Citrulline (BioDeep_00000002963)
Secondary id: BioDeep_00000177884, BioDeep_00000229677, BioDeep_00000398052, BioDeep_00001875128
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
代谢物信息卡片
化学式: C6H13N3O3 (175.0956868)
中文名称: DL-瓜氨酸, 瓜氨酸, L-瓜氨酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.02%
分子结构信息
SMILES: C(CC(C(=O)O)N)CNC(=O)N
InChI: InChI=1S/C6H13N3O3/c7-4(5(10)11)2-1-3-9-6(8)12/h4H,1-3,7H2,(H,10,11)(H3,8,9,12)
描述信息
Citrulline, also known as Cit or δ-ureidonorvaline, belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Citrulline has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. Citrulline exists in all living species, ranging from bacteria to humans. Within humans, citrulline participates in a number of enzymatic reactions. In particular, citrulline can be biosynthesized from carbamoyl phosphate and ornithine which is catalyzed by the enzyme ornithine carbamoyltransferase. In addition, citrulline and L-aspartic acid can be converted into argininosuccinic acid through the action of the enzyme argininosuccinate synthase. In humans, citrulline is involved in the metabolic disorder called argininemia. Citrulline has also been found to be associated with several diseases such as ulcerative colitis, rheumatoid arthritis, and citrullinemia type II. Citrulline has also been linked to several inborn metabolic disorders including argininosuccinic aciduria and fumarase deficiency. Outside of the human body, citrulline is found, on average, in the highest concentration in a few different foods such as wheats, oats, and cucumbers and in a lower concentration in swiss chards, yellow wax beans, and potato. Citrulline has also been detected, but not quantified in several different foods, such as epazotes, lotus, common buckwheats, strawberry guava, and italian sweet red peppers. Citrulline is a potentially toxic compound. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC1.14.13.39).
[Spectral] L-Citrulline (exact mass = 175.09569) and L-Glutamate (exact mass = 147.05316) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
Occurs in the juice of watermelon (Citrullus vulgaris)
IPB_RECORD: 257; CONFIDENCE confident structure
KEIO_ID C013
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
2-Amino-5-ureidopentanoic acid is an endogenous metabolite.
2-Amino-5-ureidopentanoic acid is an endogenous metabolite.
L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.
L-Citrulline is an amino acid derived from ornithine in the catabolism of proline or glutamine and glutamate, or from l-arginine via arginine-citrulline pathway.
同义名列表
66 个代谢物同义名
(S)-2-Amino-5-(aminocarbonyl)aminopentanoic acid; (2S)-2-Amino-5-(carbamoylamino)pentanoic acid; (S)-2-Amino-5-(aminocarbonyl)aminopentanoate; (2S)-2-Amino-5-(carbamoylamino)pentanoate; alpha-Amino-gamma-ureidovaleric acid; alpha-Amino-delta-ureidovaleric acid; (S)-2-Amino-5-ureidopentanoic acid; N(5)-(Aminocarbonyl)-DL-ornithine; L(+)-2-Amino-5-ureidovaleric acid; alpha-Amino-gamma-ureidovalerate; N(5)-(Aminocarbonyl)-L-ornithine; a-Amino-delta-ureidovaleric acid; alpha-Amino-delta-ureidovalerate; L-2-Amino-5-ureido-valeric acid; L-2-Amino-5-ureidovaleric acid; N5-(Aminocarbonyl)-L-ornithine; (S)-2-Amino-5-ureidopentanoate; L(+)-2-Amino-5-ureidovalerate; a-Amino-δ-ureidovaleric acid; 2-Amino-5-ureidovaleric acid; a-Amino-delta-ureidovalerate; a-Amino-D-ureidovaleric acid; N5-(Aminocarbonyl)-ornithine; Α-amino-δ-ureidovaleric acid; N5-(Aminocarbonyl)ornithine; 2-Amino-5-uredovaleric acid; L-2-Amino-5-ureido-valerate; L-2-Amino-5-ureidovalerate; N(delta)-Carbamylornithine; 2-Amino-5-ureidovalerate; Ngamma-carbamylornithine; Ndelta-carbamylornithine; Ndelta-carbamy-ornithine; N5-Carbamoyl-L-ornithine; Α-amino-δ-ureidovalerate; Amino-ureidovaleric acid; a-Amino-δ-ureidovalerate; L-N5-Carbamoyl-ornithine; a-Amino-D-ureidovalerate; 2-Amino-5-uredovalerate; N(Δ)-carbamylornithine; N5-Carbamoylornithine; N()-Carbamylornithine; delta-Ureidonorvaline; Gammaureidonorvaline; N5-Carbamylornithine; Amino-ureidovalerate; ND-Carbamylornithine; N-Carbamylornithine; Ureidovaleric acid; Δ-ureidonorvaline; D-Ureidonorvaline; Ureidonorvaline; L(+)-Citrulline; Ureidovalerate; DL-Citrulline; L-Citrulline; L-Cytrulline; Cytrulline; Sitrulline; Citrulline; H-Cit-OH; CIR; Cit; Citrulline; 2-Amino-5-ureidopentanoic acid
数据库引用编号
64 个数据库交叉引用编号
- ChEBI: CHEBI:18211
- ChEBI: CHEBI:16349
- KEGG: C00327
- KEGGdrug: D71216
- KEGGdrug: D07706
- PubChem: 3621
- PubChem: 9750
- PubChem: 833
- HMDB: HMDB0000904
- Metlin: METLIN16
- DrugBank: DB00155
- ChEMBL: CHEMBL187855
- ChEMBL: CHEMBL444814
- Wikipedia: Citrulline
- MeSH: Citrulline
- MetaCyc: L-CITRULLINE
- KNApSAcK: C00001348
- foodb: FDB011841
- chemspider: 9367
- CAS: 94740-46-2
- CAS: 627-77-0
- CAS: 372-75-8
- MoNA: PS118902
- MoNA: KNA00442
- MoNA: KNA00806
- MoNA: PB000435
- MoNA: KO000394
- MoNA: KO000391
- MoNA: PS118903
- MoNA: PS118907
- MoNA: KNA00439
- MoNA: KO002529
- MoNA: KO002528
- MoNA: KNA00097
- MoNA: KO002531
- MoNA: PB000431
- MoNA: PS118901
- MoNA: PS118904
- MoNA: KNA00804
- MoNA: KNA00099
- MoNA: KNA00441
- MoNA: KNA00100
- MoNA: PB000434
- MoNA: KO000395
- MoNA: KO000392
- MoNA: KO002527
- MoNA: KO002530
- MoNA: PS118905
- MoNA: KNA00807
- MoNA: PB000433
- MoNA: KO000393
- MoNA: KNA00440
- MoNA: PR100448
- MoNA: PR100901
- MoNA: KNA00805
- MoNA: PB000432
- PMhub: MS000007545
- PDB-CCD: CIR
- 3DMET: B01217
- NIKKAJI: J5.711H
- RefMet: Citrulline
- medchemexpress: HY-W016734
- medchemexpress: HY-N0391
- LOTUS: LTS0031418
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
648 个相关的代谢反应过程信息。
Reactome(33)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
CAP + L-Orn ⟶ L-Cit + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Urea cycle:
ATP + L-Asp + L-Cit ⟶ AMP + ARSUA + PPi
