Uroporphyrinogen III (BioDeep_00000004553)

 

Secondary id: BioDeep_00000875202

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid

化学式: C40H44N4O16 (836.2752184)
中文名称: 尿紫元(III)
谱图信息: 最多检出来源 Homo sapiens(blood) 1.99%

分子结构信息

SMILES: C(CC(=O)O)c1c(CC(=O)O)c2Cc3c(CCC(=O)O)c(CC(=O)O)c(Cc4c(CCC(=O)O)c(CC(=O)O)c(Cc5c(CC(=O)O)c(CCC(=O)O)c(Cc1[nH]2)[nH]5)[nH]4)[nH]3
InChI: InChI=1S/C40H44N4O16/c45-33(46)5-1-17-21(9-37(53)54)29-14-27-19(3-7-35(49)50)22(10-38(55)56)30(43-27)15-28-20(4-8-36(51)52)24(12-40(59)60)32(44-28)16-31-23(11-39(57)58)18(2-6-34(47)48)26(42-31)13-25(17)41-29/h41-44H,1-16H2,(H,45,46)(H,47,48)(H,49,50)(H,51,52)(H,53,54)(H,55,56)(H,57,58)(H,59,60)

描述信息

Uroporphyrinogens are porphyrinogen variants in which each pyrrole ring has one acetate side chain and one propionate side chain; it is formed by condensation 4 four molecules of porphobilinogen. 4 isomers are possible but only 2 commoly are found, types I and III. Uroporphyrinogen III is a functional intermediate in heme biosynthesis while Uroporphyrinogen I is produced in an abortive side reaction.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

13 个代谢物同义名

3-[9,14,20-tris(2-carboxyethyl)-5,10,15,19-tetrakis(carboxymethyl)-21,22,23,24-tetraazapentacyclo[16.2.1.1³,⁶.1⁸,¹¹.1¹³,¹⁶]tetracosa-1(20),3,5,8,10,13,15,18-octaen-4-yl]propanoic acid; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydro-21H,23H-porphine-2,7,12,18-tetrapropanoic acid; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydro-21H,23H-porphine-2,7,12,18-tetrapropanoate; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydroporphyrin-2,7,12,18-tetrapropionic acid; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydroporphyrin-2,7,12,18-tetrapropanoic acid; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydro-2,7,12,18-porphinetetrapropionic acid; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydroporphyrin-2,7,12,18-tetrapropionate; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydroporphyrin-2,7,12,18-tetrapropanoate; 3,8,13,17-Tetrakis(carboxymethyl)-5,10,15,20,22,24-hexahydro-2,7,12,18-porphinetetrapropionate; Uroporphyrinogen-III; Uroporphyrinogen III; Uroporphyrinogens; Urogen III



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(1)

PlantCyc(0)

代谢反应

81 个相关的代谢反应过程信息。

Reactome(54)

BioCyc(1)

WikiPathways(1)

