Subcellular Location: condensed nuclear chromosome
Found 500 associated metabolites.
Angelicin
Angelicin is a furanocoumarin. Angelicin is a natural product found in Cullen cinereum, Psoralea glabra, and other organisms with data available. Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). See also: Angelica archangelica root (part of); Cullen corylifolium fruit (part of). Angelicin is found in coriander. Angelicin is a constituent of roots and leaves of angelica (Angelica archangelica). Angelicin is found in roots and on surface of parsnips and diseased celery.Angelicin is a furanocoumarin. It can be found in Bituminaria bituminosa. It is present in the list of IARC Group 3 carcinogens (Angelicin plus ultraviolet A radiation). (Wikipedia). Constituent of roots and leaves of angelica (Angelica archangelica). Found in roots and on surface of parsnips and diseased celery D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
Phlorizin
Phlorizin, also known as phlorizoside or phlorrhizen, belongs to the class of organic compounds known as flavonoid o-glycosides. Flavonoid O-glycosides are compounds containing a carbohydrate moiety which is O-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Phlorizin (also referred to as phloridzin; chemical name phloretin-2-‚âà√≠‚Äö√¢¬ß-D-glucopyranoside) is a glucoside of phloretin, a dihydrochalcone, a family of bicyclic flavonoids, which in turn is a subgroup in the diverse phenylpropanoid synthesis pathway in plants. In humans, phlorizin is involved in lactose degradation. Phlorizin is a bitter tasting compound. phlorizin is found, on average, in the highest concentration in a few different foods, such as mexican oregano, european plums, and apples and in a lower concentration in pomegranates and apricots. phlorizin has also been detected, but not quantified, in several different foods, such as epazotes, durians, chinese broccoli, sesames, and sweet potato. This could make phlorizin a potential biomarker for the consumption of these foods. It is of sweet taste and contains four molecules of water in the crystal. Phlorizin is found primarily in unripe Malus (apple), root bark of apple, trace amounts have been found in strawberry. It is poorly soluble in ether and cold water, but soluble in ethanol and hot water. Closely related species, such as pear (Pyrus communis), cherry, and other fruit trees in the Rosaceae do not contain phloridzin. Phlorizin was studied as a potential pharmaceutical treatment for type 2 diabetes, but has since been superseded by more selective and more promising synthetic analogs, such as empagliflozin, canagliflozin and dapagliflozin. Phlorizin is a competitive inhibitor of SGLT1 and SGLT2 because it competes with D-glucose for binding to the carrier; this reduces renal glucose transport, lowering the amount of glucose in the blood. Phlorizin is not an effective drug because when orally consumed, it is nearly entirely converted into phloretin by hydrolytic enzymes in the small intestine. Above 200 °C, it decomposes. Phlorizin is an aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. It has a role as a plant metabolite and an antioxidant. It is an aryl beta-D-glucoside, a member of dihydrochalcones and a monosaccharide derivative. It is functionally related to a phloretin. Phlorizin is a natural product found in Malus doumeri, Vaccinium macrocarpon, and other organisms with data available. See also: ... View More ... An aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. Isolated from apple leaves and bark Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
Saikosaponin A
Saikosaponin A is a saikosaponin. Saikosaponin A is a natural product found in Bupleurum kunmingense, Clinopodium gracile, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.
Ginsenoside
Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Coniferaldehyde
Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Protodioscin
Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). Asparasaponin I is found in fenugreek. Asparasaponin I is a bitter principle from white asparagus shoots (Asparagus officinalis) and fenugreek (Trigonella foenum-graecum From Asparagus officinalis (asparagus) Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.
Huperzine
Huperzine b is a phenanthrol. Huperzine B is a novel acetylcholinesterase inhibitor. Huperzine b is a natural product found in Huperzia quasipolytrichoides, Huperzia herteriana, and other organisms with data available. Huperzine B is a Lycopodium alkaloid isolated from Huperzia serrata and a highly selective acetylcholinesterase (AChE) inhibitor. Huperzine B can be uesd to can be used to improve Alzheimer's disease[1][2]. Huperzine B is a Lycopodium alkaloid isolated from Huperzia serrata and a highly selective acetylcholinesterase (AChE) inhibitor. Huperzine B can be uesd to can be used to improve Alzheimer's disease[1][2].
Melatonin
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Ingenol
Ingenol is a tetracyclic diterpenoid that is 1a,2,5,5a,6,9,10,10a-octahydro-1H-2,8a-methanocyclopenta[a]cyclopropa[e][10]annulen-11-one substituted at positions 5, 5a and 6 by hydroxy groups, positions 1, 1, 7 and 9 by methyl groups, position 4 by a hydroxymethyl group and position 1 by an oxo group (the 1aR,2S,5R,5aR,6S,8aS,9R,10aR diastereomer). It is a tetracyclic diterpenoid and a cyclic terpene ketone. Ingenol is a natural product found in Euphorbia villosa, Euphorbia illirica, and other organisms with data available. Ingenol is a PKC activator, with a Ki of 30 μM, with antitumor activity. Ingenol is a PKC activator, with a Ki of 30 μM, with antitumor activity.
Hesperidin
Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Cinobufagin
Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].
Senecionine
Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].
Juglone
Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
D-Pinitol
Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). Constituent of Salvia sclarea (clary sage). Sclareol is found in many foods, some of which are common thyme, herbs and spices, tea, and nutmeg. Sclareol is found in alcoholic beverages. Sclareol is a constituent of Salvia sclarea (clary sage) Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Dmask
Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Morusinol
Morusinol is a member of flavones. Morusinol is a natural product found in Morus lhou, Morus mongolica, and other organisms with data available. Morusinol is found in fruits. Morusinol is isolated from root bark of Morus alba (white mulberry Morusinol is a flavonoid isolated from Morus alba root bark. Morusinol has an antiplatelet activity and ?significantly inhibits arterial thrombosis in vivo[1]. Morusinol is a flavonoid isolated from Morus alba root bark. Morusinol has an antiplatelet activity and ?significantly inhibits arterial thrombosis in vivo[1].
Euscaphic acid
Euscaphic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a triol. It derives from a hydride of an ursane. Euscaphic acid is a natural product found in Ternstroemia gymnanthera, Rhaphiolepis deflexa, and other organisms with data available. A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. Euscaphic acid is found in herbs and spices. Euscaphic acid is a constituent of Coleus amboinicus (Cuban oregano). Constituent of Coleus amboinicus (Cuban oregano). Euscaphic acid is found in loquat and herbs and spices. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2]. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2].
Procyanidin C1
Procyanidin C1 is a proanthocyanidin consisting of three (-)-epicatechin units joined by two successive (4beta->8)-linkages. It has a role as a metabolite, an anti-inflammatory agent, an antioxidant, a lipoxygenase inhibitor, an EC 1.17.3.2 (xanthine oxidase) inhibitor and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a hydroxyflavan, a proanthocyanidin and a polyphenol. It is functionally related to a (-)-epicatechin. Procyanidin C1 is a natural product found in Campylotropis hirtella, Cinnamomum verum, and other organisms with data available. See also: Maritime Pine (part of). Procyanidin C1 is found in apple. Proanthocyanidin C1 is a B type proanthocyanidin. It is an epicatechin trimer found in grape (Vitis vinifera). (Wikipedia). Proanthocyanidin C1 is a B type proanthocyanidin. It is an epicatechin trimer found in grape (Vitis vinifera). [Wikipedia] A proanthocyanidin consisting of three (-)-epicatechin units joined by two successive (4beta->8)-linkages. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2]. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2].
Prostratin
Prostratin is a phorbol ester. It has a role as a metabolite. Prostratin is a natural product found in Euphorbia fischeriana, Euphorbia triangularis, and other organisms with data available. D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters A natural product found in Euphorbia fischeriana.
Cymarin
Cymarin is a cardenolide glycoside. Cymarin is a natural product found in Apocynum cannabinum, Adonis amurensis, and other organisms with data available. A cardiotonic cardiac glycoside found in STROPHANTHUS. The aglycone is STROPHANTHIN. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
alpha-Carotene
alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Gossypetin
Gossypetin is a hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions. It has a role as a plant metabolite. It is a 7-hydroxyflavonol and a hexahydroxyflavone. It is a conjugate acid of a gossypetin-3-olate and a gossypetin(1-). Gossypetin is a natural product found in Sedum brevifolium, Rhododendron stenophyllum, and other organisms with data available. See also: Primula veris flower (part of); Larrea tridentata whole (part of). A hexahydroxyflavone having the hydroxy groups placed at the 3-, 3-, 4-, 5- 7- and 8-positions.
indicine
Rinderine is a member of pyrrolizines. Rinderine is a natural product found in Chromolaena odorata, Eupatorium japonicum, and other organisms with data available.
Narciclasine
Narciclasine is a member of phenanthridines. It has a role as a metabolite. Narciclasine is a natural product found in Lycoris sanguinea, Lycoris squamigera, and other organisms with data available. A natural product found in Narcissus pseudonarcissus. Narciclasine is a plant growth modulator. Narciclasine modulates the Rho/Rho kinase/LIM kinase/cofilin signaling pathway, greatly increasing GTPase RhoA activity as well as inducing actin stress fiber formation in a RhoA-dependent manner.
Zeatin
Zeatin belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. Zeatin is a cytokinin (plant growth hormone) derived from the purine adenine, which occurs in the form of a cis- and a trans-isomer and conjugates. Zeatin was first discovered in immature corn kernels from the genus Zea. Zeatin has also been detected, but not quantified in several different foods, such as figs, rowanberries, red raspberries, garlic, and tree ferns. Zeatin has also been shown to promote the resistance of tobacco against the bacterial pathogen Pseudomonas syringae, in which trans-zeatin has a more prominent effect than cis-zeatin. Zeatin has several anti-ageing effects on human skin fibroblasts. It promotes the growth of lateral buds and, when sprayed on meristems, stimulates cell division to produce bushier plants. Zeatin and its derivatives occur in many plant extracts and are the active ingredient in coconut milk, which causes plant growth. Zeatin is a 6-isopentenylaminopurine. It has a role as a cytokinin. An aminopurine factor in plant extracts that induces cell division. (Grant & Hackhs Chemical Dict, 5th ed) trans-Zeatin is a natural product found in Cichorium intybus, Prunus cerasus, and other organisms with data available. An aminopurine factor in plant extracts that induces cell division. (Grant and Hackhs Chemical Dict, 5th ed) D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins Isolated from sweet corn (Zea mays) and numerous other plants Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Z002; [MS2] KO009317 KEIO_ID Z002 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.