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism of nitric oxide:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Immune System:
ATP + Ag-substrate:E3:E2:Ub ⟶ AMP + E3:Ub:substrate + PPi
- Innate Immune System:
ATP + DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomer + UBE2N:UBE2V1 ⟶ AMP + DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6 + PPi + UBE2N:UBE2V1
- ROS, RNS production in phagocytes:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet homeostasis:
H0ZG60 + LDL ⟶ LDL:LRP8
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
BioCyc(4)
- urea cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- nitric oxide biosynthesis:
NADPH + O2 + arg ⟶ L-citrulline + NADP+ + nitric oxide
WikiPathways(2)
- NO/cGMP/PKG mediated neuroprotection:
cAMP ⟶ AMP
- Metabolism overview:
NH3 ⟶ Glutamic acid
Plant Reactome(607)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
L-Cit + Pi ⟶ CAP + L-Orn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Arginine biosynthesis II (acetyl cycle):
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
H2O + L-Arg ⟶ L-Cit + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
2-acetamido-5-oxopentanoic acid + L-Glu ⟶ 2OG + N-acetyl-L-ornithine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline biosynthesis V (from arginine):
2OG + L-Orn ⟶ L-Glu + L-Glu5S
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Arginine biosynthesis I:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Arginine biosynthesis II (acetyl cycle):
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
ATP + L-Asp + L-Cit ⟶ AMP + L-Argininosuccinate + PPi
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
- Citrulline-nitric oxide cycle:
H+ + L-Arg + Oxygen + TPNH ⟶ H2O + L-Cit + NO + TPN
INOH(2)
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
41 个相关的物种来源信息
- 4890 - Ascomycota: LTS0031418
- 2 - Bacteria: LTS0031418
- 31392 - Chondria: LTS0031418
- 860625 - Chondria armata: 10.1002/ARDP.19602930608
- 860625 - Chondria armata: LTS0031418
- 1890464 - Chroococcaceae: LTS0031418
- 3028117 - Cyanophyceae: LTS0031418
- 3394 - Cycadaceae: LTS0031418
- 3296 - Cycadopsida: LTS0031418
- 3395 - Cycas: LTS0031418
- 3396 - Cycas revoluta: 10.1016/S0031-9422(96)00866-7
- 3396 - Cycas revoluta: LTS0031418
- 543 - Enterobacteriaceae: LTS0031418
- 2759 - Eukaryota: LTS0031418
- 2806 - Florideophyceae: LTS0031418
- 4751 - Fungi: LTS0031418
- 1236 - Gammaproteobacteria: LTS0031418
- 9606 - Homo sapiens: -
- 31969 - Mollicutes: LTS0031418
- 2093 - Mycoplasma: LTS0031418
- 28903 - Mycoplasma bovis: 10.1128/MSYSTEMS.00055-17
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 2092 - Mycoplasmataceae: LTS0031418
- 2767358 - Mycoplasmopsis: LTS0031418
- 2803 - Rhodomelaceae: LTS0031418
- 2763 - Rhodophyta: LTS0031418
- 590 - Salmonella: LTS0031418
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 28901 - Salmonella enterica: LTS0031418
- 4895 - Schizosaccharomyces: LTS0031418
- 4896 - Schizosaccharomyces pombe: LTS0031418
- 4894 - Schizosaccharomycetaceae: LTS0031418
- 147554 - Schizosaccharomycetes: LTS0031418
- 35493 - Streptophyta: LTS0031418
- 1890426 - Synechococcaceae: LTS0031418
- 1129 - Synechococcus: LTS0031418
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 32046 - Synechococcus elongatus: LTS0031418
- 58023 - Tracheophyta: LTS0031418
- 33090 - Viridiplantae: LTS0031418
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Fatemeh Bagheripour, Sajad Jeddi, Khosrow Kashfi, Asghar Ghasemi. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent.
Life sciences.
2024 Feb; 339(?):122432. doi:
10.1016/j.lfs.2024.122432
. [PMID: 38237764] - Juanjuan Zhao, Yanfeng Li, Chunli Gao, Zeyuan Zhao, Shengxiang Zhang, Jianhui Dong, Haiyue Zuo, Xufei Chen, Binxi Xie, Zhengwei Guo, Yanming Wang, Hui Li, Yangyang Bian. Screening of natural inhibitors against peptidyl arginine deiminase 4 from herbal extracts by a high-performance liquid chromatography ultraviolet-visible based method.
Journal of chromatography. A.
2024 Feb; 1716(?):464643. doi:
10.1016/j.chroma.2024.464643
. [PMID: 38232639] - Liping Qu, Xiao Ma, Feifei Wang. The roles of gut microbiome and metabolites associated with skin photoaging in mice by intestinal flora sequencing and metabolomics.
Life sciences.
2024 Feb; ?(?):122487. doi:
10.1016/j.lfs.2024.122487
. [PMID: 38316265] - Petar Pujic, Lorena Carro, Pascale Fournier, Jean Armengaud, Guylaine Miotello, Nathalie Dumont, Caroline Bourgeois, Xavier Saupin, Patrick Jame, Gabriela Vuletin Selak, Nicole Alloisio, Philippe Normand. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles.
International journal of molecular sciences.
2023 May; 24(11):. doi:
10.3390/ijms24119162
. [PMID: 37298114] - Li Yin, Xiaomin Wei, Yanjun Zhang, Chengshu Lu, Huakun Wang. Citrulline inhibits LPS-induced pyroptosis of RAW264.7 macrophages through NF-κB signaling pathway.
Immunity, inflammation and disease.
2023 04; 11(4):e832. doi:
10.1002/iid3.832
. [PMID: 37102651] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Xiangjuan Yan, Fei Zhao, Guosheng Wang, Zhen Wang, Mingxi Zhou, Limin Zhang, Guoxiang Wang, Yanshan Chen. Metabolomic Analysis of Microcystis aeruginosa After Exposure to the Algicide L-Lysine.
Bulletin of environmental contamination and toxicology.
2022 Dec; 110(1):12. doi:
10.1007/s00128-022-03658-5
. [PMID: 36512146] - Yan-Kun Zhang, Bing-Kun Yang, Chun-Nuan Zhang, Shi-Xiao Xu, Ping Sun. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics.
The Science of the total environment.
2022 Dec; 850(?):157772. doi:
10.1016/j.scitotenv.2022.157772
. [PMID: 35934030] - Tongtong Ba, Dai Zhao, Yiqin Chen, Cuiping Zeng, Cheng Zhang, Sai Niu, Hanchuan Dai. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction.
Nutrients.
