Canthaxanthin (BioDeep_00000003723)

 

Secondary id: BioDeep_00000403097, BioDeep_00000638840

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite


代谢物信息卡片


2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one

化学式: C40H52O2 (564.3967)
中文名称: 斑蝥黄(反式), 角黄素
谱图信息: 最多检出来源 Homo sapiens(blood) 8.88%

分子结构信息

SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)C(=O)CCC1(C)C)/C=C/C=C(\C)/C=C/C1=C(C)C(=O)CCC1(C)C
InChI: InChI=1/C40H52O2/c1-29(17-13-19-31(3)21-23-35-33(5)37(41)25-27-39(35,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-36-34(6)38(42)26-28-40(36,9)10/h11-24H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+

描述信息

Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule.
Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

同义名列表

25 个代谢物同义名

2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one; 2,4,4-trimethyl-3-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohexen-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohex-2-en-1-one; all-trans,beta-Carotene-4,4-dione; all-trans-beta-Carotene-4,4-dione; all-trans-b-Carotene-4,4-dione; all-trans-Β-carotene-4,4-dione; beta,beta-Carotene-4,4-dione; 4,4-Diketo-beta-carotene; 4,4-Dioxo-beta-carotene; beta-Carotene-4,4-dione; beta-Carotin-4,4-dione; 4,4-Diketo-b-carotene; 4,4-Dioxo-β-carotene; 4,4-Dioxo-b-carotene; Roxanthin red 10; Canthaxanthine; FOOD Orange 8; Cantaxanthine; canthaxanthin; Carophyll red; Cantaxanthin; L-Orange 7; Orobronze; e 161g; Canthaxanthin



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

9 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(4)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(5)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