Anabasine
Anabasine is a pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. It has a role as a plant metabolite, a teratogenic agent and a nicotinic acetylcholine receptor agonist. It is a piperidine alkaloid and a pyridine alkaloid. Anabasine is a natural product found in Nicotiana, Nicotiana tabacum, and Anabasis aphylla with data available. Anabasine is a nicotine analog that is an alkaloid found in tree tobacco (Nicotiana glauca) and is comprised of a pyridine substituted by a piperidin-2-yl group at position 3. Anabasine has been used as an industrial insecticide and, since it is present in trace amounts in tobacco smoke, its detection in urine can be used as an indicator of exposure to tobacco smoke. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a pyridine alkaloid found in the stem of the (Nicotiana glauca) plant, a close relative of (Nicotiana tabacum) the common tobacco plant. Anabasine is a metabolite of nicotine which can be used as an indicator of a persons exposure to tobbacco smoke. A piperidine botanical insecticide. A piperidine botanical insecticide. Anabasine is a pyridine and piperidine alkaloid found in the Tree Tobacco (Nicotiana glauca) plant, a close relative of the common tobacco plant (Nicotiana tabacum). It is a structural isomer of, and chemically similar to, nicotine. Its principal (historical) industrial use is as an insecticide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. Anabasine is an unstable yellow liquid which is succeptable to light, heat and moisture. Its decomposition products include Nitrogen oxides, carbon monoxide, irritating and toxic fumes and gases and carbon dioxide. Anabasine is a nicotinic receptor agonist toxin and Cholinesterase inhibitor which acts upon the nicotinic acetylcholine receptors. A pyridine alkaloid that is pyridine substituted by a piperidin-2-yl group at position 3. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals (±) Anabasine is a biphasic muscle relaxant. (±) Anabasine is a biphasic muscle relaxant. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2]. Anabasine ((S)-Anabasine) is an alkaloid that found as a minor component in tobacco (Nicotiana). Anabasine is a botanical?pesticide?nicotine, acts as a full agonist of nicotinic acetylcholine receptors (nAChRs). Anabasine induces depolarization of TE671 cells endogenously expressing human fetal muscle-type nAChRs (EC50=0.7 μM)[1][2].
Falcarindiol
Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Squalene
Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
Myristicin
Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].
Phytol
Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
Paeoniflorigenone
A natural product found in Paeonia rockii subspeciesrockii. Paeoniflorigenone is a terpenoid with formula C17H18O6, isolated from several species of Paeoniae. It has a role as a neuromuscular agent and a plant metabolite. It is a benzoate ester, a monoterpenoid, a cyclic acetal, an alicyclic ketone, a bridged compound and a lactol. [(1S,3S,6R,8R,10S)-8-hydroxy-3-methyl-5-oxo-2,9-dioxatricyclo[4.3.1.03,8]decan-10-yl]methyl benzoate is a natural product found in Paeonia lactiflora, Paeonia clusii, and other organisms with data available. A terpenoid with formula C17H18O6, isolated from several species of Paeoniae.
Canthin-6-one
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
Guaiol
Guaiol is a guaiane sesquiterpenoid. Guaiol is a natural product found in Philotheca fitzgeraldii, Aristolochia asclepiadifolia, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Guaiol is a sesquiterpene alcohol that has been found in several traditional Chinese medicinal plants and has antiproliferative, pro-autophagic, insect repellent, and insecticidal biological activities[1][2][3]. Guaiol is a sesquiterpene alcohol that has been found in several traditional Chinese medicinal plants and has antiproliferative, pro-autophagic, insect repellent, and insecticidal biological activities[1][2][3].
Fukinanolid
Bakkenolide A is a sesquiterpenoid. Bakkenolide A is a natural product found in Camptacra gracilis, Parasenecio hastatus, and other organisms with data available. See also: Petasites hybridus root (part of). Bakkenolide A is a natural product extracted from Petasites tricholobus. Bakkenolide A inhibits leukemia by regulation of HDAC3 and PI3K/Akt-related signaling pathways[1].
Butin_(molecule)
Butin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. It has a role as an antioxidant, a protective agent and a metabolite. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. Butin is a natural product found in Dipteryx lacunifera, Acacia vestita, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2].
Geranyl acetate
Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].
9,10-Dihydroxystearic acid
9,10-dihydroxystearic acid, also known as 9,10-dhsa or 9,10-dioh 18:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 9,10-dihydroxystearic acid is considered to be an octadecanoid lipid molecule. 9,10-dihydroxystearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 9,10-dihydroxystearic acid can be found in peanut, which makes 9,10-dihydroxystearic acid a potential biomarker for the consumption of this food product. 9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available.
2-Hydroxyacetophenone
2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].
Fluroxypyr
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 134 CONFIDENCE standard compound; INTERNAL_ID 56; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3625; ORIGINAL_PRECURSOR_SCAN_NO 3623 CONFIDENCE standard compound; INTERNAL_ID 56; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3620; ORIGINAL_PRECURSOR_SCAN_NO 3616 CONFIDENCE standard compound; INTERNAL_ID 56; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3623; ORIGINAL_PRECURSOR_SCAN_NO 3619 CONFIDENCE standard compound; INTERNAL_ID 56; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3622; ORIGINAL_PRECURSOR_SCAN_NO 3618
Deoxycytidine
Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
2-Oxo-4-methylthiobutanoic acid
2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263). 2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
ST 24:4;O5
C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Same as: D01693
2'-Deoxyguanosine 5'-monophosphate
2-Deoxyguanosine 5-monophosphate, also known as deoxyguanylic acid or 2-deoxy-GMP, belongs to the class of organic compounds known as purine 2-deoxyribonucleoside monophosphates. These are purine nucleotides with monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 2-Deoxyguanosine 5-monophosphate is a purine 2-deoxyribonucleoside 5-monophosphate having guanine as the nucleobase. It exists in all living species, ranging from bacteria to humans. Within humans, 2-deoxyguanosine 5-monophosphate participates in a number of enzymatic reactions. In particular, 2-deoxyguanosine 5-monophosphate can be converted into dGDP which is mediated by the enzyme guanylate kinase. In addition, 2-deoxyguanosine 5-monophosphate can be converted into deoxyguanosine through its interaction with the enzyme cytosolic purine 5-nucleotidase. In humans, 2-deoxyguanosine 5-monophosphate is involved in the metabolic disorder called the gout or kelley-seegmiller syndrome pathway. 2-Deoxyguanosine 5-monophosphate is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Glycitein
Glycitein is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. It has a role as a plant metabolite, a phytoestrogen and a fungal metabolite. It is a methoxyisoflavone and a 7-hydroxyisoflavone. It is functionally related to an isoflavone. Glycitein is a natural product found in Psidium guajava, Ammopiptanthus mongolicus, and other organisms with data available. Glycitein is a soy isoflavone. It is a minor component in most soy products. Its role of reducing low-density lipoprotein cholesterol is not clear. Glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones (PMID: 12011578; 16248547). Glycitein is a biomarker for the consumption of soy beans and other soy products. Isoflavone present in soya foods (inc. tofu, miso); potential nutriceutical [DFC]. Glycitein is a biomarker for the consumption of soy beans and other soy products. Glycitein is found in many foods, some of which are miso, soy bean, soy milk, and soy sauce. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.
L-Methionine
Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and othe... [Spectral] L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Methionine (exact mass = 149.05105) and Tyramine (exact mass = 137.08406) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. l-Methionine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-68-3 (retrieved 2024-07-01) (CAS RN: 63-68-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.
Nα-Acetyl-L-lysine
N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
Carisoprodol
A centrally acting skeletal muscle relaxant whose mechanism of action is not completely understood but may be related to its sedative actions. It is used as an adjunct in the symptomatic treatment of musculoskeletal conditions associated with painful muscle spasm. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1202) M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents
Thymidine-5'-monophosphoric acid
5-Thymidylic acid (conjugate base thymidylate), also known as thymidine monophosphate (TMP), deoxythymidine monophosphate (dTMP), or deoxythymidylic acid (conjugate base deoxythymidylate), is a nucleotide that is used as a monomer in DNA. It is an ester of phosphoric acid with the nucleoside thymidine. dTMP consists of a phosphate group, the pentose sugar deoxyribose, and the nucleobase thymine. Unlike the other deoxyribonucleotides, thymidine monophosphate often does not contain the "deoxy" prefix in its name; nevertheless, its symbol often includes a "d" ("dTMP"). 5-Thymidylic acid belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. The neutral species of 5-Thymidylic acid (2-deoxythymidine 5-monophosphate). 5-Thymidylic acid exists in all living species, ranging from bacteria to humans. Within humans, 5-thymidylic acid participates in a number of enzymatic reactions. In particular, 5-thymidylic acid and dihydrofolic acid can be biosynthesized from dUMP and 5,10-methylene-THF by the enzyme thymidylate synthase. In addition, 5-thymidylic acid can be converted into dTDP; which is catalyzed by the enzyme thymidylate synthase. In humans, 5-thymidylic acid is involved in pyrimidine metabolism. Outside of the human body, 5-Thymidylic acid has been detected, but not quantified in several different foods, such as common buckwheats, corn salad, garden cress, squashberries, and star fruits. 5-thymidylic acid, also known as thymidylate or thymidine 5-phosphate, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. Pyrimidine 2-deoxyribonucleoside monophosphates are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 5-thymidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-thymidylic acid can be found in a number of food items such as burbot, enokitake, scarlet bean, and garland chrysanthemum, which makes 5-thymidylic acid a potential biomarker for the consumption of these food products. 5-thymidylic acid can be found primarily in feces, as well as in human fibroblasts tissue. 5-thymidylic acid exists in all living species, ranging from bacteria to humans. In humans, 5-thymidylic acid is involved in the pyrimidine metabolism. 5-thymidylic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Acquisition and generation of the data is financially supported in part by CREST/JST.
Etomidate
Etomidate is only found in individuals that have used or taken this drug. It is an midazole derivative anesthetic and hypnotic with little effect on blood gases, ventilation, or the cardiovascular system. It has been proposed as an induction anesthetic. [PubChem]Etomidate binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Trans-3-hydroxy-L-proline
Trans-3-hydroxy-l-proline is a substrate for: Trans-L-3-hydroxyproline dehydratase.
Oxymorphone
An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092) D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Levamisole
An antihelminthic drug that has been tried experimentally in rheumatic disorders where it apparently restores the immune response by increasing macrophage chemotaxis and T-lymphocyte function. Paradoxically, this immune enhancement appears to be beneficial in rheumatoid arthritis where dermatitis, leukopenia, and thrombocytopenia, and nausea and vomiting have been reported as side effects. (From Smith and Reynard, Textbook of Pharmacology, 1991, p435-6) P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CE - Imidazothiazole derivatives C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2141 - Chemo Immunostimulant Adjuvant D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 2857 CONFIDENCE standard compound; INTERNAL_ID 1172 D018501 - Antirheumatic Agents D007155 - Immunologic Factors C2140 - Adjuvant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Levamisole ((-)-Levamisole), an anthelmintic agent with immunomodulatory properties. Levamisole acts as a positive allosteric modulator (PAM) for the α3β2 (EC50=300 μM) and α3β4 (EC50=100 μM) subtype of nAChRs. Orally active[1][2].