2022 Oct; 14(21):. doi:
10.3390/nu14214549
. [PMID: 36364817] - Shangqing Li, Guorong Lyu, Shaohui Li, Hainan Yang, Yiru Yang. Metabolic characterization of amniotic fluid of fetuses with isolated choroid plexus cyst.
Journal of perinatal medicine.
2022 Oct; 50(8):1100-1106. doi:
10.1515/jpm-2022-0028
. [PMID: 35607760] - Tao Wen, Penghao Xie, C Ryan Penton, Lauren Hale, Linda S Thomashow, Shengdie Yang, Zhexu Ding, Yaqi Su, Jun Yuan, Qirong Shen. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin.
Microbiome.
2022 10; 10(1):177. doi:
10.1186/s40168-022-01375-z
. [PMID: 36271396] - Lei Zhang, Lin Han, Ziyan Liu, Jiaru Jing, Jingyu Wang, Wei Zhang, Ai Gao. Early hematopoietic injury triggered by benzene characterized with inhibition of erythrocyte differentiation involving the mollicutes_RF39-derived citrulline.
Chemosphere.
2022 Sep; 303(Pt 1):135009. doi:
10.1016/j.chemosphere.2022.135009
. [PMID: 35597459] - Guodong Zhao, Xi Zhao, Yukun Song, Aerman Haire, Airixiati Dilixiati, Zhiqiang Liu, Shangshang Zhao, Aikebaier Aihemaiti, Xiangwei Fu, Abulizi Wusiman. Effect of L-citrulline supplementation on sperm characteristics and hormonal and antioxidant levels in blood and seminal plasma of rams.
Reproduction in domestic animals = Zuchthygiene.
2022 Jul; 57(7):722-733. doi:
10.1111/rda.14111
. [PMID: 35262979] - Svetlana Baskal, Alexander Bollenbach, Bettina Henzi, Patricia Hafner, Dirk Fischer, Dimitrios Tsikas. Stable-Isotope Dilution GC-MS Measurement of Metformin in Human Serum and Urine after Derivatization with Pentafluoropropionic Anhydride and Its Application in Becker Muscular Dystrophy Patients Administered with Metformin, l-Citrulline, or Their Combination.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123850
. [PMID: 35744973] - Vincent Marcangeli, Layale Youssef, Maude Dulac, Livia P Carvalho, Guy Hajj-Boutros, Olivier Reynaud, Bénédicte Guegan, Fanny Buckinx, Pierrette Gaudreau, José A Morais, Pascale Mauriège, Philippe Noirez, Mylène Aubertin-Leheudre, Gilles Gouspillou. Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults.
Journal of cachexia, sarcopenia and muscle.
2022 06; 13(3):1526-1540. doi:
10.1002/jcsm.12955
. [PMID: 35257499] - Chervin Hassel, Morgane Couchet, Nathalie Jacquemot, Christelle Blavignac, Cécile Loï, Christophe Moinard, David Cia. Citrulline protects human retinal pigment epithelium from hydrogen peroxide and iron/ascorbate induced damages.
Journal of cellular and molecular medicine.
2022 05; 26(10):2808-2818. doi:
10.1111/jcmm.17294
. [PMID: 35460170] - Ozcan Esen, Mustafa Can Eser, Mekki Abdioglu, Daniela Benesova, Tomasz Gabrys, Raci Karayigit. Eight Days of L-Citrulline or L-Arginine Supplementation Did Not Improve 200-m and 100-m Swimming Time Trials.
International journal of environmental research and public health.
2022 04; 19(8):. doi:
10.3390/ijerph19084462
. [PMID: 35457330] - Claudia Sikorski, Sandi Azab, Russell J de Souza, Meera Shanmuganathan, Dipika Desai, Koon Teo, Stephanie A Atkinson, Katherine Morrison, Milan Gupta, Philip Britz-McKibbin, Sonia S Anand. Serum metabolomic signatures of gestational diabetes in South Asian and white European women.
BMJ open diabetes research & care.
2022 04; 10(2):. doi:
10.1136/bmjdrc-2021-002733
. [PMID: 35450870] - Victoria Anthony Uyanga, Jingpeng Zhao, Xiaojuan Wang, Hongchao Jiao, Okanlawon M Onagbesan, Hai Lin. Effects of dietary L-citrulline supplementation on nitric oxide synthesis, immune responses and mitochondrial energetics of broilers during heat stress.
Journal of thermal biology.
2022 Apr; 105(?):103227. doi:
10.1016/j.jtherbio.2022.103227
. [PMID: 35393039] - Druszczynska Magdalena, Seweryn Michal, Sieczkowska Marta, Kowalewska-Pietrzak Magdalena, Pankowska Anna, Godkowicz Magdalena, Szewczyk Rafał. Targeted metabolomics analysis of serum and Mycobacterium tuberculosis antigen-stimulated blood cultures of pediatric patients with active and latent tuberculosis.
Scientific reports.
2022 03; 12(1):4131. doi:
10.1038/s41598-022-08201-4
. [PMID: 35260782] - Victoria Anthony Uyanga, Lei Liu, Jingpeng Zhao, Xiaojuan Wang, Hongchao Jiao, Hai Lin. Central and peripheral effects of L-citrulline on thermal physiology and nitric oxide regeneration in broilers.
Poultry science.
2022 Mar; 101(3):101669. doi:
10.1016/j.psj.2021.101669
. [PMID: 35101686] - Katherine S Peters, Emilio Rivera, Cassandra Warden, Paula A Harlow, Sabrina L Mitchell, M Wade Calcutt, David C Samuels, Milam A Brantley. Plasma Arginine and Citrulline are Elevated in Diabetic Retinopathy.
American journal of ophthalmology.
2022 03; 235(?):154-162. doi:
10.1016/j.ajo.2021.09.021
. [PMID: 34587493] - Florian Reizine, Murielle Grégoire, Mathieu Lesouhaitier, Valentin Coirier, Juliette Gauthier, Céline Delaloy, Elise Dessauge, Florent Creusat, Fabrice Uhel, Arnaud Gacouin, Frédéric Dessauge, Cécile Le Naoures, Caroline Moreau, Claude Bendavid, Yoann Daniel, Kilian Petitjean, Valérie Bordeau, Claire Lamaison, Caroline Piau, Vincent Cattoir, Mikael Roussel, Bernard Fromenty, Christian Michelet, Yves Le Tulzo, Jaroslaw Zmijewski, Ronan Thibault, Michel Cogné, Karin Tarte, Jean-Marc Tadié. Beneficial effects of citrulline enteral administration on sepsis-induced T cell mitochondrial dysfunction.
Proceedings of the National Academy of Sciences of the United States of America.
2022 02; 119(8):. doi:
10.1073/pnas.2115139119
. [PMID: 35173051] - Oskar Ciesielski, Marta Biesiekierska, Baptiste Panthu, Mirosław Soszyński, Luciano Pirola, Aneta Balcerczyk. Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives.
Cellular and molecular life sciences : CMLS.
