Phenamil (BioDeep_00000009555)

 

Secondary id: BioDeep_00001877987

human metabolite blood metabolite


代谢物信息卡片


3,5-Diamino-6-chloro-N-(N-phenylcarbamimidoyl)pyrazine-2-carboximidate

化学式: C12H12ClN7O (305.0792)
中文名称: 氨氯吡嗪脒甲基磺酸
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=C(C=C1)N=C(N)NC(=O)C2=C(N=C(C(=N2)Cl)N)N
InChI: InChI=1S/C12H12ClN7O/c13-8-10(15)19-9(14)7(18-8)11(21)20-12(16)17-6-4-2-1-3-5-6/h1-5H,(H4,14,15,19)(H3,16,17,20,21)



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ADIG, BGLAP, DSPP, FABP4, PPARG, SEC23IP, SLC9A1, SREBF1
Endosome membrane 1 LEPR
Endoplasmic reticulum membrane 2 SPP1, SREBF1
Nucleus 7 ADIG, DSPP, ETV4, ETV5, FABP4, PPARG, SREBF1
cytosol 4 FABP4, PPARG, SEC23IP, SREBF1
dendrite 1 BGLAP
nucleoplasm 7 ATP2B1, ETV4, ETV5, PPARG, SCNN1G, SLC9A1, SREBF1
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 5 ATP2B1, ITGAM, LEPR, SLC9A1, SPP1
lamellipodium 1 SLC9A1
Multi-pass membrane protein 8 ATP2B1, ATP4A, LEPR, SCNN1G, SLC9A1, SLC9C1, SPP1, SREBF1
Golgi apparatus membrane 2 LEPR, SREBF1
Synapse 1 ATP2B1
cell surface 3 BMP2, ITGAM, SLC9A1
glutamatergic synapse 1 ATP2B1
Golgi apparatus 3 LEPR, SEC23IP, SPP1
Golgi membrane 3 INS, LEPR, SREBF1
presynaptic membrane 1 ATP2B1
endosome 1 LEPR
plasma membrane 8 ATP2B1, ATP4A, BMP2, ITGAM, SCNN1G, SLC9A1, SLC9C1, SPP1
synaptic vesicle membrane 1 ATP2B1
Membrane 8 ADIG, ATP2B1, ATP4A, DSPP, ITGAM, LEPR, SLC9A1, SLC9C1
apical plasma membrane 3 ATP4A, SCNN1G, SLC9A1
basolateral plasma membrane 3 ATP2B1, LEPR, SLC9A1
extracellular exosome 7 ATP2B1, BMP3, FABP4, ITGAM, SCNN1G, SLC9A1, SPP1
endoplasmic reticulum 2 SEC23IP, SREBF1
extracellular space 7 ATP4A, BGLAP, BMP2, BMP3, INS, ITGAM, SPP1
perinuclear region of cytoplasm 3 PPARG, SLC9A1, SPP1
intercalated disc 1 SLC9A1
mitochondrion 1 SLC9A1
protein-containing complex 1 SREBF1
intracellular membrane-bounded organelle 4 ATP2B1, BMP2, PPARG, SEC23IP
Single-pass type I membrane protein 2 ITGAM, LEPR
Secreted 6 ADIG, BGLAP, BMP2, BMP3, INS, SPP1
extracellular region 8 ADIG, BGLAP, BMP2, BMP3, DSPP, INS, LEPR, SPP1
Single-pass membrane protein 1 ADIG
motile cilium 1 SLC9C1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 3 ITGAM, LEPR, SCNN1G
T-tubule 1 SLC9A1
perikaryon 1 BGLAP
nucleolus 1 ETV4
COPII-coated ER to Golgi transport vesicle 1 SEC23IP
vesicle 1 BGLAP
Apical cell membrane 2 ATP4A, SCNN1G
Membrane raft 2 ITGAM, SLC9A1
focal adhesion 1 SLC9A1
extracellular matrix 1 DSPP
lateral plasma membrane 1 ATP2B1
receptor complex 2 LEPR, PPARG
chromatin 4 ETV4, ETV5, PPARG, SREBF1
cell projection 2 ATP2B1, SPP1
Chromosome 1 ETV4
Basolateral cell membrane 3 ATP2B1, LEPR, SLC9A1
nuclear envelope 1 SREBF1
endosome lumen 1 INS
Lipid droplet 2 ADIG, FABP4
Cell projection, cilium, flagellum membrane 1 SLC9C1
Cytoplasmic vesicle membrane 1 SREBF1
sodium channel complex 1 SCNN1G
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
Presynaptic cell membrane 1 ATP2B1
plasma membrane raft 1 ITGAM
secretory granule lumen 1 INS
Golgi lumen 2 BGLAP, INS
endoplasmic reticulum lumen 3 BGLAP, INS, SPP1
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
ER to Golgi transport vesicle membrane 2 SEC23IP, SREBF1
endoplasmic reticulum-Golgi intermediate compartment 1 SEC23IP
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
integrin complex 1 ITGAM
integrin alphaM-beta2 complex 1 ITGAM
photoreceptor ribbon synapse 1 ATP2B1
BMP receptor complex 1 BMP2
cation-transporting ATPase complex 1 SLC9A1
potassium:proton exchanging ATPase complex 1 ATP4A
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
[Isoform E]: Secreted 1 LEPR