315 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 BCL2, CASP3, CAT, CYP1A1, GJA1, HPGDS, ODC1, RARB, TLX2, TP53
Peripheral membrane protein 1 CYP1A1
Endoplasmic reticulum membrane 4 BCL2, CYP1A1, GJA1, UGT1A1
Nucleus 6 BCL2, CASP3, GJA1, RARB, TLX2, TP53
cytosol 9 BCL2, CASP3, CAT, GJA1, GPT, GSR, HPGDS, ODC1, TP53
centrosome 1 TP53
nucleoplasm 5 CASP3, GJA1, HPGDS, RARB, TP53
Cell membrane 3 GJA1, SLC6A8, TNF
Multi-pass membrane protein 3 GJA1, RHO, SLC6A8
cell junction 1 GJA1
cell surface 3 ENPP1, EPO, TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 2 GJA1, RHO
Golgi membrane 2 GJA1, RHO
lysosomal membrane 1 ENPP1
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 2 CASP3, TNF
plasma membrane 6 ENPP1, GJA1, RHO, SLC6A8, TNF, UGT1A1
Membrane 7 BCL2, CAT, ENPP1, RHO, SLC6A8, TP53, UGT1A1
apical plasma membrane 2 GJA1, SLC6A8
basolateral plasma membrane 1 ENPP1
extracellular exosome 4 CAT, EPO, GPT, GSR
endoplasmic reticulum 4 BCL2, GJA1, TP53, UGT1A1
extracellular space 4 ENPP1, EPO, IL2, TNF
perinuclear region of cytoplasm 1 UGT1A1
gap junction 1 GJA1
intercalated disc 1 GJA1
mitochondrion 6 BCL2, CAT, CYP1A1, GJA1, GSR, TP53
protein-containing complex 3 BCL2, CAT, TP53
intracellular membrane-bounded organelle 4 CAT, CYP1A1, GJA1, HPGDS
Microsome membrane 1 CYP1A1
postsynaptic density 1 CASP3
Secreted 3 ENPP1, EPO, IL2
extracellular region 4 CAT, EPO, IL2, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, UGT1A1
mitochondrial outer membrane 1 BCL2
Mitochondrion matrix 1 TP53
mitochondrial matrix 3 CAT, GSR, TP53
transcription regulator complex 1 TP53
ciliary membrane 1 RHO
photoreceptor inner segment 1 RHO
photoreceptor outer segment 1 RHO
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 GSR, TNF
nucleolus 1 TP53
cell-cell junction 1 RHO
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 1 SLC6A8
Cytoplasm, perinuclear region 1 UGT1A1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 2 GJA1, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 CAT, GJA1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Cell junction, gap junction 1 GJA1
connexin complex 1 GJA1
contractile muscle fiber 1 GJA1
fascia adherens 1 GJA1
intermediate filament 1 GJA1
lateral plasma membrane 1 GJA1
chromatin 3 RARB, TLX2, TP53
phagocytic cup 1 TNF
Cell projection, cilium, photoreceptor outer segment 1 RHO
sperm midpiece 1 RHO
Basolateral cell membrane 1 ENPP1
site of double-strand break 1 TP53
Golgi-associated vesicle membrane 2 GJA1, RHO
cell body 1 EPO
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, EPO
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
Photoreceptor inner segment membrane 1 RHO
tight junction 1 GJA1
[Isoform 1]: Nucleus 1 TP53
death-inducing signaling complex 1 CASP3
photoreceptor outer segment membrane 1 RHO
sperm head plasma membrane 1 RHO
cell-cell contact zone 1 GJA1
photoreceptor disc membrane 1 RHO
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
endoplasmic reticulum chaperone complex 1 UGT1A1
rod photoreceptor outer segment 1 RHO
BAD-BCL-2 complex 1 BCL2
cytochrome complex 1 UGT1A1
[Ectonucleotide pyrophosphatase/phosphodiesterase family member 1]: Cell membrane 1 ENPP1
[Ectonucleotide pyrophosphatase/phosphodiesterase family member 1, secreted form]: Secreted 1 ENPP1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Paul V Sauer, Lorenzo Cupellini, Markus Sutter, Mattia Bondanza, María Agustina Domínguez Martin, Henning Kirst, David Bína, Adrian Fujiet Koh, Abhay Kotecha, Basil J Greber, Eva Nogales, Tomáš Polívka, Benedetta Mennucci, Cheryl A Kerfeld. Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes. Science advances. 2024 Apr; 10(14):eadk7535. doi: 10.1126/sciadv.adk7535. [PMID: 38578996]
  • Justin B Rose, José A Gascón, Markus Sutter, Damien I Sheppard, Cheryl A Kerfeld, Warren F Beck. Photoactivation of the orange carotenoid protein requires two light-driven reactions mediated by a metastable monomeric intermediate. Physical chemistry chemical physics : PCCP. 2023 Dec; 25(48):33000-33012. doi: 10.1039/d3cp04484j. [PMID: 38032096]
  • Kristina Likkei, Marcus Moldenhauer, Neslihan N Tavraz, Eugene G Maksimov, Nikolai N Sluchanko, Thomas Friedrich. Lipid composition and properties affect protein-mediated carotenoid uptake efficiency from membranes. Biochimica et biophysica acta. Biomembranes. 2023 Oct; ?(?):184241. doi: 10.1016/j.bbamem.2023.184241. [PMID: 37866690]