Sulfanilic acid
CONFIDENCE standard compound; EAWAG_UCHEM_ID 652 KEIO_ID S073
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7159; ORIGINAL_PRECURSOR_SCAN_NO 7155 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7152; ORIGINAL_PRECURSOR_SCAN_NO 7150 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7161; ORIGINAL_PRECURSOR_SCAN_NO 7158 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7190; ORIGINAL_PRECURSOR_SCAN_NO 7188 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7200; ORIGINAL_PRECURSOR_SCAN_NO 7197 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 INTERNAL_ID 52; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 CONFIDENCE standard compound; INTERNAL_ID 3024 CONFIDENCE standard compound; INTERNAL_ID 8424 CONFIDENCE standard compound; INTERNAL_ID 4044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2954 EAWAG_UCHEM_ID 2954; CONFIDENCE standard compound
Guanosine diphosphate
Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
albendazole S-oxide
Albendazole s-oxide is part of the Steroid hormone biosynthesis, Linoleic acid metabolism, Retinol metabolism, and Bile secretion pathways. It is a substrate for: Cytochrome P450 3A4. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
resmethrin
DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10738; ORIGINAL_PRECURSOR_SCAN_NO 10736 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10738; ORIGINAL_PRECURSOR_SCAN_NO 10736 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10701; ORIGINAL_PRECURSOR_SCAN_NO 10696 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10728; ORIGINAL_PRECURSOR_SCAN_NO 10725 INTERNAL_ID 158; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10689; ORIGINAL_PRECURSOR_SCAN_NO 10685 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10714; ORIGINAL_PRECURSOR_SCAN_NO 10710 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10668; ORIGINAL_PRECURSOR_SCAN_NO 10665 CONFIDENCE standard compound; INTERNAL_ID 158; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10689; ORIGINAL_PRECURSOR_SCAN_NO 10685 D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
Mecarbam
CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9383; ORIGINAL_PRECURSOR_SCAN_NO 9380 CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9374; ORIGINAL_PRECURSOR_SCAN_NO 9371 CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9357; ORIGINAL_PRECURSOR_SCAN_NO 9353 CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9382; ORIGINAL_PRECURSOR_SCAN_NO 9379 ORIGINAL_ACQUISITION_NO 9383; ORIGINAL_PRECURSOR_SCAN_NO 9380; CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0 CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9388; ORIGINAL_PRECURSOR_SCAN_NO 9384 CONFIDENCE standard compound; INTERNAL_ID 1213; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9353; ORIGINAL_PRECURSOR_SCAN_NO 9349 Mecarbam is an Agricultural insecticide and acaricide with slightly systemic properties
Thiabendazole
Thiabendazole is active against a variety of nematodes and is the drug of choice for strongyloidiasis. It has CNS side effects and hepatototoxic potential. (From Smith and Reynard, Textbook of Pharmacology, 1992, p919)The precise mode of action of thiabendazole on the parasite is unknown, but it most likely inhibits the helminth-specific enzyme fumarate reductase. Thiabendazole is also used as a postharvest treatment for bananas, plantains and oranges. Registered in Canada for control of silver scurf in stored potatoes Thiabendazole is a fungicide and parasiticide. Thiabendazole is also a chelating agent, which means that it is used medicinally to bind metals in cases of metal poisoning, such as lead poisoning, mercury poisoning or antimony poisoning. Thiabendazole is vermicidal and/or vermifugal against Ascaris lumbricoides ("common roundworm"), Strongyloides stercoralis (threadworm), Necator americanus, Ancylostoma duodenale (hookworm), Trichuris trichiura (whipworm), Ancylostoma braziliense (dog and cat hookworm), Toxocara canis, Toxocara cati (ascarids), and Enterobius vermicularis (pinworm). Thiabendazole also suppresses egg and/or larval production and may inhibit the subsequent development of those eggs or larvae which are passed in the feces CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5824 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5833; ORIGINAL_PRECURSOR_SCAN_NO 5831 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5856; ORIGINAL_PRECURSOR_SCAN_NO 5854 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5860; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5848; ORIGINAL_PRECURSOR_SCAN_NO 5844 CONFIDENCE standard compound; INTERNAL_ID 1201; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5840; ORIGINAL_PRECURSOR_SCAN_NO 5838 Anthelmintic, pre- and postharvest fungicide, also freq. for vet. use. It is used as a postharvest treatment for bananas, plantains and oranges. Registered in Canada for control of silver scurf in stored potatoes D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 8788 INTERNAL_ID 2860; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4015 CONFIDENCE standard compound; INTERNAL_ID 1066 CONFIDENCE standard compound; INTERNAL_ID 2860 KEIO_ID T028 Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
triallate
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3725 CONFIDENCE standard compound; INTERNAL_ID 2627 CONFIDENCE standard compound; INTERNAL_ID 8488 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
17-beta-Estradiol glucuronide
17-beta-Estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 17-beta-estradiol glucuronide is a natural human metabolite of 17beta-Estradiol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Pyroglutamic acid
Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
4-Aminobiphenyl
4-Aminobiphenyl is an amine derivative of biphenyl. It is used to manufacture azo dyes. It is a known human carcinogen and so it has been largely replaced by less toxic compounds. It is similar to benzidine. [HMDB] 4-Aminobiphenyl is an amine derivative of biphenyl. It is used to manufacture azo dyes. It is a known human carcinogen and so it has been largely replaced by less toxic compounds. It is similar to benzidine. D009676 - Noxae > D002273 - Carcinogens
Astemizole
Astemizole is a long-acting, non-sedating second generation antihistamine used in the treatment of allergy symptoms. It was withdrawn from market by the manufacturer in 1999 due to the potential to cause arrhythmias at high doses, especially when when taken with CYP inhibitors or grapefruit juice. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
Cyclobenzaprine
Cyclobenzaprine is a skeletal muscle relaxant and a central nervous system (CNS) depressant. Cyclobenzaprine acts on the locus coeruleus where it results in increased norepinephrine release, potentially through the gamma fibers which innervate and inhibit the alpha motor neurons in the ventral horn of the spinal cord. It is structurally similar to Amitriptyline, differing by only one double bond. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant
Dobutamine
Dobutamine is only found in individuals that have used or taken this drug. It is a beta-2 agonist catecholamine that has cardiac stimulant action without evoking vasoconstriction or tachycardia. It is proposed as a cardiotonic after myocardial infarction or open heart surgery. [PubChem]Dobutamine directly stimulates beta-1 receptors of the heart to increase myocardial contractility and stroke volume, resulting in increased cardiac output. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents KEIO_ID D185; [MS2] KO008933 KEIO_ID D185
Flumazenil
Flumazenil is only found in individuals that have used or taken this drug.Flumazenil, an imidazobenzodiazepine derivative, antagonizes the actions of benzodiazepines on the central nervous system. Flumazenil competitively inhibits the activity at the benzodiazepine recognition site on the GABA/benzodiazepine receptor complex, thereby reversing the effects of benzodiazepine on the central nervous system. Flumazenil is a weak partial agonist in some animal models of activity, but has little or no agonist activity in man. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D020011 - Protective Agents > D000931 - Antidotes Flumazenil is a competitive GABAA receptor antagonist, used in the treatment of benzodiazepine overdoses.
Repaglinide
Repaglinide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It belongs to the meglitinide class of short-acting insulin secretagogues, which act by binding to cells of the pancreas to stimulate insulin release. Repaglinide induces an early insulin response to meals decreasing postprandial blood glucose levels. It should only be taken with meals and meal-time doses should be skipped with any skipped meal. Approximately one month of therapy is required before a decrease in fasting blood glucose is seen. Meglitnides may have a neutral effect on weight or cause a slight increase in weight. The average weight gain caused by meglitinides appears to be lower than that caused by sulfonylureas and insulin and appears to occur only in those naive to oral antidiabetic agents. Due to their mechanism of action, meglitinides may cause hypoglycemia although the risk is thought to be lower than that of sulfonylureas since their action is dependent on the presence of glucose. In addition to reducing postprandial and fasting blood glucose, meglitnides have been shown to decrease glycosylated hemoglobin (HbA1c) levels, which are reflective of the last 8-10 weeks of glucose control. Meglitinides appear to be more effective at lowering postprandial blood glucose than metformin, sulfonylureas and thiazolidinediones. Repaglinide is extensively metabolized in the liver and excreted in bile. Repaglinide metabolites do not possess appreciable hypoglycemic activity. Approximately 90\\% of a single orally administered dose is eliminated in feces and 8\\% in urine. C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents
Meperidine
A narcotic analgesic that can be used for the relief of most types of moderate to severe pain, including postoperative pain and the pain of labor. Prolonged use may lead to dependence of the morphine type; withdrawal symptoms appear more rapidly than with morphine and are of shorter duration. [PubChem] D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Phalloidine
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Clothianidin
CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6612; ORIGINAL_PRECURSOR_SCAN_NO 6610 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3164; ORIGINAL_PRECURSOR_SCAN_NO 3162 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3102; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6570; ORIGINAL_PRECURSOR_SCAN_NO 6567 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3103; ORIGINAL_PRECURSOR_SCAN_NO 3100 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3120; ORIGINAL_PRECURSOR_SCAN_NO 3119 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3100; ORIGINAL_PRECURSOR_SCAN_NO 3098 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6580; ORIGINAL_PRECURSOR_SCAN_NO 6577 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6605; ORIGINAL_PRECURSOR_SCAN_NO 6603 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6531; ORIGINAL_PRECURSOR_SCAN_NO 6529 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3091; ORIGINAL_PRECURSOR_SCAN_NO 3089 CONFIDENCE standard compound; INTERNAL_ID 50; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6599; ORIGINAL_PRECURSOR_SCAN_NO 6595 D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids CONFIDENCE standard compound; INTERNAL_ID 8455 CONFIDENCE standard compound; INTERNAL_ID 2328 D016573 - Agrochemicals
Difenoconazole
CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9954; ORIGINAL_PRECURSOR_SCAN_NO 9949 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9970; ORIGINAL_PRECURSOR_SCAN_NO 9969 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9848; ORIGINAL_PRECURSOR_SCAN_NO 9843 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9912; ORIGINAL_PRECURSOR_SCAN_NO 9911 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9893; ORIGINAL_PRECURSOR_SCAN_NO 9891 CONFIDENCE standard compound; INTERNAL_ID 585; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9949; ORIGINAL_PRECURSOR_SCAN_NO 9948 CONFIDENCE standard compound; INTERNAL_ID 2586 CONFIDENCE standard compound; INTERNAL_ID 8457 D016573 - Agrochemicals D010575 - Pesticides
Diethylhexyl adipate
Diethylhexyl adipate (DEHA) is an indirect food additive arising from contact with polymers and adhesives. DEHA is a plasticizer. DEHA is an ester of 2-ethylhexanol and adipic acid. Its chemical formula is C22H42O4. Indirect food additive arising from contact with polymers and adhesives
pymetrozine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2947 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2674; ORIGINAL_PRECURSOR_SCAN_NO 2673 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2682; ORIGINAL_PRECURSOR_SCAN_NO 2681 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2679; ORIGINAL_PRECURSOR_SCAN_NO 2677 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2664; ORIGINAL_PRECURSOR_SCAN_NO 2662 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2667; ORIGINAL_PRECURSOR_SCAN_NO 2665
Carfentrazone-ethyl
CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9627; ORIGINAL_PRECURSOR_SCAN_NO 9624 CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9574; ORIGINAL_PRECURSOR_SCAN_NO 9569 CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9643; ORIGINAL_PRECURSOR_SCAN_NO 9639 CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9545; ORIGINAL_PRECURSOR_SCAN_NO 9543 CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9629; ORIGINAL_PRECURSOR_SCAN_NO 9625 CONFIDENCE standard compound; INTERNAL_ID 587; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9569; ORIGINAL_PRECURSOR_SCAN_NO 9567 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Indolin-2-one
1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. CONFIDENCE standard compound; INTERNAL_ID 2508 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.