2022 Jan; 79(2):94. doi:
10.1007/s00018-022-04126-3
. [PMID: 35079870] - Victoria Anthony Uyanga, Jingpeng Zhao, Xiaojuan Wang, Hongchao Jiao, Okanlawon M Onagbesan, Hai Lin. Dietary L-citrulline influences body temperature and inflammatory responses during nitric oxide synthase inhibition and endotoxin challenge in chickens.
Stress (Amsterdam, Netherlands).
2022 01; 25(1):74-86. doi:
10.1080/10253890.2021.2023495
. [PMID: 34962227] - Neymar de Oliveira, Joelma Gandolfi, Lígia Contrim, Roseli Pereira, Loraine Fernandes, João Silva, Brenno Gomes, Francisco Garcia Soriano, Suzana Lobo. The effects of vasopressors with and without dobutamine on haemodynamics, metabolism and gut injury during endotoxic shock in rabbits. A controlled study.
Anaesthesiology intensive therapy.
2022; 54(2):141-149. doi:
10.5114/ait.2022.117264
. [PMID: 35792110] - José Burgos, Aitor Viribay, Diego Fernández-Lázaro, Julio Calleja-González, Josefa González-Santos, Juan Mielgo-Ayuso. Combined Effects of Citrulline Plus Nitrate-Rich Beetroot Extract Co-Supplementation on Maximal and Endurance-Strength and Aerobic Power in Trained Male Triathletes: A Randomized Double-Blind, Placebo-Controlled Trial.
Nutrients.
2021 Dec; 14(1):. doi:
10.3390/nu14010040
. [PMID: 35010917] - Eduardo Sommella, Giulio Verna, Marina Liso, Emanuela Salviati, Tiziana Esposito, Daniela Carbone, Camilla Pecoraro, Marcello Chieppa, Pietro Campiglia. Hop-derived fraction rich in beta acids and prenylflavonoids regulates the inflammatory response in dendritic cells differently from quercetin: unveiling metabolic changes by mass spectrometry-based metabolomics.
Food & function.
2021 Dec; 12(24):12800-12811. doi:
10.1039/d1fo02361f
. [PMID: 34859812] - Vishwajit S Chowdhury, Yoshimitsu Ouchi, Guofeng Han, Hatem M Eltahan, Shogo Haraguchi, Takuro Miyazaki, Jun-Ichi Shiraishi, Toshihisa Sugino, Takashi Bungo. Oral administration of L-citrulline changes the concentrations of plasma hormones and biochemical profile in heat-exposed broilers.
Animal science journal = Nihon chikusan Gakkaiho.
2021 Dec; 92(1):e13578. doi:
10.1111/asj.13578
. [PMID: 34235825] - E Lichar Dillon, Guoyao Wu. Cortisol enhances citrulline synthesis from proline in enterocytes of suckling piglets.
Amino acids.
2021 Dec; 53(12):1957-1966. doi:
10.1007/s00726-021-03039-y
. [PMID: 34244859] - Bo Zhou, Gulinigaer Tuerhong Jiang, Hui Liu, Manyun Guo, Junhui Liu, Jianqing She. Dysregulated Arginine Metabolism in Young Patients with Chronic Persistent Asthma and in Human Bronchial Epithelial Cells.
Nutrients.
2021 Nov; 13(11):. doi:
10.3390/nu13114116
. [PMID: 34836371] - Karolina A P Wijnands, Dennis M Meesters, Benjamin Vandendriessche, Jacob J Briedé, Hans M H van Eijk, Peter Brouckaert, Anje Cauwels, Wouter H Lamers, Martijn Poeze. Microcirculatory Function during Endotoxemia-A Functional Citrulline-Arginine-NO Pathway and NOS3 Complex Is Essential to Maintain the Microcirculation.
International journal of molecular sciences.
2021 Nov; 22(21):. doi:
10.3390/ijms222111940
. [PMID: 34769369] - Nilima Jawale, Mallory Prideaux, Malavika Prasad, Malki Miller, Shantanu Rastogi. Plasma Citrulline as a Biomarker for Early Diagnosis of Necrotizing Enterocolitis in Preterm Infants.
American journal of perinatology.
2021 11; 38(13):1435-1441. doi:
10.1055/s-0040-1713406
. [PMID: 32604444] - S R Hashemi, H A Arab, B Seifi, S Muhammadnejad. A comparison effects of l-citrulline and l-arginine against cyclosporine-induced blood pressure and biochemical changes in the rats.
Hipertension y riesgo vascular.
2021 Oct; 38(4):170-177. doi:
10.1016/j.hipert.2021.08.002
. [PMID: 34561200] - Martin Padar, Joel Starkopf, Liis Starkopf, Alastair Forbes, Michael Hiesmayr, Stephan M Jakob, Olav Rooijackers, Jan Wernerman, Sven Erik Ojavee, Annika Reintam Blaser. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients.
Clinical nutrition ESPEN.
2021 10; 45(?):322-332. doi:
10.1016/j.clnesp.2021.07.026
. [PMID: 34620335] - Alexandre Nuzzo, Kevin Guedj, Sonja Curac, Claude Hercend, Claude Bendavid, Nathalie Gault, Alexy Tran-Dinh, Maxime Ronot, Antonino Nicoletti, Yoram Bouhnik, Yves Castier, Olivier Corcos, Katell Peoc'h. Accuracy of citrulline, I-FABP and D-lactate in the diagnosis of acute mesenteric ischemia.
Scientific reports.
2021 09; 11(1):18929. doi:
10.1038/s41598-021-98012-w
. [PMID: 34556697] - Jesús Beltrán-García, Juan J Manclús, Eva M García-López, Nieves Carbonell, José Ferreres, María Rodríguez-Gimillo, Concepción Garcés, Federico V Pallardó, José L García-Giménez, Ángel Montoya, Carlos Romá-Mateo. Comparative Analysis of Chromatin-Delivered Biomarkers in the Monitoring of Sepsis and Septic Shock: A Pilot Study.
International journal of molecular sciences.
2021 Sep; 22(18):. doi:
10.3390/ijms22189935
. [PMID: 34576097] - Sven Jäckel, Frederic Christian Pipp, Barbara Emde, Stefan Weigt, Enrico Vigna, Bettina Hanschke, Lena Kasper, Anindya Siddharta, Jürgen Hellmann, Stephanie Czasch, Michael W Schmitt. L-citrulline: A preclinical safety biomarker for the small intestine in rats and dogs in repeat dose toxicity studies.
Journal of pharmacological and toxicological methods.
2021 Sep; 111(?):107110. doi:
10.1016/j.vascn.2021.107110
. [PMID: 34411739] - Ingeborg M Dekker, Hanneke Bruggink, Barbara S van der Meij, Nicolette J Wierdsma. State of the art: the role of citrulline as biomarker in patients with chemotherapy- or graft-versus-host-disease-induced mucositis.
Current opinion in clinical nutrition and metabolic care.