文献列表

  • Salvatore Blair, Xiuju Li, Debajyoti Dutta, Danuta Chamot, Larry Fliegel, Greg Goss. Rainbow Trout (Oncorhynchus mykiss) Na+/H+ Exchangers tNhe3a and tNhe3b Display Unique Inhibitory Profiles Dissimilar from Mammalian NHE Isoforms. International journal of molecular sciences. 2021 Feb; 22(4):. doi: 10.3390/ijms22042205. [PMID: 33672216]
  • Alemu Regassa, Kye Won Park, Woo Kyun Kim. Phenamil enhances the adipogenic differentiation of hen preadipocytes. Cell biology international. 2016 Oct; 40(10):1123-8. doi: 10.1002/cbin.10651. [PMID: 27460177]
  • Alex M Zimmer, Colin J Brauner, Chris M Wood. Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA). Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology. 2014 Jan; 184(1):77-90. doi: 10.1007/s00360-013-0784-x. [PMID: 24114656]
  • Junqiang Ye, Shuibing Chen, Tom Maniatis. Cardiac glycosides are potent inhibitors of interferon-β gene expression. Nature chemical biology. 2011 Jan; 7(1):25-33. doi: 10.1038/nchembio.476. [PMID: 21076398]
  • Kye Won Park, Hironori Waki, Sung-Pil Choi, Ki-Moon Park, Peter Tontonoz. The small molecule phenamil is a modulator of adipocyte differentiation and PPARgamma expression. Journal of lipid research. 2010 Sep; 51(9):2775-84. doi: 10.1194/jlr.m008490. [PMID: 20519739]
  • Silvia Chifflet, Julio A Hernández, Silvina Grasso. A possible role for membrane depolarization in epithelial wound healing. American journal of physiology. Cell physiology. 2005 Jun; 288(6):C1420-30. doi: 10.1152/ajpcell.00259.2004. [PMID: 15897322]
  • S Tyagi, V Joshi, W A Alrefai, R K Gill, K Ramaswamy, P K Dudeja. Evidence for a Na+-H+ exchange across human colonic basolateral plasma membranes purified from organ donor colons. Digestive diseases and sciences. 2000 Dec; 45(12):2282-9. doi: 10.1023/a:1005670404456. [PMID: 11258546]
  • S R Ennis, X D Ren, A L Betz. Mechanisms of sodium transport at the blood-brain barrier studied with in situ perfusion of rat brain. Journal of neurochemistry. 1996 Feb; 66(2):756-63. doi: 10.1046/j.1471-4159.1996.66020756.x. [PMID: 8592149]
  • X J Li, R H Xu, W B Guggino, S H Snyder. Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pore. Molecular pharmacology. 1995 Jun; 47(6):1133-40. doi: . [PMID: 7603452]
  • W F Novotny, O Chassande, M Baker, M Lazdunski, P Barbry. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. The Journal of biological chemistry. 1994 Apr; 269(13):9921-5. doi: . [PMID: 8144586]
  • O Goldstein, C Asher, P Barbry, E Cragoe, W Clauss, H Garty. An epithelial high-affinity amiloride-binding site, different from the Na+ channel. The Journal of biological chemistry. 1993 Apr; 268(11):7856-62. doi: 10.1016/s0021-9258(18)53036-2. [PMID: 8385123]