Tris(2-chloroethyl) phosphate
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1032 CONFIDENCE standard compound; INTERNAL_ID 8252 CONFIDENCE standard compound; INTERNAL_ID 8790 CONFIDENCE standard compound; INTERNAL_ID 2463 D005411 - Flame Retardants
Granisetron
Granisetron is only found in individuals that have used or taken this drug. It is a serotonin receptor (5HT-3 selective) antagonist that has been used as an antiemetic and antinauseant for cancer chemotherapy patients. [PubChem]Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Granisetron (BRL 43694) is a serotonin 5-HT3 receptor antagonist used as an antiemetic to treat nausea and vomiting following chemotherapy.
Trichloromethylthio-1,2,5,6-tetrahydrophthalamide
D016573 - Agrochemicals D010575 - Pesticides
4-Hydroxytamoxifen
4-Hydroxytamoxifen (Afimoxifene) is a metabolite of Tamoxifen. Afimoxifene (4-hydroxytamoxifen) is a selective estrogen receptor modulator which is the active metabolite of tamoxifen. Afimoxifene is a transdermal gel formulation and is being developed by Ascend Therapeutics, Inc. under the trademark TamoGel. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent
Fenthion
Fenthion is an insecticide with low mammalian toxicity. Fenthion is used in agriculture and against mosquito larvae in tropical fresh waters.Fenthion is an organothiophosphate insecticide, avicide, and acaricide. Like most other organophosphates, its mode of action is via cholinesterase inhibition. Due to its relatively low toxicity towards humans and mammals, fenthion is listed as moderately toxic compound in U.S. Environmental Protection Agency and World Health Organization toxicity class. (Wikipedia). Insecticide with low mammalian toxicity. It is used in agriculture and against mosquito larvae in tropical fresh waters D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Hydrocodone
Hydrocodone is only found in individuals that have used or taken this drug. It is a narcotic analgesic related to codeine, but more potent and more addicting by weight. It is used also as cough suppressant. [PubChem]Hydrocodone acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Hydrocodone primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as hydrocodone also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
Morin
Morin is a pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. It has a role as an antioxidant, a metabolite, an antihypertensive agent, a hepatoprotective agent, a neuroprotective agent, an anti-inflammatory agent, an antineoplastic agent, an antibacterial agent, an EC 5.99.1.2 (DNA topoisomerase) inhibitor and an angiogenesis modulating agent. It is a pentahydroxyflavone and a 7-hydroxyflavonol. Morin is a natural product found in Lotus ucrainicus, Psidium guajava, and other organisms with data available. Constituent of various woods, e.g. Morus alba (white mulberry). First isol. in 1830. Morin is found in many foods, some of which are blackcurrant, european cranberry, bilberry, and fruits. Morin is found in bilberry. Morin is a constituent of various woods, e.g. Morus alba (white mulberry). First isolated in 1830 A pentahydroxyflavone that is 7-hydroxyflavonol bearing three additional hydroxy substituents at positions 2 4 and 5. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Rhamnetin
Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
TRIPHENYL PHOSPHATE
CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9628; ORIGINAL_PRECURSOR_SCAN_NO 9627 CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9676; ORIGINAL_PRECURSOR_SCAN_NO 9675 CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9720 CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9722; ORIGINAL_PRECURSOR_SCAN_NO 9721 CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9686; ORIGINAL_PRECURSOR_SCAN_NO 9683 CONFIDENCE standard compound; INTERNAL_ID 491; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9737; ORIGINAL_PRECURSOR_SCAN_NO 9735 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3638 CONFIDENCE standard compound; INTERNAL_ID 2464 CONFIDENCE standard compound; INTERNAL_ID 8249 CONFIDENCE standard compound; INTERNAL_ID 8795 CONFIDENCE standard compound; INTERNAL_ID 4175
Ronilan
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists CONFIDENCE standard compound; EAWAG_UCHEM_ID 3119 D016573 - Agrochemicals D010575 - Pesticides
Hydromorphone
Hydromorphone is only found in individuals that have used or taken this drug. It is an opioid analgesic derived from morphine and used mainly as an analgesic. It has a shorter duration of action and is more potent than morphine. [PubChem]Hydromorphone is a narcotic analgesic; its principal therapeutic effect is relief of pain. Hydromorphone interacts predominantly with the opioid mu-receptors. These mu-binding sites are discretely distributed in the human brain, with high densities in the posterior amygdala, hypothalamus, thalamus, nucleus caudatus, putamen, and certain cortical areas. They are also found on the terminal axons of primary afferents within laminae I and II (substantia gelatinosa) of the spinal cord and in the spinal nucleus of the trigeminal nerve. In clinical settings, Hydromorphone exerts its principal pharmacological effect on the central nervous system and gastrointestinal tract. Hydromorphone also binds with kappa-receptors which are thought to mediate spinal analgesia, miosis and sedation. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
19(S)-HETE
19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific. Monooxygenase. (EC:1.14.14.1). 19(S)-HETE is an intermediate in Arachidonic acid metabolism. 19(S)-HETE is converted from Arachidonic acid via the enzyme CYP2U and Unspecific
Tizanidine
Tizanidine is a short-acting drug for the management of spasticity. Tizanidine is an agonist at a2-adrenergic receptor sites and presumably reduces spasticity by increasing presynaptic inhibition of motor neurons. In animal models, tizanidine has no direct effect on skeletal muscle fibers or the neuromuscular junction, and no major effect on monosynaptic spinal reflexes. The effects of tizanidine are greatest on polysynaptic pathways. The overall effect of these actions is thought to reduce facilitation of spinal motor neurons. Tizanidine has two major metabolites: (1) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiazdiazole and (2) 5-chloro-4-(2-imidazolin-4-on-2-ylamino)-2,1,3-benzothiadiazole (PMID: 9929503, 19961320). M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.
Docetaxel
Docetaxel (sold under the brand name Taxotere) is a clinically well-established anti-mitotic chemotherapy medication (that is, it interferes with cell division). It is used mainly for the treatment of breast, ovarian, prostate, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of 1 mole docetaxel per mole tubulin in microtubules. Docetaxel has been FDA-approved to treat patients who have locally advanced, or metastatic breast, or non-small-cell lung cancer who have undergone anthracycline-based chemotherapy and failed to stop cancer progression or relapsed. Docetaxel has a European approval for use in hormone-refractory prostate cancer. Docetaxel is a chemotherapeutic agent and is a cytotoxic compound. It is effectively a biologically damaging drug. As with all chemotherapy, adverse effects are common and many varying side-effects have been documented. Because docetaxel is a cell-cycle specific agent, it is cytotoxic to all dividing cells in the body. This includes tumour cells as well as hair follicles, bone marrow, and other germ cells. For this reason, common chemotherapy side effects such as alopecia occur (this can sometimes be permanent). The drug company Sanofi Aventis claims that they do not routinely keep this data. A survey being conducted in northwest France aims to establish exactly how many patients are being disfigured in this way. Independent studies show it could be as high as 6.3\\\% which puts this ASE in the common and frequent classification. Docetaxel is mainly metabolized in the liver by the cytochrome P450 CYP3A4 and CYP3A5 subfamilies of isoenzymes. Metabolism is principally oxidative and at the tert-butylpropionate side chain, resulting first in an alcohol docetaxel (M2), which is then cyclized to three further metabolites (M1, M3, and M4). M1 and M3 are two diastereomeric hydroxyoxazolidinones and M4 is an oxazolidinedione. Phase II trials of 577 patients showed that docetaxel clearance is related to body surface area and plasma levels of hepatic enzyme alpha-1-acid glycoprotein. Docetaxel is of the chemotherapy drug class taxane and is a semi-synthetic analogue of paclitaxel (Taxol), an extract from the bark of the rare Pacific yew tree Taxus brevifolia. Due to the scarcity of paclitaxel, extensive research was carried out which lead to the formulation of docetaxel, an esterified product of 10-deacetylbaccatin III. It was extracted from the renewable and readily available European yew tree. Drug interactions may be the result of altered pharmacokinetics or pharmacodynamics due to one of the drugs involved. Cisplatin, dexamethasone, doxorubicin, etoposide, and vinblastine are all potentially co-administered with docetaxel and did not modify docetaxel plasma binding in phase II studies. Cisplatin is known to have a complex interaction with some CYPs and has, in some events, been shown to reduce docetaxel clearance by up to 25\\\%. Anticonvulsants induce some metabolic pathways relevant to docetaxel. CYP450 and CYP3A show increased expression in response to the use of anticonvulsants and the metabolism of docetaxel metabolite M4 is processed by these CYPs. A corresponding increase in clearance of M4 by 25\\\% is observed in patients taking phenytoin and phenobarbital, common anticonvulsants. STAMPEDE is a UK-based six-arm, five-stage, open-label randomized controlled trial involving more than 3000 men. Arms C and E of this trial involve administering docetaxel to men starting long-term hormone therapy for the first time. This could be newly diagnosed metastatic, non-metastatic, or high-risk, previously-treated prostate cancer. The trial tests the value of the drug earlier in the treatment pathway instead of waiting until it has become androgen-independent. Docetaxel anhydrous is a tetracyclic diterpenoid that is paclitaxel with the N-benzyloxycarbonyl group replaced by N-tert-butoxycarbonyl, and the acetoxy group at position 10 replaced by a hydroxy group. It has a role as an antineoplastic agent, a photosensitizing agent and an antimalarial. It is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It derives from a hydride of a taxane. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel reversibly binds to tubulin with high affinity in a 1:1 stoichiometric ratio Docetaxel anhydrous is a Microtubule Inhibitor. The physiologic effect of docetaxel anhydrous is by means of Microtubule Inhibition. Docetaxel is an antineoplastic agent that has a unique mechanism of action as an inhibitor of cellular mitosis and that currently plays a central role in the therapy of many solid tumors including breast and lung cancer. Docetaxel therapy is frequently associated with serum enzyme elevations which are usually transient and mild, but more importantly has been linked to rapid onset, severe hypersensitivity reactions that can be associated with acute hepatic necrosis, liver failure and death. Docetaxel is a natural product found in Penicillium ubiquetum with data available. Docetaxel is a semi-synthetic, second-generation taxane derived from a compound found in the European yew tree, Taxus baccata. Docetaxel displays potent and broad antineoplastic properties; it binds to and stabilizes tubulin, thereby inhibiting microtubule disassembly which results in cell- cycle arrest at the G2/M phase and cell death. This agent also inhibits pro-angiogenic factors such as vascular endothelial growth factor (VEGF) and displays immunomodulatory and pro-inflammatory properties by inducing various mediators of the inflammatory response. Docetaxel has been studied for use as a radiation-sensitizing agent. (NCI04) Docetaxel Anhydrous is the anhydrous form of docetaxel, a semisynthetic side-chain analogue of paclitaxel with antineoplastic property. Docetaxel binds specifically to the beta-tubulin subunit of microtubules and thereby antagonizes the disassembly of the microtubule proteins. This results in the persistence of aberrant microtubule structures and results in cell-cycle arrest and subsequent cell death. Docetaxel is a clinically well established anti-mitotic chemotherapy medication used mainly for the treatment of breast, ovarian, and non-small cell lung cancer. Docetaxel binds to microtubules reversibly with high affinity and has a maximum stoichiometry of one mole docetaxel per mole tubulin in microtubules. A semisynthetic analog of PACLITAXEL used in the treatment of locally advanced or metastatic BREAST NEOPLASMS and NON-SMALL CELL LUNG CANCER. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D07866 Docetaxel (RP-56976) is a microtubule?depolymerization inhibitor, with an IC50 of 0.2 μM. Docetaxel attenuates the effects of?bcl-2 and bcl-xL gene expression. Docetaxel arrests the cell cycle at G2/M and leads to cell apoptosis. Docetaxel has anti-cancer activity[1][3].