2021 09; 24(5):416-427. doi:
10.1097/mco.0000000000000773
. [PMID: 34155153] - Ryan H Peretz, Nicholas Ah Mew, Hilary J Vernon, Rebecca D Ganetzky. Prospective diagnosis of MT-ATP6-related mitochondrial disease by newborn screening.
Molecular genetics and metabolism.
2021 Sep; 134(1-2):37-42. doi:
10.1016/j.ymgme.2021.06.007
. [PMID: 34176718] - Thomas B G Poulsen, Dres Damgaard, Malene M Jørgensen, Ladislav Senolt, Jonathan M Blackburn, Claus H Nielsen, Allan Stensballe. Identification of potential autoantigens in anti-CCP-positive and anti-CCP-negative rheumatoid arthritis using citrulline-specific protein arrays.
Scientific reports.
2021 08; 11(1):17300. doi:
10.1038/s41598-021-96675-z
. [PMID: 34453079] - Anaisa Genoveva Flores-Ramírez, Verónica Ivette Tovar-Villegas, Arun Maharaj, Ma Eugenia Garay-Sevilla, Arturo Figueroa. Effects of L-Citrulline Supplementation and Aerobic Training on Vascular Function in Individuals with Obesity across the Lifespan.
Nutrients.
2021 Aug; 13(9):. doi:
10.3390/nu13092991
. [PMID: 34578869] - Stefano Maric, Tanja Restin, Julian Louis Muff, Simone Mafalda Camargo, Laura Chiara Guglielmetti, Stefan Gerhard Holland-Cunz, Pascal Crenn, Raphael Nicolas Vuille-Dit-Bille. Citrulline, Biomarker of Enterocyte Functional Mass and Dietary Supplement. Metabolism, Transport, and Current Evidence for Clinical Use.
Nutrients.
2021 Aug; 13(8):. doi:
10.3390/nu13082794
. [PMID: 34444954] - Marius M Mader, Rainer Böger, Daniel Appel, Edzard Schwedhelm, Munif Haddad, Malte Mohme, Katrin Lamszus, Manfred Westphal, Patrick Czorlich, Juliane Hannemann. Intrathecal and systemic alterations of L-arginine metabolism in patients after intracerebral hemorrhage.
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
2021 08; 41(8):1964-1977. doi:
10.1177/0271678x20983216
. [PMID: 33461409] - Francesco Proli, Andrea Faragalli, Cécile Talbotec, Andrea Bucci, Boutaina Zemrani, Christophe Chardot, Elie Abi Nader, Olivier Goulet, Cécile Lambe. Variation of plasma citrulline as a predictive factor for weaning off long-term parenteral nutrition in children with neonatal short bowel syndrome.
Clinical nutrition (Edinburgh, Scotland).
2021 08; 40(8):4941-4947. doi:
10.1016/j.clnu.2021.07.017
. [PMID: 34358840] - Hideki Ikeda. Plasma amino acid levels in individuals with bacterial pneumonia and healthy controls.
Clinical nutrition ESPEN.
2021 08; 44(?):204-210. doi:
10.1016/j.clnesp.2021.06.021
. [PMID: 34330467] - Edyta Sutkowska, Paulina Fortuna, Bernadetta Kałuża, Karolina Sutkowska, Jerzy Wiśniewski, Andrzej Gamian Prof. Metformin has no impact on nitric oxide production in patients with pre-diabetes.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Aug; 140(?):111773. doi:
10.1016/j.biopha.2021.111773
. [PMID: 34062418] - Ayako Ohyama, Atsumu Osada, Hoshimi Kawaguchi, Izumi Kurata, Taihei Nishiyama, Tamaki Iwai, Akihito Ishigami, Yuya Kondo, Hiroto Tsuboi, Takayuki Sumida, Isao Matsumoto. Specific Increase in Joint Neutrophil Extracellular Traps and Its Relation to Interleukin 6 in Autoimmune Arthritis.
International journal of molecular sciences.
2021 Jul; 22(14):. doi:
10.3390/ijms22147633
. [PMID: 34299252] - Damian Gajecki, Jakub Gawryś, Jerzy Wiśniewski, Paulina Fortuna, Ewa Szahidewicz-Krupska, Adrian Doroszko. A Cross-Talk between the Erythrocyte L-Arginine/ADMA/Nitric Oxide Metabolic Pathway and the Endothelial Function in Subjects with Type 2 Diabetes Mellitus.
Nutrients.
2021 Jul; 13(7):. doi:
10.3390/nu13072306
. [PMID: 34371816] - Eline H van Roekel, Martijn J L Bours, Linda van Delden, Stéphanie O Breukink, Michèl Aquarius, Eric T P Keulen, Audrey Gicquiau, Vivian Viallon, Sabina Rinaldi, Paolo Vineis, Ilja C W Arts, Marc J Gunter, Michael F Leitzmann, Augustin Scalbert, Matty P Weijenberg. Longitudinal associations of physical activity with plasma metabolites among colorectal cancer survivors up to 2 years after treatment.
Scientific reports.
2021 07; 11(1):13738. doi:
10.1038/s41598-021-92279-9
. [PMID: 34215757] - Sven Jäckel, Frederic Christian Pipp, Barbara Emde, Stefan Weigt, Enrico Vigna, Bettina Hanschke, Lena Kasper, Anindya Siddharta, Jürgen Hellmann, Stephanie Czasch, Michael W Schmitt. l-citrulline: A preclinical safety biomarker for the small intestine in rats and dogs in repeat dose toxicity studies.
Journal of pharmacological and toxicological methods.
2021 Jul; 110(?):107068. doi:
10.1016/j.vascn.2021.107068
. [PMID: 33940165] - C Breuillard, C Moinard, A Goron, N Neveux, A De Reviers, V C Mazurak, L Cynober, V E Baracos. Dietary citrulline does not modify rat colon tumor response to chemotherapy, but failed to improve nutritional status.
Clinical nutrition (Edinburgh, Scotland).
2021 07; 40(7):4560-4568. doi:
10.1016/j.clnu.2021.05.035
. [PMID: 34229260] - Prasanthi Jegatheesan, Christel Vicente, Perrine Marquet de Rouge, Nathalie Neveux, Radji Ramassamy, Salimata Magassa, Christian Aussel, Agathe Raynaud-Simon, Luc Cynober, Jean-Pascal De Bandt. Combined effect of citrulline and lactoserum on amino acid availability in aged rats.
Nutrition (Burbank, Los Angeles County, Calif.).
2021 Jul; 87-88(?):111196. doi:
10.1016/j.nut.2021.111196
. [PMID: 33744643] - Samaneh Azizi, Reza Mahdavi, Majid Mobasseri, Soghra Aliasgharzadeh, Fatemeh Abbaszadeh, Mehrangiz Ebrahimi-Mameghani. The impact of L-citrulline supplementation on glucose homeostasis, lipid profile, and some inflammatory factors in overweight and obese patients with type 2 diabetes: A double-blind randomized placebo-controlled trial.
