Apiin (BioDeep_00000000228)

 

Secondary id: BioDeep_00000269952

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


7-(((2S,3R,4S,5S,6R)-3-(((2S,3R,4R)-3,4-Dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

化学式: C26H28O14 (564.1479)
中文名称: 芹菜苷
谱图信息: 最多检出来源 Viridiplantae(plant) 19.77%

分子结构信息

SMILES: C1(O[C@H]2[C@H](O[C@H]3[C@H](O)[C@](CO)(O)CO3)[C@@H](O)[C@H](O)[C@@H](CO)O2)=CC2OC(C3C=CC(O)=CC=3)=CC(=O)C=2C(O)=C1
InChI: InChI=1S/C26H28O14/c27-8-18-20(32)21(33)22(40-25-23(34)26(35,9-28)10-36-25)24(39-18)37-13-5-14(30)19-15(31)7-16(38-17(19)6-13)11-1-3-12(29)4-2-11/h1-7,18,20-25,27-30,32-35H,8-10H2

描述信息

Apiin is a beta-D-glucoside having a beta-D-apiosyl residue at the 2-position and a 5,4-dihydroxyflavon-7-yl moiety at the anomeric position. It has a role as an EC 3.2.1.18 (exo-alpha-sialidase) inhibitor and a plant metabolite. It is a beta-D-glucoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an apiin(1-).
Apiin is a natural product found in Crotalaria micans, Limonium axillare, and other organisms with data available.
See also: Chamomile (part of); Chamaemelum nobile flower (part of).
Apiin is found in celery leaves. Apiin is a constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isolated in 1843 Apiin is a chemical compound isolated from parsley and celery
Constituent of parsley (Petroselinum crispum) and of the flowers of Anthemis nobilis (Roman chamomile). First isol. in 1843
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2350
Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].
Apiin, a major constituent of Apium graveolens leaves with anti-inflammatory properties. Apiin shows significant inhibitory activity on nitrite (NO) production (IC50 = 0.08 mg/mL) in-vitro and iNOS expression (IC50 = 0.049 mg/ mL) in LPS-activated J774.A1 cells[1].

同义名列表

44 个代谢物同义名

7-(((2S,3R,4S,5S,6R)-3-(((2S,3R,4R)-3,4-Dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-{[(2S,3R,4S,5S,6R)-3-{[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-[(2S,3R,4S,5S,6R)-3-[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 7-[(2S,3R,4S,5S,6R)-3-[(3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 7-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 7-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one; 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 2-O-[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl]-beta-D-glucopyranoside; 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 2-O-((2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl)-beta-D-glucopyranoside; 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-7-yl 3-C-(hydroxymethyl)-beta-D-glycero-tetrofuranosyl-(1->2)-beta-D-glucopyranoside; 7-((2-O-D-APIO-.BETA.-D-FURANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)- 5-HYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; 4H-1-Benzopyran-4-one, 7-[(2-O-D-apio-beta-D-furanosyl-beta-D-glucopyranosyl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-; 7-((2-O-D-Apio-beta-D-furanosyl-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxy-phenyl)-4H-1-benzopyran-4-one; 7-[(2-O-D-Apio-beta-D-furanosyl-beta-D-glucopyranosyl)oxy]-5-hydroxy-2-(4-hydroxy-phenyl)-4H-1-benzopyran-4-one; 7-((2-O-D-Apio-beta-D-furanosyl-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 7-((2-O-.BETA.-D-APIOFURANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-5- HYDROXY-2-(4-HYDROXYPHENYL)-4H-1-BENZOPYRANONE; 7-((2-O-beta-D-Apiofuranosyl-beta-D-glucopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyranone; 7-O-(beta-D-apiofuranosyl-(1-2)-beta-D-glucosyl)-5,7,4-trihydroxyflavone; 7-O-(beta-D-Apiofuranosyl-1,2-beta-D-glucosyl)-5,7,4-trihydroxyflavone; 5,7,4-trihydroxyflavone 7-O-(beta-D-apiosyl-(1->2)-beta-D-glucoside); 5,7,4-trihydroxyflavone 7-O-[beta-D-apiosyl-(1->2)-beta-D-glucoside]; 7-O-(beta-D-apiofuranosyl-(1-2)-beta-D-glucosyl)-apigenin; apigenin 7-O-(beta-D-apiosyl-(1->2)-beta-D-glucoside); Apigenin 7-O-[beta-D-apiosyl-(1->2)-beta-D-glucoside]; 7-(2-Apiosylglucosyl)apigenin; NTDLXWMIWOECHG-YRCFQSNFSA-N; Apigenin-7-apioglucoside; Spectrum2_001800; Spectrum3_001787; Spectrum5_000553; Spectrum4_001817; UNII-6QU3EZE37U; DivK1c_007035; 6-acetylapiin; KBio2_003252; KBio3_002815; KBio1_001979; KBio2_005820; KBio2_000684; APIIN [MI]; Apiin (11); 6QU3EZE37U; Apioside; Apiin; Apigenin 7-O-[beta-D-apiosyl-(1->2)-beta-D-glucoside]