Legumelin
Legumelin, also known as (-)-cis-deguelin, is a member of the class of compounds known as rotenones. Rotenones are rotenoids with a structure based on a 6a,12a-dihydrochromeno[3,4-b]chromen-12(6H)-one skeleton. Thus, legumelin is considered to be a flavonoid lipid molecule. Legumelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Legumelin can be found in soy bean, which makes legumelin a potential biomarker for the consumption of this food product. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.
TRIBUTYL PHOSPHATE
D020011 - Protective Agents > D011837 - Radiation-Protective Agents
penicillic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE isolated standard
FUSARENON X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Diacetoxyscirpenol
Diacetoxyscirpenol is a constituent of Fusarium species Mycotoxin D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Constituent of Fusarium subspecies Mycotoxin C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents
Primolut depot
CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10390; ORIGINAL_PRECURSOR_SCAN_NO 10389 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10271; ORIGINAL_PRECURSOR_SCAN_NO 10269 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10375; ORIGINAL_PRECURSOR_SCAN_NO 10374 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10383; ORIGINAL_PRECURSOR_SCAN_NO 10381 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10318; ORIGINAL_PRECURSOR_SCAN_NO 10317 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10339; ORIGINAL_PRECURSOR_SCAN_NO 10337 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
Orciprenaline
Orciprenaline is only found in individuals that have used or taken this drug. It is a beta-adrenergic agonist used in the treatment of asthma and bronchospasms. [PubChem]Orciprenaline is a moderately selective beta(2)-adrenergic agonist that stimulates receptors of the smooth muscle in the lungs, uterus, and vasculature supplying skeletal muscle, with minimal or no effect on alpha-adrenergic receptors. Intracellularly, the actions of orciprenaline are mediated by cAMP, the production of which is augmented by beta stimulation. The drug is believed to work by activating adenylate cyclase, the enzyme responsible for producing the cellular mediator cAMP. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents
Rubiadin
Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].
(±)-Methamidophos
(±)-Methamidophos is an agricultural systemic insecticide and acaricide. It is a metabolite of acephate
Ethylene thiourea
CONFIDENCE standard compound; EAWAG_UCHEM_ID 271 CONFIDENCE standard compound; INTERNAL_ID 8704
Methylpyrrolidone
D009676 - Noxae > D013723 - Teratogens CONFIDENCE standard compound; INTERNAL_ID 2778 CONFIDENCE standard compound; INTERNAL_ID 8697 KEIO_ID M024
Dichlorprop
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8393 CONFIDENCE standard compound; EAWAG_UCHEM_ID 270
Epsilon-caprolactam
Caprolactam, also known as aminocaproic lactam or hexahydro-2h-azepin-2-one, is a member of the class of compounds known as caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Caprolactam is soluble (in water) and a very weakly acidic compound (based on its pKa). Caprolactam is an amine, bitter, and spicy tasting compound found in sunflower, which makes caprolactam a potential biomarker for the consumption of this food product. Caprolactam (CPL) is an organic compound with the formula (CH2)5C(O)NH. This colourless solid is a lactam (a cyclic amide) of caproic acid. Global demand for this compound is approximately 5 million tons per year, and the vast majority is used to make Nylon 6 filament, fiber, and plastics . Epsilon-caprolactam, also known as Caprolactam or Aminocaproic lactam, is classified as a member of the Caprolactams. Caprolactams are cyclic amides of caproic acid. Caproic acid is the carboxylic acid derived from hexane with the general formula C5H11COOH. Epsilon-caprolactam is considered to be soluble (in water) and relatively neutral. Epsilon-caprolactam is an amine, bitter, and spicy tasting compound found in Sunflowers D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
N-Nitrosodipropylamine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3456 D009676 - Noxae > D002273 - Carcinogens
N-Acetyl-glucosamine 1-phosphate
N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Clidinium
Clidinium is a synthetic anticholinergic agent which has been shown in experimental and clinical studies to have a pronounced antispasmodic and antisecretory effect on the gastrointestinal tract. It inhibits muscarinic actions of acetylcholine at postganglionic parasympathetic neuroeffector sites. It is used for the treatment of peptic ulcer disease and also to help relieve abdominal or stomach spasms or cramps due to colicky abdominal pain, diverticulitis, and irritable bowel syndrome. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics
Pyridostigmine
Pyridostigmine is only found in individuals that have used or taken this drug. It is a cholinesterase inhibitor with a slightly longer duration of action than neostigmine. It is used in the treatment of myasthenia gravis and to reverse the actions of muscle relaxants. [PubChem]Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolonges the effects of acetylcholine. N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors
AdoMet
[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Chelidonine
Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic. Chelidonine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity. See also: Chelidonium majus flowering top (part of). CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2255 Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].
2,4,6-Trichlorphenol
CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5132; ORIGINAL_PRECURSOR_SCAN_NO 5129 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5120; ORIGINAL_PRECURSOR_SCAN_NO 5119 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5105; ORIGINAL_PRECURSOR_SCAN_NO 5103 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5177; ORIGINAL_PRECURSOR_SCAN_NO 5173 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5142 CONFIDENCE standard compound; INTERNAL_ID 995; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5144; ORIGINAL_PRECURSOR_SCAN_NO 5143 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8137 D009676 - Noxae > D009153 - Mutagens
1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine
1-Methyl-6-phenyl-1H-imidazo[4,5-b]pyridin-2-amine is a food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish. Food-related mutagen, reported to be the most abundant heterocyclic amine found in cooked meat and fish CONFIDENCE standard compound; INTERNAL_ID 8317 CONFIDENCE standard compound; INTERNAL_ID 2293 CONFIDENCE standard compound; INTERNAL_ID 9 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators CONFIDENCE standard compound; INTERNAL_ID 2623 CONFIDENCE standard compound; INTERNAL_ID 8450 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
2-Hydroxypyridine
This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.
Meta-Tyrosine
Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].
Ribothymidine
Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] Ribothymidine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. (PMID:3506820, 17044778, 17264127, 16799933). 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids. 5-Methyluridine is a is an endogenous methylated nucleoside found in human fluids.
Hydroxyhydroquinone
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
trans-Piceid
trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
Myricitrin
Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].
Amentoflavone
Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
beta-Alanyl-L-lysine
This compound belongs to the family of Hybrid Peptides. These are compounds containing at least two different types of amino acids (alpha, beta, gamma, delta). KEIO_ID A127
Blasticidin S
Contact fungicide used against rice blast disease in Japan Blasticidin S is an antibiotic used to select transformed cells in genetic engineering. In short, DNA of interest is fused to DNA encoding a resistance gene, and then is transformed into cells. After allowing time for recovery and for cells to begin transcribing and translating their new DNA, blasticidin is added. Now only the cells that have the new DNA can grow D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents KEIO_ID B019; [MS3] KO008877 KEIO_ID B019; [MS2] KO008876 D004791 - Enzyme Inhibitors KEIO_ID B019
Deoxyribose 1-phosphate
Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. [HMDB] Deoxyribose 1-phosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Purine nucleoside phosphorylase and Thymidine phosphorylase. COVID info from COVID-19 Disease Map KEIO_ID D013 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Phenoxyacetic acid
Phenoxyacetic acid is found in cocoa and cocoa products. Phenoxyacetic acid is a flavouring ingredient. Phenoxyacetic acid is present in cocoa bean Phenoxyacetic acid is a flavouring ingredient. It is found in cocoa and cocoa products. COVID info from PDB, Protein Data Bank KEIO_ID P129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
Beta-Aminopropionitrile
beta-Aminopropionitrile is a toxic amino-acid derivative. On an unusual case of the Cantrell-sequence in a premature infant with associated dysmelia, aplasia of the right kidney, cerebellar hypoplasia and circumscribed aplasia of the cutis, maternal history suggested an occupational exposure to aminopropionitriles prior to pregnancy. The characteristic features of the Cantrell-sequence--anterior thoraco-abdominal wall defect with ectopia cordis and diaphragm, sternum, pericardium, and heart defects--have been observed in animals following maternal administration of beta-aminopropionitrile. Some species of lathyrus (chickling pea, Lathyrus sativus- related), notably Lathyrus odoratus, are unable to induce human lathyrism but contain beta-aminopropionitrile, that induces pathological changes in bone ("osteolathyrism") and blood vessels ("angiolathyrism") of experimental animals without damaging the nervous system. The administration of beta-aminopropionitrile has been proposed for pharmacological control of unwanted scar tissue in human beings. beta-Aminopropionitrile is a reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid. (PMID:367235, 6422318, 9394169, Am J Perinatol. 1997 Oct;14(9):567-71.). Constituent of chickling pea (Lathyrus sativus) C471 - Enzyme Inhibitor KEIO_ID A044 β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Gossypin
A glycosyloxyflavone that is gossypetin attached to a beta-D-glucopyranosyl residue at position 8 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Gossypin is a flavone isolated from?Hibiscus vitifolius and has antioxidant, antiinflammatory, anticancer, anticataract, antidiabetic, and hepatoprotective activities. Gossypin inhibits NF-κB and NF-κB-regulated gene expression. Gossypin inhibits RANKL-induced osteoclastogenesis both in mouse primary bone marrow cells and RAW 264.7 cells in vitro[1][2]. Gossypin is a flavone isolated from?Hibiscus vitifolius and has antioxidant, antiinflammatory, anticancer, anticataract, antidiabetic, and hepatoprotective activities. Gossypin inhibits NF-κB and NF-κB-regulated gene expression. Gossypin inhibits RANKL-induced osteoclastogenesis both in mouse primary bone marrow cells and RAW 264.7 cells in vitro[1][2].
gamma-Tocotrienol
gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. Acquisition and generation of the data is financially supported in part by CREST/JST. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].
delta-Tocotrienol
delta-Tocotrienol, also known as 8-methyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the carbon C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, delta-tocotrienol is considered to be a quinone lipid molecule. delta-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. delta-Tocotrienol is found in American cranberry and palm oil. It is a nutriceutical with anticancer properties and a positive influence on the blood lipid profile. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. d-Tocotrienol is found in many foods, some of which are fennel, caraway, coconut, and lichee. Acquisition and generation of the data is financially supported in part by CREST/JST.