Phytotherapy research : PTR.
2021 Jun; 35(6):3157-3166. doi:
10.1002/ptr.6997
. [PMID: 33876875] - Jerome Filippi, Amandine Rubio, Virgine Lasserre, Jean Maccario, Stephanie Walrand, Nathalie Neveux, Servane Le Plénier, Xavier Hébuterne, Luc Cynober, Christophe Moinard. Dose-dependent beneficial effects of citrulline supplementation in short bowel syndrome in rats.
Nutrition (Burbank, Los Angeles County, Calif.).
2021 05; 85(?):111118. doi:
10.1016/j.nut.2020.111118
. [PMID: 33545544] - Svetlana Baskal, Alexander Bollenbach, Dimitrios Tsikas. GC-MS Discrimination of Citrulline from Ornithine and Homocitrulline from Lysine by Chemical Derivatization: Evidence of Formation of N5-Carboxy-ornithine and N6-Carboxy-lysine.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082301
. [PMID: 33921162] - Stefano Maric, Pascal Flüchter, Laura Chiara Guglielmetti, Ralph Fabian Staerkle, Tom Sasse, Tanja Restin, Christoph Schneider, Stefan Gerhard Holland-Cunz, Pascal Crenn, Raphael Nicolas Vuille-Dit-Bille. Plasma citrulline correlates with basolateral amino acid transporter LAT4 expression in human small intestine.
Clinical nutrition (Edinburgh, Scotland).
2021 04; 40(4):2244-2251. doi:
10.1016/j.clnu.2020.10.003
. [PMID: 33077272] - Patrizia Amadio, Benedetta Porro, Viviana Cavalca, Silvia Stella Barbieri, Sonia Eligini, Susanna Fiorelli, Alessandro Di Minno, Alessandra Gorini, Mattia Giuliani, Josè Pablo Werba, Nicola Cosentino, Paolo Olivares, Simone Barbieri, Fabrizio Veglia, Elena Tremoli, Daniela Trabattoni. Persistent long-term platelet activation and endothelial perturbation in women with Takotsubo syndrome.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Apr; 136(?):111259. doi:
10.1016/j.biopha.2021.111259
. [PMID: 33450492] - Froukje A Feenstra, Sara J Kuik, Joep P M Derikx, M Rebecca Heiner-Fokkema, Elisabeth M W Kooi, Arend F Bos, Jan B F Hulscher. Plasma citrulline during the first 48 h after onset of necrotizing enterocolitis in preterm infants.
Journal of pediatric surgery.
2021 Mar; 56(3):476-482. doi:
10.1016/j.jpedsurg.2020.11.020
. [PMID: 33276973] - A Osada, I Matsumoto, N Mikami, A Ohyama, I Kurata, Y Kondo, H Tsuboi, A Ishigami, Y Sano, T Arai, N Ise, T Sumida. Citrullinated inter-alpha-trypsin inhibitor heavy chain 4 in arthritic joints and its potential effect in the neutrophil migration.
Clinical and experimental immunology.
2021 03; 203(3):385-399. doi:
10.1111/cei.13556
. [PMID: 33238047] - Annika Mutanen, Jouko Lohi, Laura Merras-Salmio, Antti Koivusalo, Mikko P Pakarinen. Prediction, identification and progression of histopathological liver disease activity in children with intestinal failure.
Journal of hepatology.
2021 03; 74(3):593-602. doi:
10.1016/j.jhep.2020.09.023
. [PMID: 33002568] - Mahmoud A Mohammad, Inka C Didelija, Barbara Stoll, Trung C Nguyen, Juan C Marini. Pegylated arginine deiminase depletes plasma arginine but maintains tissue arginine availability in young pigs.
American journal of physiology. Endocrinology and metabolism.
2021 03; 320(3):E641-E652. doi:
10.1152/ajpendo.00472.2020
. [PMID: 33427052] - P Sonaimuthu, E Senkevitch, N Haskins, P Uapinyoying, M McNutt, H Morizono, M Tuchman, L Caldovic. Gene delivery corrects N-acetylglutamate synthase deficiency and enables insights in the physiological impact of L-arginine activation of N-acetylglutamate synthase.
Scientific reports.
2021 02; 11(1):3580. doi:
10.1038/s41598-021-82994-8
. [PMID: 33574402] - François Mifsud, Sébastien Czernichow, Claire Carette, Rachel Levy, Philippe Ravaud, Luc Cynober, Nathalie Neveux, Claire Rives-Lange. Behaviour of plasma citrulline after bariatric surgery in the BARIASPERM cohort.
Clinical nutrition (Edinburgh, Scotland).
2021 02; 40(2):505-510. doi:
10.1016/j.clnu.2020.05.045
. [PMID: 32891457] - S Azizi, M Ebrahimi-Mameghani, M Mobasseri, N Karamzad, R Mahdavi. Oxidative stress and nitrate/nitrite (NOx) status following citrulline supplementation in type 2 diabetes: a randomised, double-blind, placebo-controlled trial.
Journal of human nutrition and dietetics : the official journal of the British Dietetic Association.
2021 02; 34(1):64-72. doi:
10.1111/jhn.12792
. [PMID: 32683790] - Yuzi Tian, Rachel M Russo, Yongqing Li, Monita Karmakar, Baoling Liu, Michael A Puskarich, Alan E Jones, Kathleen A Stringer, Theodore J Standiford, Hasan B Alam. Serum citrullinated histone H3 concentrations differentiate patients with septic verses non-septic shock and correlate with disease severity.
Infection.
2021 Feb; 49(1):83-93. doi:
10.1007/s15010-020-01528-y
. [PMID: 33000445] - Michael Nolde, Martin Bahls, Nele Friedrich, Marcus Dörr, Tobias Dreischulte, Stefan B Felix, Ina-Maria Rückert-Eheberg, Nayeon Ahn, Ute Amann, Edzard Schwedhelm, Henry Völzke, Markus M Lerch, Jakob Linseisen, Christa Meisinger, Sebastian E Baumeister. Association of proton pump inhibitor use with endothelial function and metabolites of the nitric oxide pathway: A cross-sectional study.
Pharmacotherapy.
2021 02; 41(2):198-204. doi:
10.1002/phar.2504
. [PMID: 33465818] - Cécile Vors, Maryka Rancourt-Bouchard, Charles Couillard, Iris Gigleux, Patrick Couture, Benoît Lamarche. Sex May Modulate the Effects of Combined Polyphenol Extract and L-citrulline Supplementation on Ambulatory Blood Pressure in Adults with Prehypertension: A Randomized Controlled Trial.
Nutrients.
2021 Jan; 13(2):. doi:
10.3390/nu13020399
. [PMID: 33513929] - Patrycja Molek, Pawel Zmudzki, Aleksandra Wlodarczyk, Jadwiga Nessler, Jaroslaw Zalewski. The shifted balance of arginine metabolites in acute myocardial infarction patients and its clinical relevance.