  • Rudy Kurniawan, Fahrul Nurkolis, Nurpudji Astuti Taslim, Dionysius Subali, Reggie Surya, William Ben Gunawan, Darmawan Alisaputra, Nelly Mayulu, Netty Salindeho, Bonglee Kim. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules (Basel, Switzerland). 2023 Apr; 28(7):. doi: 10.3390/molecules28073267. [PMID: 37050034]
  • Jie Zhou, Jiahui Guo, Qingsheng Chen, Baosong Wang, Xudong He, Qiang Zhuge, Pu Wang. Different color regulation mechanism in willow barks determined using integrated metabolomics and transcriptomics analyses. BMC plant biology. 2022 Nov; 22(1):530. doi: 10.1186/s12870-022-03909-x. [PMID: 36380271]
  • Paweł Żbik, Przemysław Malec. The occurrence of the cis/trans geometric isomerism of myxoxanthophyll and 4-ketomyxoxanthophyll in the cyanobacterium Anabaena sp. PCC7120. Acta biochimica Polonica. 2022 Aug; 69(3):523-529. doi: 10.18388/abp.2020_6449. [PMID: 36041059]
  • Fawzy Ismail, Khalil Sherif, Yasser Rizk, Montaha Hassan, Aml Mekawy, Khalid Mahrose. Dietary supplementation of spirulina and canthaxanthin boosts laying performance, lipid profile in blood and egg yolk, hatchability, and semen quality of chickens. Journal of animal physiology and animal nutrition. 2022 May; ?(?):. doi: 10.1111/jpn.13729. [PMID: 35534942]
  • Jisong Ahn, Min Jung Kim, Ahyoung Yoo, Jiyun Ahn, Tae Youl Ha, Chang Hwa Jung, Hyo Deok Seo, Young Jin Jang. Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food chemistry. 2021 Aug; 353(?):129463. doi: 10.1016/j.foodchem.2021.129463. [PMID: 33743428]
  • Andrew J Hambly, Jeroen S van Duijneveldt, Paul J Gates. Identification of β-carotene oxidation products produced by bleaching clay using UPLC-ESI-MS/MS. Food chemistry. 2021 Aug; 353(?):129455. doi: 10.1016/j.foodchem.2021.129455. [PMID: 33711704]
  • Ahila Mathimaran, Anbarasu Kumar, Gurudayal Prajapati, Ravi S Ampapathi, Himangsu K Bora, Rajdeep Guha. Partially saturated canthaxanthin alleviates aging-associated oxidative stress in D-galactose administered male wistar rats. Biogerontology. 2021 02; 22(1):19-34. doi: 10.1007/s10522-020-09898-4. [PMID: 32926226]
  • L P Bonagurio, F K Cruz, I N Kaneko, P T Matumoto-Pintro, A E Murakami, T C Santos. Dietary supplementation with canthaxanthin and 25-hydroxycholecalciferol has beneficial effects on bone and oxidative metabolism in European quail breeders. Poultry science. 2020 Oct; 99(10):4874-4883. doi: 10.1016/j.psj.2020.06.021. [PMID: 32988524]
  • Maria Agustina Dominguez-Martin, Michal Hammel, Sayan Gupta, Sigal Lechno-Yossef, Markus Sutter, Daniel J Rosenberg, Yan Chen, Christopher J Petzold, Corie Y Ralston, Tomáš Polívka, Cheryl A Kerfeld. Structural analysis of a new carotenoid-binding protein: the C-terminal domain homolog of the OCP. Scientific reports. 2020 09; 10(1):15564. doi: 10.1038/s41598-020-72383-y. [PMID: 32968135]
  • Nam Trung Tran, Ralf Kaldenhoff. Metabolic engineering of ketocarotenoids biosynthetic pathway in Chlamydomonas reinhardtii strain CC-4102. Scientific reports. 2020 07; 10(1):10688. doi: 10.1038/s41598-020-67756-2. [PMID: 32612116]
  • Kantima Janchot, Monrawat Rauytanapanit, Masaki Honda, Takashi Hibino, Sophon Sirisattha, Thanit Praneenararat, Hakuto Kageyama, Rungaroon Waditee-Sirisattha. Effects of Potassium Chloride-Induced Stress on the Carotenoids Canthaxanthin, Astaxanthin, and Lipid Accumulations in the Green Chlorococcal Microalga Strain TISTR 9500. The Journal of eukaryotic microbiology. 2019 09; 66(5):778-787. doi: 10.1111/jeu.12726. [PMID: 30854724]
  • Kinga Kłodawska, Anna Bujas, Maria Turos-Cabal, Paweł Żbik, Pengcheng Fu, Przemysław Malec. Effect of growth temperature on biosynthesis and accumulation of carotenoids in cyanobacterium Anabaena sp. PCC 7120 under diazotrophic conditions. Microbiological research. 2019 Sep; 226(?):34-40. doi: 10.1016/j.micres.2019.05.003. [PMID: 31284942]
  • Maria Agustina Dominguez-Martin, Tomáš Polívka, Markus Sutter, Bryan Ferlez, Sigal Lechno-Yossef, Beronda L Montgomery, Cheryl A Kerfeld. Structural and spectroscopic characterization of HCP2. Biochimica et biophysica acta. Bioenergetics. 2019 05; 1860(5):414-424. doi: 10.1016/j.bbabio.2019.03.004. [PMID: 30880081]
  • Antonia Concetta Elia, Marino Prearo, Ambrosius Josef Martin Dörr, Nicole Pacini, Gabriele Magara, Paola Brizio, Laura Gasco, Maria Cesarina Abete. Effects of astaxanthin and canthaxanthin on oxidative stress biomarkers in rainbow trout. Journal of toxicology and environmental health. Part A. 2019; 82(13):760-768. doi: 10.1080/15287394.2019.1648346. [PMID: 31370749]