Plant Reactome(3)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(20)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Bo Xiong, Ling Li, Qin Li, Huiqiong Mao, Lixinyi Wang, Yuhui Bie, Xin Zeng, Ling Liao, Xun Wang, Honghong Deng, Mingfei Zhang, Guochao Sun, Zhihui Wang. Identification of Photosynthesis Characteristics and Chlorophyll Metabolism in Leaves of Citrus Cultivar (Harumi) with Varying Degrees of Chlorosis. International journal of molecular sciences. 2023 May; 24(9):. doi: 10.3390/ijms24098394. [PMID: 37176103]
  • Zhiwei Huang, Kaifu Chen, Tao Xu, Jianhuai Zhang, Yongxiang Li, Wei Li, Ameeta K Agarwal, Alice M Clark, John D Phillips, Xuewen Pan. Sampangine inhibits heme biosynthesis in both yeast and human. Eukaryotic cell. 2011 Nov; 10(11):1536-44. doi: 10.1128/ec.05170-11. [PMID: 21908598]
  • D D Arch, M Bergeron, L Hathaway, J P Kushner, J D Phillips, M R Franklin. Longitudinal study of a mouse model of familial porphyria cutanea tarda. Cellular and molecular biology (Noisy-le-Grand, France). 2009 Jul; 55(2):46-54. doi: . [PMID: 19656451]
  • Zahir F Soonawalla, Taner Orug, Michael N Badminton, George H Elder, Jonathan M Rhodes, Simon R Bramhall, Elwyn Elias. Liver transplantation as a cure for acute intermittent porphyria. Lancet (London, England). 2004 Feb; 363(9410):705-6. doi: 10.1016/s0140-6736(04)15646-8. [PMID: 15001330]
  • J D Phillips, L K Jackson, M Bunting, M R Franklin, K R Thomas, J E Levy, N C Andrews, J P Kushner. A mouse model of familial porphyria cutanea tarda. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jan; 98(1):259-64. doi: 10.1073/pnas.98.1.259. [PMID: 11134514]
  • S W Ryter, R M Tyrrell. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free radical biology & medicine. 2000 Jan; 28(2):289-309. doi: 10.1016/s0891-5849(99)00223-3. [PMID: 11281297]
  • P R Sinclair, N Gorman, T Dalton, H S Walton, W J Bement, J F Sinclair, A G Smith, D W Nebert. Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(-/-) null mutant mice. The Biochemical journal. 1998 Feb; 330 ( Pt 1)(?):149-53. doi: 10.1042/bj3300149. [PMID: 9461503]
  • P R Sinclair, N Gorman, H S Walton, J F Sinclair, C A Lee, A B Rifkind. Identification of CYP1A5 as the CYP1A enzyme mainly responsible for uroporphyrinogen oxidation induced by AH receptor ligands in chicken liver and kidney. Drug metabolism and disposition: the biological fate of chemicals. 1997 Jul; 25(7):779-83. doi: . [PMID: 9224771]
  • P R Sinclair, N Gorman, J F Sinclair, H S Walton, W J Bement, R W Lambrecht. Ascorbic acid inhibits chemically induced uroporphyria in ascorbate-requiring rats. Hepatology (Baltimore, Md.). 1995 Aug; 22(2):565-72. doi: . [PMID: 7635426]
  • G Urata. [The chemistry of porphyrins and their precursors on the heme biosynthetic chain]. Nihon rinsho. Japanese journal of clinical medicine. 1995 Jun; 53(6):1319-28. doi: . [PMID: 7616643]
  • D M Miller, J S Woods. Redox activities of mercury-thiol complexes: implications for mercury-induced porphyria and toxicity. Chemico-biological interactions. 1993 Jul; 88(1):23-35. doi: 10.1016/0009-2797(93)90082-a. [PMID: 8330322]
  • G J Beukeveld, B G Wolthers, Y Nordmann, J C Deybach, B Grandchamp, S K Wadman. A retrospective study of a patient with homozygous form of acute intermittent porphyria. Journal of inherited metabolic disease. 1990; 13(5):673-83. doi: 10.1007/bf01799566. [PMID: 2246851]
  • J S Woods, C A Calas. Iron stimulation of free radical-mediated porphyrinogen oxidation by hepatic and renal mitochondria. Biochemical and biophysical research communications. 1989 Apr; 160(1):101-8. doi: 10.1016/0006-291x(89)91626-4. [PMID: 2540739]
  • J M Jacobs, P R Sinclair, W J Bement, R W Lambrecht, J F Sinclair, J A Goldstein. Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. The Biochemical journal. 1989 Feb; 258(1):247-53. doi: 10.1042/bj2580247. [PMID: 2930512]
  • W N Piper, J Tse, E M Sadler, W R Christenson, J L Balk, M Kohashi. Inhibition of the biosynthesis of uroporphyrinogen and heme in rat liver during obstructive jaundice produced by bile duct ligation. Archives of biochemistry and biophysics. 1986 Apr; 246(1):143-8. doi: 10.1016/0003-9861(86)90457-1. [PMID: 3963818]
  • D R Bickers. Porphyria. Basic science aspects. Dermatologic clinics. 1986 Apr; 4(2):277-90. doi: ". [PMID: 3955898]
  • L Cantoni, D dal Fiume, A Ferraroli, M Salmona, R Ruggieri. Different susceptibility of mouse tissues to porphyrogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology letters. 1984 Feb; 20(2):201-10. doi: 10.1016/0378-4274(84)90148-6. [PMID: 6695411]
  • L Eriksen. Urinary excretion of position isomers type III in normal man and a series of different types of porphyrias. Scandinavian journal of clinical and laboratory investigation. 1980 Feb; 40(1):85-8. doi: 10.3109/00365518009091531. [PMID: 7367813]
  • E Kostrzewska, A Gregor, A Traczyk, W Rudowski. [Diagnosis of acute intermittent porphyria on the basis of uroporphyrinogen I synthase activity in the erythrocytes; comparison of 2 methods]. Polski tygodnik lekarski (Warsaw, Poland : 1960). 1979 Aug; 34(33):1305-7. doi: NULL. [PMID: 514844]
  • J Brugsch, H Müller. [Urinary excretion of porphyrins and their precursors. Longterm observations in acute intermittent porphyrias (author's transl)]. MMW, Munchener medizinische Wochenschrift. 1979 Mar; 121(13):457-8. doi: NULL. [PMID: 107424]
  • M R Moore, G G Thompson, A Goldberg, H Ippen, A Seubert, S Seubert. The biosynthesis of haem in congenital (erythropoietic) porphyria. The International journal of biochemistry. 1978; 9(12):933-8. doi: 10.1016/0020-711x(78)90073-3. [PMID: 744299]
  • C Herrero, J Piñol Aguade, M Lecha, M A Muniesa, J Almeida, J Mallolas. In vitro studies of the metabolic pathway from 8-COOH porphyrins to 4-COOH porphyrins. Dermatosen in Beruf und Umwelt. Occupation and environment. 1978; 26(3):86-8. doi: NULL. [PMID: 754924]
  • L C San Martín De Viale, M D Ríos De Molina, R W De Calmanovici, J M Tomio. Porphyrins and porphyrinogen carboxy-lase in hexachlorobenzene-induced porphyria. The Biochemical journal. 1977 Dec; 168(3):393-400. doi: 10.1042/bj1680393. [PMID: 606243]
  • A H Jackson, H A Sancovich, A M Ferramola, N Evans, D E Games, S A Matlin, G H Elder, S G Smith. Macrocyclic intermediates in the biosynthesis of porphyrins. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 1976 Feb; 273(924):191-206. doi: 10.1098/rstb.1976.0009. [PMID: 4837]