Scientific reports.
2021 01; 11(1):83. doi:
10.1038/s41598-020-80230-3
. [PMID: 33420142] - Zixuan Ye, Yue Zhang, Yuanfen Liu, Yanyan Liu, Jiasheng Tu, Yan Shen. EGFR Targeted Cetuximab-Valine-Citrulline (vc)-Doxorubicin Immunoconjugates- Loaded Bovine Serum Albumin (BSA) Nanoparticles for Colorectal Tumor Therapy.
International journal of nanomedicine.
2021; 16(?):2443-2459. doi:
10.2147/ijn.s289228
. [PMID: 33814909] - Yedi Zhou, Yu Xu, Xiang Zhang, Qian Huang, Wei Tan, Yonghui Yang, Xiaori He, Shigeo Yoshida, Peiquan Zhao, Yun Li. Plasma levels of amino acids and derivatives in retinopathy of prematurity.
International journal of medical sciences.
2021; 18(15):3581-3587. doi:
10.7150/ijms.63603
. [PMID: 34522185] - A Aslam, Z Shengjie, L Xuqiang, H Nan, L Wenge. Rootstock mediates transcriptional regulation of citrulline metabolism in grafted watermelon.
Brazilian journal of biology = Revista brasleira de biologia.
2021 Jan; 81(1):125-136. doi:
10.1590/1519-6984.223633
. [PMID: 32321067] - Silvia De Pietri, Thomas Leth Frandsen, Mette Christensen, Kathrine Grell, Mathias Rathe, Klaus Müller. Citrulline as a biomarker of bacteraemia during induction treatment for childhood acute lymphoblastic leukaemia.
Pediatric blood & cancer.
2021 01; 68(1):e28793. doi:
10.1002/pbc.28793
. [PMID: 33155402] - Paulo D'Amora, Ismael Dale C G Silva, Maria Auxiliadora Budib, Ricardo Ayache, Rafaela Moraes Siufi Silva, Fabricio Colacino Silva, Robson Mateus Appel, Saturnino Sarat Júnior, Henrique Budib Dorsa Pontes, Ana Carolina Alvarenga, Emilli Carvalho Arima, Wellington Galhano Martins, Nakal Laurenço F Silva, Ricardo Sobhie Diaz, Marcia B Salzgeber, Anton M Palma, Steven S Evans, Robert A Nagourney. Towards risk stratification and prediction of disease severity and mortality in COVID-19: Next generation metabolomics for the measurement of host response to COVID-19 infection.
PloS one.
2021; 16(12):e0259909. doi:
10.1371/journal.pone.0259909
. [PMID: 34851990] - Zhu Chen, Weiting Fang, Yi Qin, Yin-Zhao Jin, Xiang Yang, Jianrong Lou. Citrullinated Antigens with Multiple Citrulline Similar Motif in the Diagnosis of Rheumatoid Arthritis: A Preliminary Single-Center Study.
Journal of immunology research.
2021; 2021(?):1891519. doi:
10.1155/2021/1891519
. [PMID: 34423050] - Maria Ebbesen, Hannelouise Kissow, Bolette Hartmann, Katrine Kielsen, Kaspar Sørensen, Sara Elizabeth Stinson, Christine Frithioff-Bøjsøe, Cilius Esmann Fonvig, Jens-Christian Holm, Torben Hansen, Jens Juul Holst, Klaus Gottlob Müller. Glucagon-Like Peptide-1 Is Associated With Systemic Inflammation in Pediatric Patients Treated With Hematopoietic Stem Cell Transplantation.
Frontiers in immunology.
2021; 12(?):793588. doi:
10.3389/fimmu.2021.793588
. [PMID: 34956226] - Roman І Skrypnyk, Ganna S Maslova, Igor N Skrypnyk. THE EFFECT OF DOXORUBICIN-INDUCED OXIDATIVE STRESS ON CITRULLINE CONCENTRATION IN THE SMALL INTESTINAL MUCOSA AND PLASMA BLOOD IN RATS WITH NON-ALCOHOLIC STEATOHEPATITIS.
Wiadomosci lekarskie (Warsaw, Poland : 1960).
2021; 74(6):1317-1321. doi:
. [PMID: 34159911]
- Chi-Jen Lo, Yu-Shien Ko, Su-Wei Chang, Hsiang-Yu Tang, Cheng-Yu Huang, Yu-Chen Huang, Hung-Yao Ho, Chih-Ming Lin, Mei-Ling Cheng. Metabolic signatures of muscle mass loss in an elderly Taiwanese population.
Aging.
2020 12; 13(1):944-956. doi:
10.18632/aging.202209
. [PMID: 33410783] - Hosein Ahmadi, Mesbah Babalar, Mohammad Ali Askary Sarcheshmeh, Mohammad Reza Morshedloo, Majid Shokrpour. Effects of exogenous application of citrulline on prolonged water stress damages in hyssop (Hyssopus officinalis L.): Antioxidant activity, biochemical indices, and essential oils profile.
Food chemistry.
2020 Dec; 333(?):127433. doi:
10.1016/j.foodchem.2020.127433
. [PMID: 32659662] - Mahmoud A Mohammad, Inka C Didelija, Juan C Marini. Arginase II Plays a Central Role in the Sexual Dimorphism of Arginine Metabolism in C57BL/6 Mice.
The Journal of nutrition.
2020 12; 150(12):3133-3140. doi:
10.1093/jn/nxaa318
. [PMID: 33188387] - Deyun Lu, Feng Han, Wenjuan Qiu, Huiwen Zhang, Jun Ye, Lili Liang, Yu Wang, Wenjun Ji, Xia Zhan, Xuefan Gu, Lianshu Han. Clinical and molecular characteristics of 69 Chinese patients with ornithine transcarbamylase deficiency.
Orphanet journal of rare diseases.
2020 12; 15(1):340. doi:
10.1186/s13023-020-01606-2
. [PMID: 33272297] - Silene Silvera Ruiz, Carola L Grosso, Margot Tablada, Marcelo Cabrera, Raquel Dodelson de Kremer, Ernesto Juaneda, Laura E Laróvere. Efficacy of citrulline supplementation to decrease the risk of pulmonary hypertension after congenital heart disease surgery. A local experience.
Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina).
2020 12; 77(4):249-253. doi:
10.31053/1853.0605.v77.n4.27936
. [PMID: 33351387] - L Li, M-Z Xu, L Wang, J Jiang, L-H Dong, F Chen, K Dong, H-F Song. Conjugating MMAE to a novel anti-HER2 antibody for selective targeted delivery.
European review for medical and pharmacological sciences.
2020 12; 24(24):12929-12937. doi:
10.26355/eurrev_202012_24196
. [PMID: 33378043] - Aurélie Bourdon, Jacob Hannigsberg, Emilie Misbert, Thang Nhat Tran, Valérie Amarger, Véronique Ferchaud-Roucher, Norbert Winer, Dominique Darmaun. Maternal supplementation with citrulline or arginine during gestation impacts fetal amino acid availability in a model of intrauterine growth restriction (IUGR).