  • Qinlong Zhu, Dongchang Zeng, Suize Yu, Chaojun Cui, Jiamin Li, Heying Li, Junyu Chen, Runzhao Zhang, Xiucai Zhao, Letian Chen, Yao-Guang Liu. From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm. Molecular plant. 2018 12; 11(12):1440-1448. doi: 10.1016/j.molp.2018.09.007. [PMID: 30296601]
  • Kenshi Watanabe, Kim Hazel V Arafiles, Risa Higashi, Yoshiko Okamura, Takahisa Tajima, Yukihiko Matsumura, Yutaka Nakashimada, Keisuke Matsuyama, Tsunehiro Aki. Isolation of High Carotenoid-producing Aurantiochytrium sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information. Journal of oleo science. 2018 May; 67(5):571-578. doi: 10.5650/jos.ess17230. [PMID: 29628484]
  • Z Z Ren, Q F Zeng, J P Wang, X M Ding, S P Bai, Z W Su, Y Xuan, K Y Zhang. Effects of maternal dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on antioxidant status and calcium-phosphate metabolism of progeny ducks. Poultry science. 2018 Apr; 97(4):1361-1367. doi: 10.3382/ps/pex402. [PMID: 29365207]
  • Jie Jia, Yuxian Wang, Yueying Liu, Yuhong Xiang. Exploration of interaction of canthaxanthin with human serum albumin by spectroscopic and molecular simulation methods. Luminescence : the journal of biological and chemical luminescence. 2018 Mar; 33(2):425-432. doi: 10.1002/bio.3430. [PMID: 29251407]
  • Fernando Muzzopappa, Adjélé Wilson, Vinosa Yogarajah, Sandrine Cot, François Perreau, Cédric Montigny, Céline Bourcier de Carbon, Diana Kirilovsky. Paralogs of the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins. Plant physiology. 2017 Nov; 175(3):1283-1303. doi: 10.1104/pp.17.01040. [PMID: 28935842]
  • Helder M Souza, Lúcia C P Arruda, Millena M Monteiro, Igor H A V Nery, Robespierre A J Araújo Silva, André M Batista, Maria Madalena Pessoa Guerra. The Effect of Canthaxanthin on the Quality of Frozen Ram Spermatozoa. Biopreservation and biobanking. 2017 Jun; 15(3):220-227. doi: 10.1089/bio.2016.0049. [PMID: 28005396]
  • Z Z Ren, S Z Jiang, Q F Zeng, X M Ding, S P Bai, J P Wang, Y H Luo, Z W Su, Y Xuan, K Y Zhang. Effect of maternal canthaxanthin and 25-hydroxycholecalciferol supplementation on the performance of ducklings under two different vitamin regimens. Journal of animal physiology and animal nutrition. 2017 Apr; 101(2):359-368. doi: 10.1111/jpn.12453. [PMID: 27079155]
  • A P Rosa, C E V Bonilla, A Londero, C B S Giacomini, C Orso, M O Fernandes, J S Moura, R Hermes. Effect of broiler breeders fed with corn or sorghum and canthaxanthin on lipid peroxidation, fatty acid profile of hatching eggs, and offspring performance. Poultry science. 2017 Mar; 96(3):647-658. doi: 10.3382/ps/pew294. [PMID: 27601683]
  • M L Johnson-Dahl, M J Zuidhof, D R Korver. The effect of maternal canthaxanthin supplementation and hen age on breeder performance, early chick traits, and indices of innate immune function. Poultry science. 2017 Mar; 96(3):634-646. doi: 10.3382/ps/pew293. [PMID: 27613855]
  • Yu Fen Zheng, Jee Sun Min, Doyun Kim, Jung Bae Park, Sung-Wook Choi, Eun Seong Lee, Kun Na, Soo Kyung Bae. In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, β-Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions. Molecules (Basel, Switzerland). 2016 Aug; 21(8):. doi: 10.3390/molecules21081052. [PMID: 27529203]
  • Z Z Ren, J P Wang, Q F Zeng, X M Ding, S P Bai, Y H Luo, Z W Su, Y Xuan, K Y Zhang. The effects of maternal dietary vitamin premixes, canthaxanthin, and 25-hydroxycholecalciferol on the performance of progeny ducklings. Poultry science. 2016 Mar; 95(3):630-5. doi: 10.3382/ps/pev370. [PMID: 26755656]
  • Ryan L Leverenz, Markus Sutter, Adjélé Wilson, Sayan Gupta, Adrien Thurotte, Céline Bourcier de Carbon, Christopher J Petzold, Corie Ralston, François Perreau, Diana Kirilovsky, Cheryl A Kerfeld. PHOTOSYNTHESIS. A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science (New York, N.Y.). 2015 Jun; 348(6242):1463-6. doi: 10.1126/science.aaa7234. [PMID: 26113721]
  • Shuqin Xia, Chen Tan, Yating Zhang, Shabbar Abbas, Biao Feng, Xiaoming Zhang, Fang Qin. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation. Colloids and surfaces. B, Biointerfaces. 2015 Apr; 128(?):172-180. doi: 10.1016/j.colsurfb.2015.02.004. [PMID: 25747311]
  • S Kathiresan, Arun Chandrashekar, G A Ravishankar, R Sarada. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. Journal of biotechnology. 2015 Feb; 196-197(?):33-41. doi: 10.1016/j.jbiotec.2015.01.006. [PMID: 25612872]
  • Emily C Pierce, Peter R LaFayette, María A Ortega, Blake L Joyce, Dean A Kopsell, Wayne A Parrott. Ketocarotenoid Production in Soybean Seeds through Metabolic Engineering. PloS one. 2015; 10(9):e0138196. doi: 10.1371/journal.pone.0138196. [PMID: 26376481]