数据库引用编号

33 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

9 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(8)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

52 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ADIG, AKT1, CASP3, CAT, CHUK, MAPK8, NOS3, PCSK9, SMAD2, TP53, XDH
Nucleus 9 ADIG, AKT1, CASP3, CEBPA, CHUK, MAPK8, NOS3, SMAD2, TP53
cytosol 10 AKT1, CASP3, CAT, CHUK, MAPK8, NOS3, NRK, SMAD2, TP53, XDH
centrosome 1 TP53
nucleoplasm 8 AKT1, CASP3, CEBPA, CHUK, MAPK8, NOS3, SMAD2, TP53
RNA polymerase II transcription regulator complex 1 CEBPA
Cell membrane 2 AKT1, TNF
lamellipodium 1 AKT1
Synapse 1 MAPK8
cell cortex 1 AKT1
cell surface 2 PCSK9, TNF
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 2 NOS3, PCSK9
Golgi membrane 1 NOS3
lysosomal membrane 2 GAA, PCSK9
neuronal cell body 3 CASP3, TGFB2, TNF
postsynapse 1 AKT1
Lysosome 2 GAA, PCSK9
endosome 1 PCSK9
plasma membrane 6 AKT1, BCHE, GAA, NOS3, PCSK9, TNF
Membrane 7 ADIG, AKT1, CAT, GAA, NRK, SMAD2, TP53
axon 2 MAPK8, TGFB2
caveola 1 NOS3
extracellular exosome 3 CAT, GAA, MMP9
Lysosome membrane 1 GAA
endoplasmic reticulum 2 PCSK9, TP53
extracellular space 8 BCHE, IL17A, IL31, MMP9, PCSK9, TGFB2, TNF, XDH
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 2 NOS3, PCSK9
mitochondrion 2 CAT, TP53
protein-containing complex 4 AKT1, CAT, SMAD2, TP53
intracellular membrane-bounded organelle 3 CAT, CEBPA, GAA
postsynaptic density 1 CASP3
Secreted 6 ADIG, BCHE, GAA, IL17A, IL31, PCSK9
extracellular region 10 ADIG, BCHE, CAT, GAA, IL17A, IL31, MMP9, PCSK9, TGFB2, TNF
cytoplasmic side of plasma membrane 1 CHUK
Single-pass membrane protein 1 ADIG
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 3 CEBPA, SMAD2, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
CD40 receptor complex 1 CHUK
external side of plasma membrane 2 IL17A, TNF
Secreted, extracellular space, extracellular matrix 1 MMP9
microtubule cytoskeleton 1 AKT1
nucleolus 2 CEBPA, TP53
Cytoplasm, P-body 1 NOS3
P-body 1 NOS3
Early endosome 1 PCSK9
cell-cell junction 1 AKT1
COPII-coated ER to Golgi transport vesicle 1 PCSK9
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 2 CAT, XDH
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 2 MMP9, TGFB2
Late endosome 1 PCSK9
ciliary basal body 1 AKT1
chromatin 3 CEBPA, SMAD2, TP53
phagocytic cup 1 TNF
cytoskeleton 1 NOS3
blood microparticle 1 BCHE
site of double-strand break 1 TP53
Lipid droplet 1 ADIG
tertiary granule membrane 1 GAA
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
germ cell nucleus 1 TP53
replication fork 1 TP53
ficolin-1-rich granule lumen 2 CAT, MMP9
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 BCHE, PCSK9
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 1 TGFB2
tertiary granule lumen 1 MMP9
endocytic vesicle membrane 1 NOS3
azurophil granule membrane 1 GAA
nuclear envelope lumen 1 BCHE
IkappaB kinase complex 1 CHUK
[Isoform 1]: Nucleus 1 TP53
heteromeric SMAD protein complex 1 SMAD2
SMAD protein complex 1 SMAD2
ficolin-1-rich granule membrane 1 GAA
endolysosome membrane 1 PCSK9
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
extrinsic component of external side of plasma membrane 1 PCSK9
activin responsive factor complex 1 SMAD2
PCSK9-LDLR complex 1 PCSK9
[Latency-associated peptide]: Secreted, extracellular space, extracellular matrix 1 TGFB2
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
PCSK9-AnxA2 complex 1 PCSK9
autolysosome lumen 1 GAA
C/EBP complex 1 CEBPA
CHOP-C/EBP complex 1 CEBPA
[Isoform 4]: Nucleus, nucleolus 1 CEBPA
[Transforming growth factor beta-2]: Secreted 1 TGFB2
homomeric SMAD protein complex 1 SMAD2
