Pesticide5_Tricyclazole_C9H7N3S_Beam (BioDeep_00000419515)

Main id: BioDeep_00000002301

 

natural product Volatile Flavor Compounds


代谢物信息卡片


Pesticide5_Tricyclazole_C9H7N3S_Beam

化学式: C9H7N3S (189.0360662)
中文名称: 三环唑
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1=C2C(=CC=C1)SC3=NN=CN23
InChI: InChI=1S/C9H7N3S/c1-6-3-2-4-7-8(6)12-5-10-11-9(12)13-7/h2-5H,1H3

描述信息

同义名列表

4 个代谢物同义名

TRICYCLAZOLE; Pesticide5_Tricyclazole_C9H7N3S_Beam; Tricyclazole; Tricyclazole



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Changsheng Li, Yajie Chen, Lan Huang, Yuting Zhang, Niannian Cao, Xuanjun Guo, Chunlian Yao, Xuefeng Li, Liusheng Duan, Sen Pang. Potential toxicity and dietary risk of tricyclazole to Chinese mitten crab (Eriocheir sinensis) in the rice-crab co-culture model. Environmental pollution (Barking, Essex : 1987). 2023 Jan; 316(Pt 1):120514. doi: 10.1016/j.envpol.2022.120514. [PMID: 36309304]
  • Delong Wang, Min Li, Chunxia Yuan, Yali Fang, Zhijia Zhang. Guaiacol as a natural melanin biosynthesis inhibitor to control northern corn leaf blight. Pest management science. 2022 Nov; 78(11):4557-4568. doi: 10.1002/ps.7075. [PMID: 35833811]
  • Nisar Hussain, Hongbin Pu, Da-Wen Sun. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Food chemistry. 2021 Jul; 350(?):129025. doi: 10.1016/j.foodchem.2021.129025. [PMID: 33609938]
  • Gustavo de Andrade Bezerra, Amanda Abdallah Chaibub, Maythsulene Inácio de Sousa Oliveira, Eduardo Seiti Gomide Mizubuti, Marta Cristina Corsi de Filippi. Evidence of Pyricularia oryzae adaptability to tricyclazole. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2021; 56(10):869-876. doi: 10.1080/03601234.2021.1971913. [PMID: 34459365]
  • Marco Corvaro, B Bhaskar Gollapudi, Jyotigna Mehta. A critical Assessment of the Genotoxicity Profile of the Fungicide Tricyclazole. Environmental and molecular mutagenesis. 2020 03; 61(3):300-315. doi: 10.1002/em.22344. [PMID: 31633836]
  • Marco Corvaro, Michael Bartels. The ADME profile of the fungicide tricyclazole in rodent via the oral route: A critical review for human health safety assessment. Regulatory toxicology and pharmacology : RTP. 2019 Nov; 108(?):104438. doi: 10.1016/j.yrtph.2019.104438. [PMID: 31461669]
  • Lingyu Qiu, Kun Jia, Lirong Huang, Xinjun Liao, Xinchun Guo, Huiqiang Lu. Hepatotoxicity of tricyclazole in zebrafish (Danio rerio). Chemosphere. 2019 Oct; 232(?):171-179. doi: 10.1016/j.chemosphere.2019.05.159. [PMID: 31154177]
  • Kalyan Mahapatra, Sayanti De, Samrat Banerjee, Sujit Roy. Pesticide mediated oxidative stress induces genotoxicity and disrupts chromatin structure in fenugreek (Trigonella foenum - graecum L.) seedlings. Journal of hazardous materials. 2019 05; 369(?):362-374. doi: 10.1016/j.jhazmat.2019.02.056. [PMID: 30784966]
  • Zhiyuan Meng, Xiaojun Chen, Lingjun Guan, Zhiying Xu, Qingxia Zhang, Yueyi Song, Fang Liu, Tianle Fan. Dissipation kinetics and risk assessments of tricyclazole during Oryza sativa L. growing, processing and storage. Environmental science and pollution research international. 2018 Dec; 25(35):35249-35256. doi: 10.1007/s11356-018-3445-5. [PMID: 30341752]
  • Alana C D Wandscheer, Enio Marchesan, Solange B Tedesco, Viviane Dal-Souto Frescura, Camille F Soares, Guilherme P Londero, Gustavo M Teló, Dâmaris S S Hansel. Cytogenotoxicity of rice crop water after application of the tricyclazole fungicide. Anais da Academia Brasileira de Ciencias. 2017 Apr; 89(2):1251-1258. doi: 10.1590/0001-3765201720150536. [PMID: 28489188]
  • Manoj Kumar, Ramesh Chand, Kavita Shah. Evidences for growth-promoting and fungicidal effects of low doses of tricyclazole in barley. Plant physiology and biochemistry : PPB. 2016 Jun; 103(?):176-82. doi: 10.1016/j.plaphy.2016.03.002. [PMID: 26995312]
  • Manoj Kumar, Ramesh Chand, R S Dubey, Kavita Shah. Effect of Tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley. World journal of microbiology & biotechnology. 2015 Jan; 31(1):23-35. doi: 10.1007/s11274-014-1756-3. [PMID: 25335466]
  • Hao-Xun Chang, Lou Ann Miller, Glen L Hartman. Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi. Phytopathology. 2014 Sep; 104(9):977-84. doi: 10.1094/phyto-12-13-0335-r. [PMID: 24779353]