  • Chen Tan, Jin Xue, Xiaowei Lou, Shabbar Abbas, Yu Guan, Biao Feng, Xiaoming Zhang, Shuqin Xia. Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food & function. 2014 Jun; 5(6):1232-40. doi: 10.1039/c3fo60498e. [PMID: 24714683]
  • Borhane Samir Grama, Samira Chader, Douadi Khelifi, Spiros N Agathos, Clayton Jeffryes. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresource technology. 2014 Jan; 151(?):297-305. doi: 10.1016/j.biortech.2013.10.073. [PMID: 24262839]
  • Seyed Mohammad Taghi Gharibzahedi, Seyed Hadi Razavi, Seyed Mohammad Mousavi. Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums. Carbohydrate polymers. 2013 Jul; 96(1):21-30. doi: 10.1016/j.carbpol.2013.03.085. [PMID: 23688450]
  • Takashi Maoka, Hiroyuki Yasui, Aya Ohmori, Harukuni Tokuda, Nobutaka Suzuki, Ayako Osawa, Kazutoshi Shindo, Takashi Ishibashi. Anti-oxidative, anti-tumor-promoting, and anti-carcinogenic activities of adonirubin and adonixanthin. Journal of oleo science. 2013; 62(3):181-6. doi: 10.5650/jos.62.181. [PMID: 23470446]
  • Seyed Mohammad Taghi Gharibzahedi, Seyed Hadi Razavi, Seyed Mohammad Mousavi. Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1. International journal of biological macromolecules. 2012 Nov; 51(4):618-26. doi: 10.1016/j.ijbiomac.2012.06.030. [PMID: 22750576]
  • Baldo F Cordero, Inmaculada Couso, Rosa Leon, Herminia Rodriguez, Maria Angeles Vargas. Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light. Marine drugs. 2012 Sep; 10(9):2069-2088. doi: 10.3390/md10092069. [PMID: 23118722]
  • Jin Niu, Chun-Hou Li, Yong-Jian Liu, Li-Xia Tian, Xu Chen, Zhong Huang, Hei-Zhao Lin. Dietary values of astaxanthin and canthaxanthin in Penaeus monodon in the presence and absence of cholesterol supplementation: effect on growth, nutrient digestibility and tissue carotenoid composition. The British journal of nutrition. 2012 Jul; 108(1):80-91. doi: 10.1017/s0007114511005423. [PMID: 22142867]
  • Anbarasu Kumar, Akshatha Hosahalli Srikanta, Muthukumar Serva Peddha, Umesh-Kumar Sukumaran, Vijayalakshmi Govindaswamy. A short-term toxicity study of Aspergillus carbonarius carotenoid. International journal of toxicology. 2012 Mar; 31(2):158-65. doi: 10.1177/1091581811430402. [PMID: 22366116]
  • Agnieszka Sujak. Exceptional molecular organization of canthaxanthin in lipid membranes. Acta biochimica Polonica. 2012; 59(1):31-3. doi: . [PMID: 22428120]
  • Kang-Hao He, Xiao-Li Zou, Xiang Liu, Hong-Yan Zeng. [Determination of canthaxanthin and astaxanthin in egg yolks by reversed phase high performance liquid chromatography with diode array detection]. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition. 2012 Jan; 43(1):113-7. doi: ". [PMID: 22455145]
  • Anbarasu Kumar, Akshatha Hosahalli Srikanta, S P Muthukumar, Umesh-Kumar Sukumaran, Vijayalakshmi Govindaswamy. Antioxidant and lipid peroxidation activities in rats fed with Aspergillus carbonarius carotenoid. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2011 Dec; 49(12):3098-103. doi: 10.1016/j.fct.2011.09.003. [PMID: 21925232]
  • W Zhang, K Y Zhang, X M Ding, S P Bai, J M Hernandez, B Yao, Q Zhu. Influence of canthaxanthin on broiler breeder reproduction, chick quality, and performance. Poultry science. 2011 Jul; 90(7):1516-22. doi: 10.3382/ps.2010-01126. [PMID: 21673167]
  • Ana M Salvador, Ana Alonso-Damián, Georges Choubert, José Carlos G Milicua. Impact of different dietary phospholipid levels on cholesterol and canthaxanthin lipoprotein-serum transport and muscle deposition in rainbow trout. Journal of agricultural and food chemistry. 2009 Mar; 57(5):2016-21. doi: 10.1021/jf802954t. [PMID: 19256559]
  • Agnieszka Sujak. Interactions between canthaxanthin and lipid membranes--possible mechanisms of canthaxanthin toxicity. Cellular & molecular biology letters. 2009; 14(3):395-410. doi: 10.2478/s11658-009-0010-8. [PMID: 19214394]
  • Andreas Woelfelschneider, Odilia Popanda, Carmen Lilla, Jakob Linseisen, Claudia Mayer, Oktay Celebi, Jürgen Debus, Helmut Bartsch, Jenny Chang-Claude, Peter Schmezer. A distinct ERCC1 haplotype is associated with mRNA expression levels in prostate cancer patients. Carcinogenesis. 2008 Sep; 29(9):1758-64. doi: 10.1093/carcin/bgn067. [PMID: 18332046]
  • Ling-peng Pei, Bo-di Hui, Fu-hui Dong. [Influence of canthaxanthin on D-galactose induced osseous changes of rat]. Zhongguo gu shang = China journal of orthopaedics and traumatology. 2008 Aug; 21(8):613-6. doi: NULL. [PMID: 19108380]