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Maho Yamashita, Tae Fujimori, Song An, Sho Iguchi, Yuto Takenaka, Hiroyuki Kajiura, Takuya Yoshizawa, Hiroyoshi Matsumura, Masaru Kobayashi, Eiichiro Ono, Takeshi Ishimizu. The apiosyltransferase celery UGT94AX1 catalyzes the biosynthesis of the flavone glycoside apiin. Plant physiology. 2023 Jul; ?(?):. doi: 10.1093/plphys/kiad402. [PMID: 37433052]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Valentina Roviello, Melinda Gilhen-Baker, Caterina Vicidomini, Giovanni N Roviello. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. International journal of environmental research and public health. 2022 02; 19(5):. doi: 10.3390/ijerph19052502. [PMID: 35270196]
  • Neide Mara de Menezes Epifanio, Lynn Rykiel Iglesias Cavalcanti, Karine Falcão Dos Santos, Priscila Soares Coutinho Duarte, Piotr Kachlicki, Marcin Ożarowski, Cristiano Jorge Riger, Douglas Siqueira de Almeida Chaves. Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum) aqueous extract. Food & function. 2020 Jun; 11(6):5346-5356. doi: 10.1039/d0fo00484g. [PMID: 32462155]
  • Izabela Szymborska-Sandhu, Jarosław L Przybył, Olga Kosakowska, Katarzyna Bączek, Zenon Węglarz. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102421. [PMID: 32455929]
  • Yearam Jung, Soon Young Shin, Yeonjoong Yong, Hyeryoung Jung, Seunghyun Ahn, Young Han Lee, Yoongho Lim. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships. Chemical biology & drug design. 2015 May; 85(5):574-85. doi: 10.1111/cbdd.12445. [PMID: 25298094]
  • Peng Li, Jia Jia, Daihui Zhang, Jingli Xie, Xueshu Xu, Dongzhi Wei. In vitro and in vivo antioxidant activities of a flavonoid isolated from celery (Apium graveolens L. var. dulce). Food & function. 2014 Jan; 5(1):50-6. doi: 10.1039/c3fo60273g. [PMID: 24232123]
  • Douglas S A Chaves, Flávia S Frattani, Mariane Assafim, Ana Paula de Almeida, Russolina B de Zingali, Sônia S Costa. Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Natural product communications. 2011 Jul; 6(7):961-4. doi: . [PMID: 21834233]
  • Kailan Zhou, Feng Zhao, Zhihui Liu, Yulei Zhuang, Lixia Chen, Feng Qiu. Triterpenoids and flavonoids from celery (Apium graveolens). Journal of natural products. 2009 Sep; 72(9):1563-7. doi: 10.1021/np900117v. [PMID: 19778086]
  • J Kasthuri, S Veerapandian, N Rajendiran. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and surfaces. B, Biointerfaces. 2009 Jan; 68(1):55-60. doi: 10.1016/j.colsurfb.2008.09.021. [PMID: 18977643]
  • Ai-Lin Liu, Bo Liu, Hai-Lin Qin, Simon Mingyuen Lee, Yi-Tao Wang, Guan-Hua Du. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta medica. 2008 Jun; 74(8):847-51. doi: 10.1055/s-2008-1074558. [PMID: 18553272]
  • M Lechtenberg, S Zumdick, C Gerhards, T J Schmidt, A Hensel. Evaluation of analytical markers characterising different drying methods of parsley leaves (Petroselinum crispum L.). Die Pharmazie. 2007 Dec; 62(12):949-54. doi: ". [PMID: 18214349]
  • T Mencherini, A Cau, G Bianco, R Della Loggia, R P Aquino, G Autore. An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. The Journal of pharmacy and pharmacology. 2007 Jun; 59(6):891-7. doi: 10.1211/jpp.59.6.0016. [PMID: 17637182]
  • Ya-li Zong, Yu-ping Lin, Qiong-e Ding, Hui He, Gao-xiong Rao. [Studies on the chemical constituents of the aerial parts of Seseli mairei]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Jan; 30(1):42-4. doi: . [PMID: 17539301]
  • Hellen Meyer, Adrian Bolarinwa, Guenther Wolfram, Jakob Linseisen. Bioavailability of apigenin from apiin-rich parsley in humans. Annals of nutrition & metabolism. 2006; 50(3):167-72. doi: 10.1159/000090736. [PMID: 16407641]
  • Botros R Mikhaeil, Farid A Badria, Galal T Maatooq, Mohamed M A Amer. Antioxidant and immunomodulatory constituents of henna leaves. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2004 Jul; 59(7-8):468-76. doi: 10.1515/znc-2004-7-803. [PMID: 15813363]
  • M Yoshikawa, T Uemura, H Shimoda, A Kishi, Y Kawahara, H Matsuda. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIll. (Parsley) and structures of 6"-acetylapiin and a new monoterpene glycoside, petroside. Chemical & pharmaceutical bulletin. 2000 Jul; 48(7):1039-44. doi: 10.1248/cpb.48.1039. [PMID: 10923837]