(-)-maackiain-3-O-glucoside
(-)-maackiain-3-o-glucoside, also known as trifolrhizin, is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids (-)-maackiain-3-o-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (-)-maackiain-3-o-glucoside can be found in a number of food items such as pepper (c. pubescens), loquat, nopal, and kiwi, which makes (-)-maackiain-3-o-glucoside a potential biomarker for the consumption of these food products. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
2-Amino-3-methylimidazo[4,5-f]quinoline
2-Amino-3-methylimidazo[4,5-f]quinoline is found in animal foods. 2-Amino-3-methylimidazo[4,5-f]quinoline is isolated from cooked foods, e.g. sardines, beef extrac Isolated from cooked foods, e.g. sardines, beef extract. 2-Amino-3-methylimidazo[4,5-f]quinoline is found in fishes and animal foods. CONFIDENCE standard compound; INTERNAL_ID 5
2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline
2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is found in animal foods. 2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is a food-related mutagen isolated from cooked meats (especially grilled/barbecued Food-related mutagen isolated from cooked meats (especies grilled/barbecued). 2-Amino-3,8-dimethyl-3H-imidazo[4,5-f]quinoxaline is found in animal foods. CONFIDENCE standard compound; INTERNAL_ID 2292 CONFIDENCE standard compound; INTERNAL_ID 6 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
1-Nitropyrene
CONFIDENCE standard compound; INTERNAL_ID 34 D009676 - Noxae > D009153 - Mutagens
1,8-DINITROPYRENE
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens CONFIDENCE standard compound; INTERNAL_ID 35
3-Hydroxybenzo(a)pyrene
CONFIDENCE standard compound; INTERNAL_ID 45
all-trans-Phytofluene
all-trans-Phytofluene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids 7,7,8,8,11,12-Hexahydro-Carotene is a carotenoid found in human fluids.
Vicenin 2
Constituent of lemons (Citrus limon). Vicenin 2 is found in many foods, some of which are common salsify, fenugreek, sweet orange, and cucumber. Vicenin 2 is found in citrus. Vicenin 2 is a constituent of lemons (Citrus limon) Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Tephrosin
Tephrosin is a member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities. It has a role as a pesticide, an antineoplastic agent and a metabolite. It is an organic heteropentacyclic compound, an aromatic ether, a cyclic ketone and a member of rotenones. Tephrosin is a natural product found in Millettia ferruginea, Tephrosia vogelii, and other organisms with data available. A member of the class of rotenones that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted with geminal methyl groups at position 3, hydroxy group at position 7a and methoxy groups at positions 9 and 10 (the 7aR,13aR stereoisomer). It is isolated from the leaves and twigs of Antheroporum pierrei and exhibits antineoplastic and pesticidal activities.
Securinine
Securinine is a member of indolizines. Securinine is a natural product found in Flueggea suffruticosa, Flueggea virosa, and other organisms with data available. See also: Phyllanthus amarus top (part of). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. (-)-Securinine is plant-derived alkaloid and also a GABAA receptor antagonist. Allosecurinine (Phyllochrysine) is a Securinega alkaloid isolated from Phyllanthus glaucus [1].
Piplartine
Piplartine is a member of cinnamamides and a dicarboximide. Piperlongumine is a natural product found in Zanthoxylum gilletii, Macropiper, and other organisms with data available. See also: Long Pepper (part of). Piplartine is found in herbs and spices. Piplartine is an alkaloid from the roots of Piper longum (long pepper Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3].
toxin HT 2
HT-2 toxin is a trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. It has a role as a fungal metabolite and an apoptosis inducer. It is a trichothecene, an organic heterotetracyclic compound and an acetate ester. HT-2 Toxin is a natural product found in Fusarium heterosporum, Fusarium sporotrichioides, and other organisms with data available. A trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
penitrem A
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1) Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].
Nivalenol
Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem). It has been reported in the urine of patients suffering chronic idiopathic spastic paraparesis. These patients are usually found in hot and humid regions, most of which have heavy rains, and these conditions allow foods to be polluted by fungi some of which become toxigenic (PubMed ID 8855894 ). Nivalenol is a trichothecene produced by Fusaria, Stachybotrys, Trichoderma and other fungi, and some higher plants. They may contaminate food or feed grains, induce emesis and hemorrhage in lungs and brain, and damage bone marrow due to protein and DNA synthesis inhibition.(PubChem) D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Roridin A
CONFIDENCE isolated standard D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Dihydrolipoate
Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki). Inside the cell, alpha lipoic acid is readily reduced or broken down to dihydrolipoic acid. Dihydrolipoic acid is even more potent than alpha lipoic acid, neutralizing free radicals, preventing them from causing harm. It directly destroys damaging superoxide radicals, hydroperoxy radicals and hydroxyl radicals. It has been shown in vitro that dihydrolipoate (DL-6,8-dithioloctanoic acid) has antioxidant activity against microsomal lipid peroxidation.Dihydrolipoate is tested for its neuroprotective activity using models of hypoxic and excitotoxic neuronal damage in vitro and rodent models of cerebral ischemia in vivo. Dihydrolipoate, similarly to dimethylthiourea, is able to protect neurons against ischemic damage by diminishing the accumulation of reactive oxygen species within the cerebral tissue.(PMID: 1345759). Dihydrolipoic acid is an organic compound that is the reduced form of lipoic acid. This carboxylic acid features a pair of thiol groups. It is optically active but only the R-enantiomer is biochemically significant. The lipoic acid/dihydrolipoic acid pair participate in a variety of biochemical transformations.( from Wiki) D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 162
Florasulam
CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7356; ORIGINAL_PRECURSOR_SCAN_NO 7353 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7334; ORIGINAL_PRECURSOR_SCAN_NO 7332 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3508; ORIGINAL_PRECURSOR_SCAN_NO 3504 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7314; ORIGINAL_PRECURSOR_SCAN_NO 7312 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7299; ORIGINAL_PRECURSOR_SCAN_NO 7295 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3576 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3499; ORIGINAL_PRECURSOR_SCAN_NO 3497 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7330; ORIGINAL_PRECURSOR_SCAN_NO 7326 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7351; ORIGINAL_PRECURSOR_SCAN_NO 7349 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3513; ORIGINAL_PRECURSOR_SCAN_NO 3511 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3508; ORIGINAL_PRECURSOR_SCAN_NO 3505 CONFIDENCE standard compound; INTERNAL_ID 386; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3510; ORIGINAL_PRECURSOR_SCAN_NO 3508 INTERNAL_ID 386; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7351; ORIGINAL_PRECURSOR_SCAN_NO 7349
Matrine
Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].
Dihydroresveratrol
A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
Lasiocarpine
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2259 Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids
Glycerylphosphorylethanolamine
Glycerylphosphorylethanolamine is a membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. A membrane breakdown product resulting from the cleavage of the lipid group from glycerophosphoethanlomine fatty acids (i.e. phosphatidylethanolamine). It acts as a growth stimulant for hepatocytes. [HMDB]
Beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1].
n-Butyl acetate
n-Butyl acetate is a flavouring ingredient used in apple flavours. n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of fruit, where along with other chemicals it imparts characteristic flavors. Apples, especially of the Red Delicious variety, are flavored in part by this chemical. It is a colourless flammable liquid with a sweet smell of banana. Flavouring ingredient used in apple flavours
Ethyl octanoate
Ethyl octanoate is a fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. It has a role as a metabolite. It is a fatty acid ethyl ester and an octanoate ester. Ethyl octanoate is found in alcoholic beverages. Ethyl octanoate is used in many fruit flavourings. Ethyl octanoate is a constituent of plant oils. Also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. It is used in many fruit flavourings. Constituent of plant oilsand is) also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. Ethyl octanoate is found in many foods, some of which are milk and milk products, guava, cereals and cereal products, and pepper (c. frutescens).
Indanone
Indanone is part of the Steroid hormone biosynthesis, and Arachidonic acid metabolism pathways. It is a substrate for: Aldo-keto reductase family 1 member C1, and Aldo-keto reductase family 1 member C3. D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics
Acetylphenol
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer Phenyl acetate is an endogenous metabolite.
3-Dehydroquinic acid
3-Dehydroquinic acid belongs to the class of organic compounds known as alpha-hydroxy acids and derivatives. These are organic compounds containing a carboxylic acid substituted with a hydroxyl group on the adjacent carbon. 3-Dehydroquinic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). In most organisms, 3-dehydroquinic acid is synthesized from D-erythrose-4-phosphate in two steps. However, archaea genomes contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinic acid is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde. These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which cyclizes to 3-dehydroquinic acid. From 3-dehydroquinic acid and on to chorismate, the archaeal pathway appears to be identical to the bacterial pathway. In most organisms, 3-dehydroquinate is synthesized from D-erythrose-4-phosphate in two steps . However, the genomes of the archaea contain no orthologs for the genes that encode these first two steps. Instead, archaeabacteria appear to utilize an alternative pathway in which 3-dehydroquinate is synthesized from 6-deoxy-5-ketofructose-1-phosphate and L-aspartate-semialdehyde . These two compounds are first condensed to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate , which cyclizes to 3-dehydroquinate . From 3-dehydroquinate and on to chorismate , the archaeal pathway appears to be identical to the bacterial pathway [HMDB]. 3-Dehydroquinate is found in many foods, some of which are allium (onion), cashew nut, american cranberry, and common wheat.
S-Formylglutathione
S-Formylglutathione, also known as L-gamma-glutamyl-S-formyl-L-cysteinylglycine, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of three to ten alpha-amino acids joined by peptide bonds. S-Formylglutathione is a very strong basic compound (based on its pKa). S-Formylglutathione exists in all living species, ranging from bacteria to humans. Outside of the human body, S-formylglutathione has been detected, but not quantified in, several different foods, such as sweet marjorams, muscadine grapes, amaranths, lemon verbena, and garden tomato. This could make S-formylglutathione a potential biomarker for the consumption of these foods. S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PMID: 2806555). S-Formylglutathione is formed from the oxidation of S-hydroxymethylglutathione by the enzyme formaldehyde dehydrogenase (FDH; EC 1.2.1.1) in the presence of NAD (PubMed ID 2806555) [HMDB]. S-Formylglutathione is found in many foods, some of which are horseradish tree, wild carrot, japanese walnut, and red beetroot.
Anisole
Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent
Acetylene
Polyacetylene is also known as ethyne or ethin. Polyacetylene can be found in german camomile and roman camomile, which makes polyacetylene a potential biomarker for the consumption of these food products. Polyacetylene (IUPAC name: polyethyne) usually refers to an organic polymer with the repeating unit (C2H2)n. The name refers to its conceptual construction from polymerization of acetylene to give a chain with repeating olefin groups. This compound is conceptually important as the discovery of polyacetylene and its high conductivity upon doping helped to launch the field of organic conductive polymers. The high electrical conductivity discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest in the use of organic compounds in microelectronics (organic semiconductors). This discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the field of polyacetylene research was aimed at using doped polymers as easily processable and lightweight "plastic metals". Despite the promise of this polymer in the field of conductive polymers, many of its properties such as instability to air and difficulty with processing have led to avoidance in commercial applications .
