)-3-(3,4-dihydroxy-5-methoxy-phenyl)prop-2-enoic acid; (2E)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoic acid; (2E)-3-(3,4-Dihydroxy-5-methoxyphenyl)-2-propenoic acid; (E)-3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoic acid; 3,4-Dihydroxy-5-methoxycinnamic acid, >=95.0\\% (HPLC); 2-Propenoic acid, 3-(3,4-dihydroxy-5-methoxyphenyl)-; (2E)-3-(3,4-Dihydroxy-5-methoxyphenyl)-2-propenoate; 3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enoic acid; 3-(3,4-dihydroxy-5-methoxyphenyl)-2-propenoic acid; 3-(3,4-Dihydroxy-5-methoxy)-2-propenoic acid, 9CI; 3-(3,4-dihydroxy-5-methoxyphenyl)acrylic acid; 3-(3,4-Dihydroxy-5-methoxy)-2-propenoic acid; 3-methoxy-4,5-dihydroxy-trans-cinnamic acid; 3-(3,4-Dihydroxy-5-methoxy)-2-propenoate; Cinnamic acid, 3,4-dihydroxy-5-methoxy-; 3-Methoxy-4,5-dihydroxy-trans-cinnamate; 3,4-Dihydroxy-5-methoxycinnamoic acid; 3,4-dihydroxy-5-methoxycinnamic acid; 5-Hydroxyferulic acid methyl ester; 5-Hydroxyferulate methyl ester; trans-5-hydroxyferulic acid; (E)-5-hydroxyferulic acid; trans-5-Hydroxyferulate; E-5-Hydroxyferulic acid; 5-Hydroxyferulic acid; 3-Methoxycaffeic acid; Hydroxy Ferulic Acid; hydroxyferulic acid; 5-Hydroxyferulate; R3LZY3E4HE; HFL; 5-Hydroxyferulic acid



数据库引用编号

25 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

4 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(4)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

24 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 CALR, PPARG, SREBF1
Peripheral membrane protein 1 ACHE
Endoplasmic reticulum membrane 2 CALR, SREBF1
Nucleus 5 ACHE, ACR, CALR, PPARG, SREBF1
cytosol 6 CALR, COMT, LIPE, PPARG, SLC2A4, SREBF1
dendrite 1 COMT
trans-Golgi network 1 SLC2A4
nucleoplasm 2 PPARG, SREBF1
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 4 ACHE, COMT, LIPE, SLC2A4
Multi-pass membrane protein 2 SLC2A4, SREBF1
Golgi apparatus membrane 1 SREBF1
Synapse 2 ACHE, COMT
cell surface 2 ACHE, CALR
glutamatergic synapse 1 CALR
Golgi apparatus 1 ACHE
Golgi membrane 1 SREBF1
neuromuscular junction 1 ACHE
postsynapse 1 CALR
sarcolemma 1 SLC2A4
smooth endoplasmic reticulum 1 CALR
Cytoplasm, cytosol 2 CALR, LIPE
Presynapse 1 SLC2A4
acrosomal vesicle 1 CALR
plasma membrane 3 ACHE, COMT, SLC2A4
Membrane 5 ACHE, CALR, COMT, LIPE, SLC2A4
axon 1 COMT
caveola 1 LIPE
extracellular exosome 3 CALR, COMT, SLC2A4
endoplasmic reticulum 2 CALR, SREBF1
extracellular space 2 ACHE, CALR
perinuclear region of cytoplasm 4 ACHE, CALR, PPARG, SLC2A4
protein-containing complex 2 ACR, SREBF1
intracellular membrane-bounded organelle 2 COMT, PPARG
Secreted 1 ACHE
extracellular region 3 ACHE, ACR, CALR
Extracellular side 2 ACHE, COMT
external side of plasma membrane 2 CALR, SLC2A4
Secreted, extracellular space, extracellular matrix 1 CALR
multivesicular body 1 SLC2A4
T-tubule 1 SLC2A4
clathrin-coated pit 1 SLC2A4
Golgi-associated vesicle 1 ACR
Single-pass type II membrane protein 1 COMT
Cytoplasm, perinuclear region 1 SLC2A4
Membrane raft 1 SLC2A4
focal adhesion 1 CALR
basement membrane 1 ACHE
sarcoplasmic reticulum 1 SLC2A4
collagen-containing extracellular matrix 1 CALR
receptor complex 1 PPARG
chromatin 2 PPARG, SREBF1
phagocytic vesicle membrane 1 CALR
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 2 CALR, SREBF1
Endomembrane system 1 SLC2A4
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Cytoplasmic vesicle membrane 2 SLC2A4, SREBF1
side of membrane 1 ACHE
clathrin-coated vesicle 1 SLC2A4
trans-Golgi network transport vesicle 1 SLC2A4
endoplasmic reticulum quality control compartment 1 CALR
endoplasmic reticulum lumen 1 CALR
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 CALR
ER to Golgi transport vesicle membrane 1 SREBF1
vesicle membrane 1 SLC2A4
Sarcoplasmic reticulum lumen 1 CALR
synaptic cleft 1 ACHE
lumenal side of endoplasmic reticulum membrane 1 CALR
MHC class I peptide loading complex 1 CALR
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
endocytic vesicle lumen 1 CALR
ribosome 1 CALR
Cytoplasmic vesicle, secretory vesicle, Cortical granule 1 CALR
cortical granule 1 CALR
acrosomal matrix 1 ACR
Cytolytic granule 1 CALR
insulin-responsive compartment 1 SLC2A4
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
[Isoform H]: Cell membrane 1 ACHE
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1