  • Andrea Kunova, Cristina Pizzatti, Paolo Cortesi. Impact of tricyclazole and azoxystrobin on growth, sporulation and secondary infection of the rice blast fungus, Magnaporthe oryzae. Pest management science. 2013 Feb; 69(2):278-84. doi: 10.1002/ps.3386. [PMID: 22933369]
  • Yang Yu, Daohong Jiang, Jiatao Xie, Jiasen Cheng, Guoqing Li, Xianhong Yi, Yanping Fu. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. PloS one. 2012; 7(4):e34962. doi: 10.1371/journal.pone.0034962. [PMID: 22558105]
  • Jaeduk Goh, Junhyun Jeon, Kyoung Su Kim, Jongsun Park, Sook-Young Park, Yong-Hwan Lee. The PEX7-mediated peroxisomal import system is required for fungal development and pathogenicity in Magnaporthe oryzae. PloS one. 2011; 6(12):e28220. doi: 10.1371/journal.pone.0028220. [PMID: 22194815]
  • Ravikrishna Ramanujam, Naweed I Naqvi. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS pathogens. 2010 May; 6(5):e1000897. doi: 10.1371/journal.ppat.1000897. [PMID: 20463817]
  • Yun Mi Lee, Jae Sun Moon, Bong-Sik Yun, Ki Duk Park, Gyung Ja Choi, Jin-Cheol Kim, Sang Han Lee, Sung Uk Kim. Antifungal activity of CHE-23C, a dimeric sesquiterpene from Chloranthus henryi. Journal of agricultural and food chemistry. 2009 Jul; 57(13):5750-5. doi: 10.1021/jf900674y. [PMID: 19566082]
  • Thai Khanh Phong, Dang Thi Tuyet Nhung, Kenichi Yamazaki, Kazuhiro Takagi, Hirozumi Watanabe. Behavior of sprayed tricyclazole in rice paddy lysimeters. Chemosphere. 2009 Feb; 74(8):1085-9. doi: 10.1016/j.chemosphere.2008.10.050. [PMID: 19062069]
  • Thai Khanh Phong, Dang Thi Tuyet Nhung, Kenichi Yamazaki, Kazuhiro Takagi, Hirozumi Watanabe. Simulated rainfall removal of tricyclazole sprayed on rice foliage. Bulletin of environmental contamination and toxicology. 2008 May; 80(5):438-42. doi: 10.1007/s00128-008-9431-8. [PMID: 18488130]
  • Chiara B Vicentini, Carlo Romagnoli, Elisa Andreotti, Donatella Mares. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. Journal of agricultural and food chemistry. 2007 Dec; 55(25):10331-8. doi: 10.1021/jf072077d. [PMID: 18001038]
  • D Mares, C Romagnoli, E Andreotti, G Forlani, S Guccione, C B Vicentini. Emerging antifungal azoles and effects on Magnaporthe grisea. Mycological research. 2006 Jun; 110(Pt 6):686-96. doi: 10.1016/j.mycres.2006.03.006. [PMID: 16769209]
  • Hua-Xin Zhang, Xing Huang, Ping Mei, Ke-Hua Li, Cheng-Nong Yan. Studies on the interaction of tricyclazole with beta-cyclodextrin and human serum albumin by spectroscopy. Journal of fluorescence. 2006 May; 16(3):287-94. doi: 10.1007/s10895-006-0087-7. [PMID: 16791495]
  • Michael H Wheeler, Benny D Bruton, Lorraine S Puckhaber, Jiuxu Zhang, Robert D Stipanovic. Identification of 1,8-dihydroxynaphthalene melanin in Monosporascus cannonballus and the analysis of hexaketide and pentaketide compounds produced by wild-type and pigmented isolates of the fungus. Journal of agricultural and food chemistry. 2004 Jun; 52(13):4113-20. doi: 10.1021/jf0308298. [PMID: 15212456]
  • Peter S Solomon, Kar-Chun Tan, Pedro Sanchez, Richard M Cooper, Richard P Oliver. The disruption of a Galpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Molecular plant-microbe interactions : MPMI. 2004 May; 17(5):456-66. doi: 10.1094/mpmi.2004.17.5.456. [PMID: 15141949]
  • Jee Yeon Lee, Jung Yeop Lee, Bong-Sik Yun, Byung Kook Hwang. Antifungal activity of beta-asarone from rhizomes of Acorus gramineus. Journal of agricultural and food chemistry. 2004 Feb; 52(4):776-80. doi: 10.1021/jf035204o. [PMID: 14969530]
  • Tea Lanisnik Rizner, Michael H Wheeler. Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus). Canadian journal of microbiology. 2003 Feb; 49(2):110-9. doi: 10.1139/w03-016. [PMID: 12718399]
  • Souad El Bassam, Nicole Benhamou, Odile Carisse. The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Canadian journal of microbiology. 2002 Apr; 48(4):349-58. doi: 10.1139/w02-030. [PMID: 12030708]
  • D I Liao, G S Basarab, A A Gatenby, D B Jordan. Selection of a potent inhibitor of trihydroxynaphthalene reductase by sorting disease control data. Bioorganic & medicinal chemistry letters. 2000 Mar; 10(5):491-4. doi: 10.1016/s0960-894x(00)00037-8. [PMID: 10743955]
  • Y X Xiao, D F Fan, H X Chen. Gas chromatographic determination of systemic fungicide tricyclazole in soil and water. Journal - Association of Official Analytical Chemists. 1990 Sep; 73(5):761-3. doi: ". [PMID: 2273001]