Phytanate
Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]
ADP-D-ribose
A nucleotide-sugar having ADP as the nucleotide fragment and D-ribofuranos-5-yl as the sugar component. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
streptonigrin
Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
Retinyl palmitate
Retinyl palmitate, also known as vitamin a palmitate or aquasol a, is a member of the class of compounds known as wax monoesters. Wax monoesters are waxes bearing an ester group at exactly one position. Thus, retinyl palmitate is considered to be an isoprenoid lipid molecule. Retinyl palmitate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Retinyl palmitate can be found in a number of food items such as rocket salad (sspecies), black elderberry, common grape, and vaccinium (blueberry, cranberry, huckleberry), which makes retinyl palmitate a potential biomarker for the consumption of these food products. Retinyl palmitate can be found primarily in blood, as well as throughout most human tissues. In humans, retinyl palmitate is involved in the retinol metabolism. Retinyl palmitate is also involved in vitamin A deficiency, which is a metabolic disorder. An alternate spelling, retinol palmitate, which violates the -yl organic chemical naming convention for esters, is also frequently seen . Retinyl palmitate, or vitamin A palmitate, is a common vitamin supplement, with formula C36H60O2. It is available in both oral and injectable forms for treatment of vitamin A deficiency, under the brand names Aquasol and Palmitate. Retinyl palmitate is an alternate for retinyl acetate in vitamin A supplements, and is available in oily or dry forms. It is a pre-formed version of vitamin A, and can thus be realistically over-dosed, unlike beta-carotene. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Retinyl palmitate is an ester of Retinol and is the major form of vitamin A found in the epidermis. Retinyl palmitate has been widely used in pharmaceutical and cosmetic formulations.
1,2-Epoxy-3-(p-nitrophenoxy)propane
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
17a-Hydroxypregnenolone
17a-Hydroxypregnenolone is a 21-carbon steroid that is converted from pregnenolone by cytochrome P450 17alpha hydroxylase/C17,20 lyase (CYP17, EC 1.14.99.9). 17a-Hydroxypregnenolone is an intermediate in the delta-5 pathway of biosynthesis of gonadal steroid hormones and the adrenal corticosteroids. The first, rate-limiting and hormonally regulated step in the biosynthesis of all steroid hormones is the conversion of cholesterol to pregnenolone. The conversion of cholesterol to pregnenolone is accomplished by the cleavage of the cholesterol side chain, catalyzed by a mitochondrial cytochrome P450 enzyme termed P450scc where scc designates Side Chain Cleavage. All steroid hormones are made from the pregnenolone produced by P450scc; thus, the presence or absence of each of the activities of CYP17 directs this pregnenolone towards its final metabolic pathway. While all cytochrome P450 enzymes can catalyze multiple reactions on a single active site, CYP17 is the only one described to date in which these multiple activities are differentially regulated by a physiologic process. 17a-Hydroxypregnenolone is converted to dehydroepiandrosterone by the 17,20 lyase activity of CYP17. The ratio of the 17,20 lyase to 17 alpha-hydroxylase activity of CYP17 determines the ratio of C21 to C19 steroids produced. This ratio is regulated post-translationally by at least three factors: the abundance of the electron-donating protein P450 oxidoreductase, the presence of cytochrome b5, and the serine phosphorylation of CYP17. (PMID: 12573809). C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).
Dihydropteridine
Dihydropteridine is a generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166). A generic compound; the product of the reduction of 5,6,7,8-Tetrahydropteridine, which is catalyzed by 6,7-dihydropteridine reductase (EC 1.5.1.34). (KEGG) This compound is recognised as a cause of tetrahydrobiopterin (BH(4)) deficiency, leading to hyperphenylalaninemia (HPA) and impaired biogenic amine deficiency. (PMID: 14705166) [HMDB]
Molybdate
Molybdate is involved in the molybdenum cofactor biosynthesis pathway. Molybdate reacts with molybdopterin-AMP to produce molybdenum cofactor, AMP, and H2O. [HMDB]. Molybdate is found in many foods, some of which are okra, black raspberry, silver linden, and chinese chestnut. Molybdate is involved in the molybdenum cofactor biosynthesis pathway. Molybdate reacts with molybdopterin-AMP to produce molybdenum cofactor, AMP, and H2O.
Lacto-N-biose I
Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405) [HMDB] Lacto-N-biose I is a common oligosaccharide found in human milk and in numerous other tissues. Oligosaccharides are important components of glycoproteins and glycolipids and also occur as free oligosaccharides in several body fluids.(PMID: 14993226; 11925506; 11432777; 9760191; 9592127; 8608564; 7591266; 7627975; 7766648; 1490103; 3146987; 6689405).
2-Propylamine
Isopropylamine, also known as 2-aminopropane or 2-propanamine, is a member of the class of compounds known as monoalkylamines. Monoalkylamines are organic compounds containing an primary aliphatic amine group. Isopropylamine is soluble (in water) and a very strong basic compound (based on its pKa). Isopropylamine is an ammoniacal and fishy tasting compound found in corn and soy bean, which makes isopropylamine a potential biomarker for the consumption of these food products. Isopropylamine (monoisopropyl amine, MIPA, 2-Propylamine) is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry .
Cefradine
Cefradine is only found in individuals that have used or taken this drug. It is a semi-synthetic cephalosporin antibiotic.Cefradine is a first generation cephalosporin antibiotic with a spectrum of activity similar to Cefalexin. Cefradine, like the penicillins, is a beta-lactam antibiotic. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, it inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that Cefradine interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Edrophonium
Edrophonium is only found in individuals that have used or taken this drug. It is a rapid-onset, short-acting cholinesterase inhibitor used in cardiac arrhythmias and in the diagnosis of myasthenia gravis. It has also been used as an antidote to curare principles. [PubChem]Edrophonium works by prolonging the action acetylcholine, which is found naturally in the body. It does this by inhibiting the action of the enzyme acetylcholinesterase. Acetylcholine stimulates nicotinic and muscarinic receptors. When stimulated, these receptors have a range of effects. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors
Mibefradil
C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Nedocromil
Nedocromil is only found in individuals that have used or taken this drug. It is a pyranoquinolone derivative that inhibits activation of inflammatory cells which are associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. [PubChem]Nedocromil has been shown to inhibit the in vitro activation of, and mediator release from, a variety of inflammatory cell types associated with asthma, including eosinophils, neutrophils, macrophages, mast cells, monocytes, and platelets. Nedocromil inhibits activation and release of inflammatory mediators such as histamine, prostaglandin D2 and leukotrienes c4 from different types of cells in the lumen and mucosa of the bronchial tree. These mediators are derived from arachidonic acid metabolism through the lipoxygenase and cyclo-oxygenase pathways. The mechanism of action of nedocromil may be due partly to inhibition of axon reflexes and release of sensory neuropeptides, such as substance P, neurokinin A, and calcitonin-geneñrelated peptides. The result is inhibition of bradykinin-induced bronchoconstriction. Nedocromil does not posess any bronchodilator, antihistamine, or corticosteroid activity. R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).
Glutarimide
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
Pyrvinium
Pyrvinium, also known as molevac or pyrcon, belongs to the class of organic compounds known as phenylpyrroles. These are polycyclic aromatic compounds containing a benzene ring linked to a pyrrole ring through a CC or CN bond. Pyrvinium is considered to be a practically insoluble (in water) and relatively neutral molecule. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent
Rocuronium
Rocuronium (rapid onset-curonium) is a desacetoxy analogue of vecuronium with a more rapid onset of action. It is an aminosteroid non-depolarizing neuromuscular blocker or muscle relaxant used in modern anaesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation. Introduced in 1994, rocuronium has rapid onset, and intermediate duration of action. It is marketed under the trade name of Zemuron in the United States and Esmeron in most other countries. There is considered to be a risk of allergic reaction to the drug in some patients (particularly those with asthma), but a similar incidence of allergic reactions has been observed by using other members of the same drug class (non-depolarizing neuromuscular blocking drugs). The γ-cyclodextrin derivative sugammadex (trade name Bridion) has been recently introduced as a novel agent to reverse the action of rocuronium. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist
Midodrine
Midodrine is only found in individuals that have used or taken this drug. It is an ethanolamine derivative that is an adrenergic alpha agonist. It is used as a vasoconstrictor agent in the treatment of hypotension. [PubChem]Midodrine forms an active metabolite, desglymidodrine, that is an alpha1-agonist, and exerts its actions via activation of the alpha-adrenergic receptors of the arteriolar and venous vasculature, producing an increase in vascular tone and elevation of blood pressure. Desglymidodrine does not stimulate cardiac beta-adrenergic receptors. C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Midodrine is an α1-receptor agonist, for the treatment of dysautonomia and orthostatic hypotension.
Tenuazonic acid
Tenuazonic acid is produced by Aspergillus species Causes rice leaf rot Tenuazonic acid is a mycotoxin. It is a toxic secondary metabolite, produced by Alternaria (e. g. Alternaria alternata or Alternaria tenuis) and Phoma species. It inhibits the protein synthesis machinery D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Production by Aspergillus subspecies Causes rice leaf rot D000970 - Antineoplastic Agents
Withanolide
Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827).
Pleuromulin
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.
aromaticin
A sesquiterpene lactone that is 3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione substituted by methyl groups at positions 4a and 8 and a methylidene group at position 3. Isolated from the aerial parts of Inula hupehensis, it exhibits anti-inflammatory activity.
Trichothecin
A trichothecene mycototoxin isolated from the endophytic fungus Trichothecium sp. and it exhibits anti-cancer properties. D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Verrucarin A
A trichothecene antibiotic which incorporates a triester macrocyclic structure and an exocyclic methylene epoxide group. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000970 - Antineoplastic Agents
(-)-Aspidospermine
(-)-Aspidospermine is an alkaloid from Aspidosperma quebracho-blanco (quebracho
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Nanafrocin
A pyranonaphthoquinone antibiotic from strain OS-3966 of Streptomyces rosa var. notoensis. C254 - Anti-Infective Agent > C514 - Antifungal Agent C254 - Anti-Infective Agent > C258 - Antibiotic
Methyleugenol
Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Anthricin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3]. Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3].
Acronine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product An alkaloid antineoplastic agent isolated from Acronychia baueri. D000970 - Antineoplastic Agents C1907 - Drug, Natural Product Same as: D02378
Peimine
Verticine is an alkaloid. Peimine is a natural product found in Fritillaria anhuiensis, Fritillaria cirrhosa, and other organisms with data available. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity. Peimine (Verticine) is a natural compound with excellent anti-inflammatory activity.