  • Chun-Kuang Shih, Jui-Hung Chang, Shwu-Huey Yang, Tsui-Wei Chou, Hsing-Hsien Cheng. beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. The British journal of nutrition. 2008 Jan; 99(1):59-66. doi: 10.1017/s0007114507781497. [PMID: 17640418]
  • Ana M Salvador, Ana Alonso-Damián, Georges Choubert, José Carlos G Milicua. Effect of soybean phospholipids on canthaxanthin lipoproteins transport, digestibility, and deposition in rainbow trout (Oncorhynchus mykiss) muscle. Journal of agricultural and food chemistry. 2007 Oct; 55(22):9202-7. doi: 10.1021/jf070145q. [PMID: 17850089]
  • Agnieszka Sujak, Mariusz Gagos, Mauro Dalla Serra, Wiesław I Gruszecki. Organization of two-component monomolecular layers formed with dipalmitoylphosphatidylcholine and the carotenoid pigment, canthaxanthin. Molecular membrane biology. 2007 Sep; 24(5-6):431-41. doi: 10.1080/09687860701243899. [PMID: 17710647]
  • Agnieszka Sujak, Kazimierz Strzałka, Wiesław I Gruszecki. Thermotropic phase behaviour of lipid bilayers containing carotenoid pigment canthaxanthin: a differential scanning calorimetry study. Chemistry and physics of lipids. 2007 Jan; 145(1):1-12. doi: 10.1016/j.chemphyslip.2006.09.003. [PMID: 17078939]
  • Shinichi Takaichi, Mari Mochimaru, Takashi Maoka. Presence of free myxol and 4-hydroxymyxol and absence of myxol glycosides in Anabaena variabilis ATCC 29413, and proposal of a biosynthetic pathway of carotenoids. Plant & cell physiology. 2006 Feb; 47(2):211-6. doi: 10.1093/pcp/pci236. [PMID: 16338959]
  • G I Page, S J Davies. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2006 Jan; 143(1):125-32. doi: 10.1016/j.cbpa.2005.11.011. [PMID: 16380278]
  • G I Page, P M Russell, S J Davies. Dietary carotenoid pigment supplementation influences hepatic lipid and mucopolysaccharide levels in rainbow trout (Oncorhynchus mykiss). Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology. 2005 Dec; 142(4):398-402. doi: 10.1016/j.cbpb.2005.09.001. [PMID: 16209931]
  • Agnieszka Sujak, Janina Gabrielska, Justyna Milanowska, Piotr Mazurek, Kazimierz Strzałka, Wiesław I Gruszecki. Studies on canthaxanthin in lipid membranes. Biochimica et biophysica acta. 2005 Jun; 1712(1):17-28. doi: 10.1016/j.bbamem.2005.03.010. [PMID: 15950595]
  • Frederick W Fraunfelder. Ocular side effects from herbal medicines and nutritional supplements. American journal of ophthalmology. 2004 Oct; 138(4):639-47. doi: 10.1016/j.ajo.2004.04.072. [PMID: 15488795]
  • Edmund Cauza, Martin Jansen, Ulrike Resch, Attila Dunky, Kurt Derfler, Brigitte M Winklhofer-Roob, Karam Kostner. Effects of LDL-immunoapheresis on plasma concentrations of vitamin E and carotenoids in patients with familial hypercholesterolemia. Journal of clinical apheresis. 2004; 19(4):174-9. doi: 10.1002/jca.20026. [PMID: 15597350]
  • A P Surai, P F Surai, W Steinberg, W G Wakeman, B K Speake, N H C Sparks. Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. British poultry science. 2003 Sep; 44(4):612-9. doi: 10.1080/00071660310001616200. [PMID: 14584852]
  • Elizabeth A Koutsos, C Christopher Calvert, Kirk C Klasing. The effect of an acute phase response on tissue carotenoid levels of growing chickens (Gallus gallus domesticus). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 2003 Aug; 135(4):635-46. doi: 10.1016/s1095-6433(03)00158-2. [PMID: 12890553]
  • Yoshinori Ito, Kenji Wakai, Koji Suzuki, Akiko Tamakoshi, Nao Seki, Masahiko Ando, Yoshikazu Nishino, Takaaki Kondo, Yoshiyuki Watanabe, Kotaro Ozasa, Yoshiyuki Ohno. Serum carotenoids and mortality from lung cancer: a case-control study nested in the Japan Collaborative Cohort (JACC) study. Cancer science. 2003 Jan; 94(1):57-63. doi: 10.1111/j.1349-7006.2003.tb01352.x. [PMID: 12708475]
  • G I Page, S J Davies. Astaxanthin and canthaxanthin do not induce liver or kidney xenobiotic-metabolizing enzymes in rainbow trout (Oncorhynchus mykiss Walbaum). Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2002 Nov; 133(3):443-51. doi: 10.1016/s1532-0456(02)00168-0. [PMID: 12379428]
  • Karin Müller, Keri L H Carpenter, Iain R Challis, Jeremy N Skepper, Mark J Arends. Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1. Free radical research. 2002 Jul; 36(7):791-802. doi: 10.1080/10715760290032539. [PMID: 12180130]
  • Christopher J Bates, Neal Matthews, Beryl West, Linda Morison, Gijs Walraven. Plasma carotenoid and vitamin E concentrations in women living in a rural west African (Gambian) community. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 2002 May; 72(3):133-41. doi: 10.1024/0300-9831.72.3.133. [PMID: 12098880]