文献列表

  • Naoki Misawa, Takahiro Hosoya, Shuhei Yoshida, Osamu Sugimoto, Tomoe Yamada-Kato, Shigenori Kumazawa. 5-Hydroxyferulic acid methyl ester isolated from wasabi leaves inhibits 3T3-L1 adipocyte differentiation. Phytotherapy research : PTR. 2018 Jul; 32(7):1304-1310. doi: 10.1002/ptr.6060. [PMID: 29480572]
  • Annalisa Lopatriello, Rosario Previtera, Simona Pace, Markus Werner, Luigi Rubino, Oliver Werz, Orazio Taglialatela-Scafati, Martino Forino. NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum. Phytochemistry. 2017 Dec; 144(?):52-57. doi: 10.1016/j.phytochem.2017.08.016. [PMID: 28888145]
  • Karina Gutiérrez-García, Adriana Neira-González, Rosa Martha Pérez-Gutiérrez, Giovana Granados-Ramírez, Ramon Zarraga, Kazimierz Wrobel, Francisco Barona-Gómez, Luis B Flores-Cotera. Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum. Journal of natural products. 2017 07; 80(7):1955-1963. doi: 10.1021/acs.jnatprod.6b00823. [PMID: 28704049]
  • Jun Shigeto, Yukie Ueda, Shinya Sasaki, Koki Fujita, Yuji Tsutsumi. Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia. Journal of plant research. 2017 Jan; 130(1):203-210. doi: 10.1007/s10265-016-0882-4. [PMID: 27888422]
  • Jian-Chun Qin, Ya-Mei Zhang, Chen-Yong Lang, Yan-Hua Yao, Hong-Yu Pan, Xiang Li. Cloning and functional characterization of a caffeic acid O-methyltransferase from Trigonella foenum-graecum L. Molecular biology reports. 2012 Feb; 39(2):1601-8. doi: 10.1007/s11033-011-0899-7. [PMID: 21604170]
  • Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC genomics. 2011 Dec; 12(?):608. doi: 10.1186/1471-2164-12-608. [PMID: 22177423]
  • Nicolas Amelot, Audrey Carrouche, Saïda Danoun, Stéphane Bourque, Jacques Haiech, Alain Pugin, Raoul Ranjeva, Jacqueline Grima-Pettenati, Christian Mazars, Christian Briere. Cryptogein, a fungal elicitor, remodels the phenylpropanoid metabolism of tobacco cell suspension cultures in a calcium-dependent manner. Plant, cell & environment. 2011 Jan; 34(1):149-61. doi: 10.1111/j.1365-3040.2010.02233.x. [PMID: 20946589]
  • Gordon V Louie, Marianne E Bowman, Yi Tu, Aidyn Mouradov, German Spangenberg, Joseph P Noel. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. The Plant cell. 2010 Dec; 22(12):4114-27. doi: 10.1105/tpc.110.077578. [PMID: 21177481]
  • Jian-Min Zhou, Eunjung Lee, Francesca Kanapathy-Sinnaiaha, Younghee Park, Jack A Kornblatt, Yoongho Lim, Ragai K Ibrahim. Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis. BMC plant biology. 2010 Jul; 10(?):156. doi: 10.1186/1471-2229-10-156. [PMID: 20670441]
  • Fachuang Lu, Jane M Marita, Catherine Lapierre, Lise Jouanin, Kris Morreel, Wout Boerjan, John Ralph. Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins. Plant physiology. 2010 Jun; 153(2):569-79. doi: 10.1104/pp.110.154278. [PMID: 20427467]
  • Suvi Sutela, Karoliina Niemi, Jaanika Edesi, Tapio Laakso, Pekka Saranpää, Jaana Vuosku, Riina Mäkelä, Heidi Tiimonen, Vincent L Chiang, Janne Koskimäki, Marja Suorsa, Riitta Julkunen-Tiitto, Hely Häggman. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC plant biology. 2009 Sep; 9(?):124. doi: 10.1186/1471-2229-9-124. [PMID: 19788757]