  • P Parenti, P Ferrari, M Ferrandi, G M Hanozet, G Bianchi. Effect of amiloride analogues on sodium transport in renal brush border membrane vesicles from Milan hypertensive rats. Biochemical and biophysical research communications. 1992 Feb; 183(1):55-61. doi: 10.1016/0006-291x(92)91608-s. [PMID: 1543508]
  • P Barbry, M Champe, O Chassande, S Munemitsu, G Champigny, E Lingueglia, P Maes, C Frelin, A Tartar, A Ullrich. Human kidney amiloride-binding protein: cDNA structure and functional expression. Proceedings of the National Academy of Sciences of the United States of America. 1990 Oct; 87(19):7347-51. doi: 10.1073/pnas.87.19.7347. [PMID: 2217167]
  • P Vigne, G Champigny, R Marsault, P Barbry, C Frelin, M Lazdunski. A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. The Journal of biological chemistry. 1989 May; 264(13):7663-8. doi: 10.1016/s0021-9258(18)83285-9. [PMID: 2468671]
  • P Barbry, O Chassande, D Duval, B Rousseau, C Frelin, M Lazdunski. Biochemical identification of two types of phenamil binding sites associated with amiloride-sensitive Na+ channels. Biochemistry. 1989 May; 28(9):3744-9. doi: 10.1021/bi00435a018. [PMID: 2546581]
  • A Moran, C Asher, E J Cragoe, H Garty. Conductive sodium pathway with low affinity to amiloride in LLC-PK1 cells and other epithelia. The Journal of biological chemistry. 1988 Dec; 263(36):19586-91. doi: . [PMID: 2848834]
  • C Frelin, P Barbry, O Chassande, P Vigne, M Lazdunski. The structure of the amiloride sensitive apical Na+ channel from pig kidney. Kidney international. Supplement. 1988 Oct; 26(?):S12-3. doi: NULL. [PMID: 2848976]
  • D A Lannigan, J B Bennington, E J Cragoe, P A Knauf. Phenamil, an amiloride analogue, inhibits differentiation of Friend murine erythroleukemic cells. The American journal of physiology. 1988 Jan; 254(1 Pt 1):C122-9. doi: 10.1152/ajpcell.1988.254.1.c122. [PMID: 3422134]
  • P Barbry, O Chassande, P Vigne, C Frelin, C Ellory, E J Cragoe, M Lazdunski. Purification and subunit structure of the [3H]phenamil receptor associated with the renal apical Na+ channel. Proceedings of the National Academy of Sciences of the United States of America. 1987 Jul; 84(14):4836-40. doi: 10.1073/pnas.84.14.4836. [PMID: 2440032]
  • P Barbry, C Frelin, P Vigne, E J Cragoe, M Lazdunski. [3H]phenamil, a radiolabelled diuretic for the analysis of the amiloride-sensitive Na+ channels in kidney membranes. Biochemical and biophysical research communications. 1986 Feb; 135(1):25-32. doi: 10.1016/0006-291x(86)90937-x. [PMID: 2420329]