  • Dalal Asker, Yoshiyuki Ohta. Haloferax alexandrinus sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). International journal of systematic and evolutionary microbiology. 2002 May; 52(Pt 3):729-738. doi: 10.1099/00207713-52-3-729. [PMID: 12054232]
  • P R Palan, M S Mikhail, S L Romney. Placental and serum levels of carotenoids in preeclampsia. Obstetrics and gynecology. 2001 Sep; 98(3):459-62. doi: 10.1016/s0029-7844(01)01437-5. [PMID: 11530129]
  • I Lancrajan, H A Diehl, C Socaciu, M Engelke, M Zorn-Kruppa. Carotenoid incorporation into natural membranes from artificial carriers: liposomes and beta-cyclodextrins. Chemistry and physics of lipids. 2001 Jul; 112(1):1-10. doi: 10.1016/s0009-3084(01)00138-4. [PMID: 11518567]
  • R M Clark, H C Furr. Absorption of canthaxanthin by the rat is influenced by total lipid in the intestinal lumen. Lipids. 2001 May; 36(5):473-5. doi: 10.1007/s11745-001-0745-1. [PMID: 11432459]
  • J Galobart, A C Barroeta, M D Baucells, F Guardiola. Lipid oxidation in fresh and spray-dried eggs enriched with omega3 and omega6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poultry science. 2001 Mar; 80(3):327-37. doi: 10.1093/ps/80.3.327. [PMID: 11261564]
  • J T Landrum, R A Bone. Lutein, zeaxanthin, and the macular pigment. Archives of biochemistry and biophysics. 2001 Jan; 385(1):28-40. doi: 10.1006/abbi.2000.2171. [PMID: 11361022]
  • P Palozza, G Calviello, M Emilia De Leo, S Serini, G M Bartoli. Canthaxanthin supplementation alters antioxidant enzymes and iron concentration in liver of Balb/c mice. The Journal of nutrition. 2000 May; 130(5):1303-8. doi: 10.1093/jn/130.5.1303. [PMID: 10801934]
  • R Goralczyk, F M Barker, S Buser, H Liechti, J Bausch. Dose dependency of canthaxanthin crystals in monkey retina and spatial distribution of its metabolites. Investigative ophthalmology & visual science. 2000 May; 41(6):1513-22. doi: NULL. [PMID: 10798671]
  • D Rengel, A Díez-Navajas, A Serna-Rico, P Veiga, A Muga, J C Milicua. Exogenously incorporated ketocarotenoids in large unilamellar vesicles. Protective activity against peroxidation. Biochimica et biophysica acta. 2000 Jan; 1463(1):179-87. doi: 10.1016/s0005-2736(99)00194-7. [PMID: 10631307]
  • J Hoffmann, J Linseisen, J Riedl, G Wolfram. Dietary fiber reduces the antioxidative effect of a carotenoid and alpha-tocopherol mixture on LDL oxidation ex vivo in humans. European journal of nutrition. 1999 Dec; 38(6):278-85. doi: 10.1007/s003940050078. [PMID: 10784384]
  • B P Chew, M W Wong, J S Park, T S Wong. Dietary beta-carotene and astaxanthin but not canthaxanthin stimulate splenocyte function in mice. Anticancer research. 1999 Nov; 19(6B):5223-7. doi: . [PMID: 10697539]
  • J Bausch, H Liechti, G Oesterhelt, A Kistler. Isolation and identification of a major urinary canthaxanthin metabolite in rats. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1999 Jul; 69(4):268-72. doi: 10.1024/0300-9831.69.4.268. [PMID: 10450532]
  • B P Chew, J S Park, M W Wong, T S Wong. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer research. 1999 May; 19(3A):1849-53. doi: NULL. [PMID: 10470126]
  • C Jewell, N M O'Brien. Effect of dietary supplementation with carotenoids on xenobiotic metabolizing enzymes in the liver, lung, kidney and small intestine of the rat. The British journal of nutrition. 1999 Mar; 81(3):235-42. doi: . [PMID: 10434850]
  • K A Slifka, P E Bowen, M Stacewicz-Sapuntzakis, S D Crissey. A survey of serum and dietary carotenoids in captive wild animals. The Journal of nutrition. 1999 Feb; 129(2):380-90. doi: 10.1093/jn/129.2.380. [PMID: 10024616]
  • P Palozza, G Calviello, S Serini, P Moscato, G M Bartoli. Supplementation with canthaxanthin affects plasma and tissue distribution of alpha- and gamma-tocopherols in mice. The Journal of nutrition. 1998 Nov; 128(11):1989-94. doi: 10.1093/jn/128.11.1989. [PMID: 9808654]
  • L J Warren, S George. Erythropoietic protoporphyria treated with narrow-band (TL-01) UVB phototherapy. The Australasian journal of dermatology. 1998 Aug; 39(3):179-82. doi: 10.1111/j.1440-0960.1998.tb01278.x. [PMID: 9737047]
  • R M Clark, L Yao, L She, H C Furr. A comparison of lycopene and canthaxanthin absorption: using the rat to study the absorption of non-provitamin A carotenoids. Lipids. 1998 Feb; 33(2):159-63. doi: 10.1007/s11745-998-0191-0. [PMID: 9507237]