Clinical nutrition (Edinburgh, Scotland).
2020 12; 39(12):3736-3743. doi:
10.1016/j.clnu.2020.03.036
. [PMID: 32336525] - Shahd Horie, Bairbre McNicholas, Emanuele Rezoagli, Tài Pham, Ger Curley, Danny McAuley, Cecilia O'Kane, Alistair Nichol, Claudia Dos Santos, Patricia R M Rocco, Giacomo Bellani, John G Laffey. Emerging pharmacological therapies for ARDS: COVID-19 and beyond.
Intensive care medicine.
2020 12; 46(12):2265-2283. doi:
10.1007/s00134-020-06141-z
. [PMID: 32654006] - Abinaya Manivannan, Eun-Su Lee, Koeun Han, Hye-Eun Lee, Do-Sun Kim. Versatile Nutraceutical Potentials of Watermelon-A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals.
Molecules (Basel, Switzerland).
2020 Nov; 25(22):. doi:
10.3390/molecules25225258
. [PMID: 33187365] - H R Wardill, A R da Silva Ferreira, S Lichtenberg Cloo, R Havinga, H J M Harmsen, W P Vermeij, W J E Tissing. Pre-therapy fasting slows epithelial turnover and modulates the microbiota but fails to mitigate methotrexate-induced gastrointestinal mucositis.
Gut microbes.
2020 11; 12(1):1-9. doi:
10.1080/19490976.2020.1809332
. [PMID: 32844722] - Praveen Kumar, Pengcheng Wang, Gregory Tudor, Catherine Booth, Ann M Farese, Thomas J MacVittie, Maureen A Kane. Evaluation of Plasma Biomarker Utility for the Gastrointestinal Acute Radiation Syndrome in Non-human Primates after Partial Body Irradiation with Minimal Bone Marrow Sparing through Correlation with Tissue and Histological Analyses.
Health physics.
2020 11; 119(5):594-603. doi:
10.1097/hp.0000000000001348
. [PMID: 32947487] - Jan Bednarsch, Elisabeth Blüthner, Mirjam Karber, Undine A Gerlach, Andreas Pascher, Sebastian Maasberg, Sophie Pevny, Johann Pratschke, Ulrich-Frank Pape, Martin Stockmann. Oral intake and plasma citrulline predict quality of life in patients with intestinal failure.
Nutrition (Burbank, Los Angeles County, Calif.).
2020 Nov; 79-80(?):110855. doi:
10.1016/j.nut.2020.110855
. [PMID: 32563769] - Mathieu Uzzan, Damien Soudan, Katell Peoc'h, Emmanuel Weiss, Olivier Corcos, Xavier Treton. Patients with COVID-19 present with low plasma citrulline concentrations that associate with systemic inflammation and gastrointestinal symptoms.
Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.
2020 10; 52(10):1104-1105. doi:
10.1016/j.dld.2020.06.042
. [PMID: 32646736] - Daniel Babula, Anna Horecka, Dorota Luchowska-Kocot, Joanna Kocot, Jacek Kurzepa. Decreased nitric oxide serum level after pituitary adenoma resection.
Journal of neurosurgical sciences.
2020 Oct; 64(5):452-455. doi:
10.23736/s0390-5616.17.04083-8
. [PMID: 28945050] - Hossein Salmanizadeh, Neda Sahi. Determination of amino acid profile for argininosuccinic aciduria disorder using High-Performance Liquid Chromatography with fluorescence detection.
Acta biochimica Polonica.
2020 Sep; 67(3):347-351. doi:
10.18388/abp.2020_5164
. [PMID: 32931185] - Mohammed Esmail Abdalla Elzaki, Zhen-Fang Li, Jie Wang, Lu Xu, Nannan Liu, Ren-Sen Zeng, Yuan-Yuan Song. Activiation of the nitric oxide cycle by citrulline and arginine restores susceptibility of resistant brown planthoppers to the insecticide imidacloprid.
Journal of hazardous materials.
2020 09; 396(?):122755. doi:
10.1016/j.jhazmat.2020.122755
. [PMID: 32361135] - Gian Luca Erre, Arduino Aleksander Mangoni, Giuseppe Passiu, Stefania Bassu, Floriana Castagna, Ciriaco Carru, Matteo Piga, Angelo Zinellu, Salvatore Sotgia. Comprehensive arginine metabolomics and peripheral vasodilatory capacity in rheumatoid arthritis: A monocentric cross-sectional study.
Microvascular research.
2020 09; 131(?):104038. doi:
10.1016/j.mvr.2020.104038
. [PMID: 32622695] - Jibran A Wali, Yen Chin Koay, Jason Chami, Courtney Wood, Leo Corcilius, Richard J Payne, Roman N Rodionov, Andreas L Birkenfeld, Dorit Samocha-Bonet, Stephen J Simpson, John F O'Sullivan. Nutritional and metabolic regulation of the metabolite dimethylguanidino valeric acid: an early marker of cardiometabolic disease.
American journal of physiology. Endocrinology and metabolism.
2020 09; 319(3):E509-E518. doi:
10.1152/ajpendo.00207.2020
. [PMID: 32663097] - Guicheng Qin, Xiaoyin Lin, Peibin Liang, Yanpeng Li, Chun Zhou, Selva Nandakumar Kutty, Holmdahl Rikard. [Strong inflammation is essential for expression of articular cartilage-specific citrullinated antigens].
Nan fang yi ke da xue xue bao = Journal of Southern Medical University.
2020 Aug; 40(8):1081-1089. doi:
10.12122/j.issn.1673-4254.2020.08.03
. [PMID: 32895186] - Daniel Appel, Rainer Böger, Julia Windolph, Gina Heinze, Alwin E Goetz, Juliane Hannemann. Asymmetric dimethylarginine predicts perioperative cardiovascular complications in patients undergoing medium-to-high risk non-cardiac surgery.
The Journal of international medical research.
2020 Aug; 48(8):300060520940450. doi:
10.1177/0300060520940450
. [PMID: 32842812] - Hardik Naik Jinal, Krishnan Sakthivel, Natarajan Amaresan. Characterisation of antagonistic Bacillus paralicheniformis (strain EAL) by LC-MS, antimicrobial peptide genes, and ISR determinants.
Antonie van Leeuwenhoek.
2020 Aug; 113(8):1167-1177. doi:
10.1007/s10482-020-01423-4
. [PMID: 32410087] - Palle Bekker Jeppesen, Simon M Gabe, Douglas L Seidner, Hak-Myung Lee, Clément Olivier. Citrulline correlations in short bowel syndrome-intestinal failure by patient stratification: Analysis of 24 weeks of teduglutide treatment from a randomized controlled study.
Clinical nutrition (Edinburgh, Scotland).
2020 08; 39(8):2479-2486. doi:
10.1016/j.clnu.2019.11.001
. [PMID: 31784300]