  • Katherine G Zulak, Aalim M Weljie, Hans J Vogel, Peter J Facchini. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC plant biology. 2008 Jan; 8(?):5. doi: 10.1186/1471-2229-8-5. [PMID: 18211706]
  • Michael A Costa, Diana L Bedgar, Syed G A Moinuddin, Kye-Won Kim, Claudia L Cardenas, Fiona C Cochrane, Jay M Shockey, Gregory L Helms, Yoshiaki Amakura, Hironobu Takahashi, Jessica K Milhollan, Laurence B Davin, John Browse, Norman G Lewis. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry. 2005 Sep; 66(17):2072-91. doi: 10.1016/j.phytochem.2005.06.022. [PMID: 16099486]
  • Wendy R Russell, Mark J Burkitt, Lorraine Scobbie, Andrew Chesson. Radical formation and coupling of hydroxycinnamic acids containing 1,2-dihydroxy substituents. Bioorganic chemistry. 2003 Jun; 31(3):206-15. doi: 10.1016/s0045-2068(03)00042-7. [PMID: 12818230]
  • Lei Chen, Chungkyoon Auh, Fang Chen, Xiaofei Cheng, Hugh Aljoe, Richard A Dixon, Zengyu Wang. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. Journal of agricultural and food chemistry. 2002 Sep; 50(20):5558-65. doi: 10.1021/jf020516x. [PMID: 12236679]
  • Nancy A Eckardt. Probing the mysteries of lignin biosynthesis: the crystal structure of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase provides new insights. The Plant cell. 2002 Jun; 14(6):1185-9. doi: 10.1105/tpc.140610. [PMID: 12084820]
  • Scott A Harding, Jacqueline Leshkevich, Vincent L Chiang, Chung-Jui Tsai. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen. Plant physiology. 2002 Feb; 128(2):428-38. doi: 10.1104/pp.010603. [PMID: 11842147]
  • Gudrun Schröder, Elke Wehinger, Joachim Schröder. Predicting the substrates of cloned plant O-methyltransferases. Phytochemistry. 2002 Jan; 59(1):1-8. doi: 10.1016/s0031-9422(01)00421-6. [PMID: 11754938]
  • K Parvathi, F Chen, D Guo, J W Blount, R A Dixon. Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. The Plant journal : for cell and molecular biology. 2001 Jan; 25(2):193-202. doi: 10.1046/j.1365-313x.2001.00956.x. [PMID: 11169195]
  • L Li, J L Popko, T Umezawa, V L Chiang. 5-hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. The Journal of biological chemistry. 2000 Mar; 275(9):6537-45. doi: 10.1074/jbc.275.9.6537. [PMID: 10692459]
  • K Inoue, K Parvathi, R A Dixon. Substrate preferences of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases in developing stems of alfalfa (Medicago sativa L.). Archives of biochemistry and biophysics. 2000 Mar; 375(1):175-82. doi: 10.1006/abbi.1999.1674. [PMID: 10683265]
  • C C Chapple, T Vogt, B E Ellis, C R Somerville. An Arabidopsis mutant defective in the general phenylpropanoid pathway. The Plant cell. 1992 Nov; 4(11):1413-24. doi: 10.1105/tpc.4.11.1413. [PMID: 1477555]
  • R C Bugos, V L Chiang, W H Campbell. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant molecular biology. 1991 Dec; 17(6):1203-15. doi: 10.1007/bf00028736. [PMID: 1932694]
  • M S Brownfield, B A Wunder. Relative medullary area: a new structural index for estimating urinary concentrating capacity of mammals. Comparative biochemistry and physiology. A, Comparative physiology. 1976; 55(1):69-75. doi: 10.1016/0300-9629(76)90125-0. [PMID: 8249]
  • . . . . doi: . [PMID: 15009205]
  • . . . . doi: . [PMID: 11960740]
  • . . . . doi: . [PMID: 10700397]
  • . . . . doi: . [PMID: 10482677]