  • I Paetau, H Chen, N M Goh, W S White. Interactions in the postprandial appearance of beta-carotene and canthaxanthin in plasma triacylglycerol-rich lipoproteins in humans. The American journal of clinical nutrition. 1997 Nov; 66(5):1133-43. doi: 10.1093/ajcn/66.5.1133. [PMID: 9356530]
  • R Goralczyk, S Buser, J Bausch, W Bee, U Zühlke, F M Barker. Occurrence of birefringent retinal inclusions in cynomolgus monkeys after high doses of canthaxanthin. Investigative ophthalmology & visual science. 1997 Mar; 38(3):741-52. doi: . [PMID: 9071228]
  • A U Haq, C A Bailey. Time course evaluation of carotenoid and retinol concentrations in posthatch chick tissue. Poultry science. 1996 Oct; 75(10):1258-60. doi: 10.3382/ps.0751258. [PMID: 8893303]
  • A A Woodall, G Britton, M J Jackson. Dietary supplementation with carotenoids: effects on alpha-tocopherol levels and susceptibility of tissues to oxidative stress. The British journal of nutrition. 1996 Aug; 76(2):307-17. doi: 10.1079/bjn19960034. [PMID: 8813904]
  • P Palozza, C Luberto, P Ricci, E Sgarlata, G Calviello, G M Bartoli. Effect of beta-carotene and canthaxanthin on tert-butyl hydroperoxide-induced lipid peroxidation in murine normal and tumor thymocytes. Archives of biochemistry and biophysics. 1996 Jan; 325(2):145-51. doi: 10.1006/abbi.1996.0018. [PMID: 8561491]
  • P R Palan, M S Mikhail, G L Goldberg, J Basu, C D Runowicz, S L Romney. Plasma levels of beta-carotene, lycopene, canthaxanthin, retinol, and alpha- and tau-tocopherol in cervical intraepithelial neoplasia and cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 1996 Jan; 2(1):181-5. doi: NULL. [PMID: 9816105]
  • J Yu, J G Fox, M C Blanco, L Yan, P Correa, R M Russell. Long-term supplementation of canthaxanthin does not inhibit gastric epithelial cell proliferation in Helicobacter mustelae-infected ferrets. The Journal of nutrition. 1995 Oct; 125(10):2493-500. doi: 10.1093/jn/125.10.2493. [PMID: 7562083]
  • G Tang, M C Blanco, J G Fox, R M Russell. Supplementing ferrets with canthaxanthin affects the tissue distributions of canthaxanthin, other carotenoids, vitamin A and vitamin E. The Journal of nutrition. 1995 Jul; 125(7):1945-51. doi: 10.1093/jn/125.7.1945. [PMID: 7616312]
  • T L Bierer, N R Merchen, J W Erdman. Comparative absorption and transport of five common carotenoids in preruminant calves. The Journal of nutrition. 1995 Jun; 125(6):1569-77. doi: 10.1093/jn/125.6.1569. [PMID: 7782912]
  • H Chen, A L Tappel. Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo. Free radical biology & medicine. 1995 May; 18(5):949-53. doi: 10.1016/0891-5849(94)00238-f. [PMID: 7797106]
  • H Chen, A L Tappel. Vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q, beta-carotene, canthaxanthin, and (+)-catechin protect against oxidative damage to kidney, heart, lung and spleen. Free radical research. 1995 Feb; 22(2):177-86. doi: 10.3109/10715769509147537. [PMID: 7704186]
  • W S White, M Stacewicz-Sapuntzakis, J W Erdman, P E Bowen. Pharmacokinetics of beta-carotene and canthaxanthin after ingestion of individual and combined doses by human subjects. Journal of the American College of Nutrition. 1994 Dec; 13(6):665-71. doi: 10.1080/07315724.1994.10718463. [PMID: 7706602]
  • J S Bertram. Cancer prevention by carotenoids. Mechanistic studies in cultured cells. Annals of the New York Academy of Sciences. 1993 Dec; 691(?):177-91. doi: 10.1111/j.1749-6632.1993.tb26169.x. [PMID: 8129287]
  • W S White, K M Peck, T L Bierer, E T Gugger, J W Erdman. Interactions of oral beta-carotene and canthaxanthin in ferrets. The Journal of nutrition. 1993 Aug; 123(8):1405-13. doi: 10.1093/jn/123.8.1405. [PMID: 8336211]
  • J S Bertram. Inhibition of chemically induced neoplastic transformation by carotenoids. Mechanistic studies. Annals of the New York Academy of Sciences. 1993 May; 686(?):161-75; discussion 175. doi: 10.1111/j.1749-6632.1993.tb39170.x. [PMID: 8390212]
  • K Jørgensen, L H Skibsted. Carotenoid scavenging of radicals. Effect of carotenoid structure and oxygen partial pressure on antioxidative activity. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. 1993 May; 196(5):423-9. doi: 10.1007/bf01190806. [PMID: 8511974]
  • M Y Jenkins, N M Sheikh, G V Mitchell, E Grundel, S R Blakely, C J Carter. Dietary carotenoids influenced biochemical but not morphological changes in adult male rats fed a choline-deficient diet. Nutrition and cancer. 1993; 19(1):55-65. doi: 10.1080/01635589309514236. [PMID: 8446515]