Ethanone, 1-(9-azabicyclo(4.2.1)non-2-en-2-yl)-, (1R)-
Chlorothalonil
D010575 - Pesticides > D008975 - Molluscacides D016573 - Agrochemicals
Dimethyl sulphone
Dimethyl sulfone, also known as sulfonylbismethane or lignisul MSM, belongs to the class of organic compounds known as sulfones. Sulfones are compounds containing a sulfonyl group, which has the general structure RS(=O)2R (R,R =alkyl, aryl), attached to two carbon atoms. Dimethyl sulfone (DMSO2) is an organic sulfur compound belonging to a class of chemicals known as sulfones. It derives from dietary sources, from intestinal bacterial metabolism and from human endogenous methanethiol metabolism. DMSO2 reflects its close chemical relationship to dimethyl sulfoxide (DMSO), which differs only in the oxidation state of the sulfur atom. Dimethyl sulfone is possibly neutral. Dimethyl sulfone exists in all living organisms, ranging from bacteria to humans. DMSO2 is the primary metabolite of DMSO in humans, and it shares some of the properties of DMSO. Dimethyl sulfone is sulfurous tasting compound. dimethyl sulfone is found on average in the highest concentration in milk (cow). Dimethyl sulfone has also been detected, but not quantified in asparagus and guava. This could make dimethyl sulfone a potential biomarker for the consumption of these foods. Dimethyl sulfone can be found in Afipia. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages. Dimethyl sulfone can be found in plasma and CSF of normal humans. Methylsulfonylmethane (MSM) is an organosulfur compound with the formula (CH3)2SO2. It is also known by several other names including DMSO2, methyl sulfone, and dimethyl sulfone. This colorless solid features the sulfonyl functional group and is considered relatively inert chemically. It occurs naturally in some primitive plants and is present in small amounts in many foods and beverages and it is marketed as a dietary supplement. Dimethyl sulfone is found in guava. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
C-1027
An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents
Calicheamicin
A calcheamicin in which contains 3-O-methyl-alpha-L-rhamnosyl, 2,6-dideoxy-4-thio-beta-D-ribo-hexopyranosyl, and 4-amino-4,6-dideoxy-2-O-[2,4-dideoxy-4-(ethylamino)-3-O-methyl-alpha-L-threo-pentopyranosyl]-alpha-L-idopyranose units and in which the aromatic ring contains an iodo substituent. D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents
1,3,5-Trichloro-2-methoxybenzene
1,3,5-Trichloro-2-methoxybenzene is found in alcoholic beverages. Off-odour component found in foods etc. Responsible for cork taint in wine
DB-065692
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
Neocarzinostatin chromophore
D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Thiostrepton
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents A heterodetic cyclic peptide, in which the cyclisation step involves a formal lactonisation between the carboxy group of a quinaldic acid-based residue and a secondary alcohol. An antibiotic that inhibits bacterial protein synthesis. Also acts as an antitumor agent. C274 - Antineoplastic Agent > C177298 - Mitochondrial Targeting Antineoplastic Agent C254 - Anti-Infective Agent > C258 - Antibiotic Same as: D06111 Thiostrepton is a thiazole antibiotic which selectively inhibits FOXM1. FOXM1 binds to YAP/TEAD complex. YAP/TEAD/FOXM1 complex binding at regulatory regions of genes governing cell cycle may impact cell proliferation[1]. Thiostrepton is a thiazole antibiotic which selectively inhibits FOXM1. FOXM1 binds to YAP/TEAD complex. YAP/TEAD/FOXM1 complex binding at regulatory regions of genes governing cell cycle may impact cell proliferation[1].
Epo A
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Epothilone A is a competitive inhibitor of the binding of [3H] paclitaxel to tubulin polymers, with a Ki of 0.6-1.4 μM.
Patupilone
An epithilone that is epithilone D in which the double bond in the macrocyclic ring has been oxidised to the corresponding epoxide (the S,S stereoisomer). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
Potassium nitrate (KNO3)
Preservative for cod roe, cured red meat and poultry products. Potassium nitrate (KNO3) is found in fishes, animal foods, and common sage. D053834 - Explosive Agents Same as: D02051
equilenin
A 3-hydroxy steroid that is estrone which carries two double bonds at positions 6 and 8. It is found in the urine of pregnant mares and extensively used for estrogen replacement therapy in postmenopausal women. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Isopropylbenzene
Isopropylbenzene, also known as 2-phenylpropane or benzene, isopropyl, belongs to the class of organic compounds known as cumenes. These are aromatic compounds containing a prop-2-ylbenzene moiety. Isopropylbenzene is found, on average, in the highest concentration within ceylon cinnamons and gingers. Isopropylbenzene has also been detected, but not quantified, in several different foods, such as celery stalks, cumins , herbs and spices, and sweet cherries. Isopropylbenzene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Isopropylbenzene is a component of petroleum destillates. Petroleum distillate poisoning may cause nausea, vomiting, cough, pulmonary irritation progressing to pulmonary edema, bloody sputum, and bronchial pneumonia. Petroleum distillates are also irritating to the skin. Petroleum distillates are aspiration hazards and may cause pulmonary damage, central nervous system depression, and cardiac effects such as cardiac arrhythmias. They may also affect the blood, immune system, liver, and kidney. At high amounts, central nervous system depression may also occur, with symptoms such as weakness, dizziness, slow and shallow respiration, unconsciousness, and convulsions. Gastric lavage, emesis, and the administration of activated charcoal should be avoided, as vomiting increases the risk of aspiration. Treatment is mainly symptomatic and supportive. Volatile hydrocarbons are absorbed mainly through the lungs, and may also enter the body after ingestion via aspiration. Trace constituent of ginger oil (Zingiber officinale)
3-NITROFLUORANTHENE
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Benzo[e]pyrene
Xanthomicrol
Isolated from Citrus sudachi, Mentha piperita, Sideritis subspecies and Thymus subspecies Xanthomicrol is found in many foods, some of which are citrus, herbs and spices, sweet basil, and winter savory. low.
N,N'-Diphenyl-p-phenylenediamine
D020011 - Protective Agents > D000975 - Antioxidants
Mesitylene
Mesitylene or 1,3,5-trimethylbenzene is a derivative of benzene with three methyl substituents symmetrically placed on the ring. Isomeric trimethylbenzenes include hemimellitene (1,2,3-trimethylbenzene) and pseudocumene (1,2,4-trimethylbenzene). All three compounds have the formula C6H3(CH3)3, which is commonly abbreviated C6H3Me3. Mesitylene is a colourless liquid with sweet aromatic odor. It is a component of coal tar, which is its traditional source. It is a precursor to diverse fine chemicals. The mesityl group (Mes) is a substituent with the formula C6H3Me3.
Benzo[a]pyrene-7,8-diol
This compound belongs to the family of Pyrenes. These are compounds containing a pyrene moiety, which consists four fused benzene rings, resulting in a flat aromatic system.
Lithium
Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133
Tropolone
Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
5-(3-Methyl-1-triazeno)imidazole-4-carboxamide
D009676 - Noxae > D000477 - Alkylating Agents
Docosanoyl-CoA
Docosanoyl-CoA is an acyl-CoA with the C-22 fatty acid Acyl chain moiety. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Docosanoyl-CoA is a acyl-CoA with the C-22 fatty acid Acyl chain moiety.
Yessotoxin
Yessotoxin is found in mollusks. Toxic constituent of scallops (Patinopecten yessoensis). Toxic constituent of scallops (Patinopecten yessoensis). Yessotoxin is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Latrunculin A
A bicyclic macrolide natural product consisting of a 16-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica and from the Fiji Islands sponge Cacospongia mycofijiensis. Latrunculin A inhibits actin polymerisation, microfilament organsation and microfilament-mediated processes.
Dehydrozingerone
Dehydrozingerone is a flavouring ingredien Flavouring ingredient
7alpha-Hydroxypregnenolone
This compound belongs to the family of Gluco/mineralocorticoids, Progestogins and Derivatives. These are steroids whose structure is based on an hydroxylated prostane moiety. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Rubiadin
Rubiadin is a dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. It has a role as an antibacterial agent, an antioxidant, a hepatoprotective agent and a plant metabolite. Rubiadin is a natural product found in Coprosma tenuicaulis, Prismatomeris tetrandra, and other organisms with data available. A dihydroxyanthraquinone that is anthracene-9,10-dione substituted by hydroxy groups at positions 1 and 3 and a methyl group at position 2. It has been isolated from Rubia yunnanensis. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].
Sho-saiko-to
2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Clinopodium vulgare, Bupleurum angustissimum, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.
Dihydro-resveratrol
Dihydroresveratrol is a stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. It has a role as a xenobiotic metabolite and a plant metabolite. Dihydroresveratrol is a natural product found in Blasia pusilla, Dioscorea dumetorum, and other organisms with data available. A stilbenol that is 1,1-ethane-1,2-diyldibenzene with hydroxy groups at positions 1, 3 and 4. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
Isomorellic acid
Morellic acid is found in fruits. Morellic acid is from Garcinia morella (batuan Isomorellic acid is a member of pyranoxanthones. Morellic acid is isolated from Garcinia Morella with an antiangiogenic activity[1]. Morellic acid is isolated from Garcinia Morella with an antiangiogenic activity[1].
Pinitol
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
AI3-15121
2-hydroxyacetophenone is a monohydroxyacetophenone that is acetophenone in which one of the methyl hydrogens has been replaced by a hydroxy group. It is a primary alcohol, a primary alpha-hydroxy ketone and a monohydroxyacetophenone. 2-Hydroxyacetophenone is a natural product found in Carissa spinarum, Scutellaria baicalensis, and Carissa edulis with data available. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].
3-Hydroxy-L-proline
Constituent of collagen and the antibiotic Telomycin (Combined Chemical Dictionary).
Trifolirhizin
Maackiain O-beta-D-galactopyranoside is found in herbs and spices. Maackiain O-beta-D-galactopyranoside is isolated from Trifolium pratense (red clover). Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
sn-glycero-3-Phosphoethanolamine
Sn-glycero-3-phosphoethanolamine is a substrate for: Lysoplasmalogenase. Glycerophosphoethanolamine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1190-00-7 (retrieved 2024-07-25) (CAS RN: 1190-00-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
3D,7D,11D-Phytanic acid
3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).
2-Deoxy-L-ribono-1,4-lactone
2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices. 2-Deoxy-L-ribono-1,4-lactone is a constituent of the fruit of Foeniculum vulgare (fennel). Constituent of the fruit of Foeniculum vulgare (fennel). 2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices.
Butyl hexanoate
Present in fruits and berries, e.g. apricot, banana, orange, wine grapes, papaya etcand is) also present in beer, apple brandy and plum wine. It is used in fruit flavourings. Butyl hexanoate is found in many foods, some of which are fruits, pomes, alcoholic beverages, and citrus. Butyl hexanoate is found in alcoholic beverages. Butyl hexanoate is present in fruits and berries, e.g. apricot, banana, orange, wine grapes, papaya etc. Also present in beer, apple brandy and plum wine. Butyl hexanoate is used in fruit flavourings.
(-)-Deoxypodophyllotoxin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins
penitrem A
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Penitrem A is an indole diterpene neurotoxic alkaloid produced by Penicillium, acts as a selective BK channel antagonist with antiproliferative and anti-invasive activities against multiple malignancies. Penitrem A increases the spontaneous release of endogenous glutamate, gamma-aminobutyric acid (GABA) and aspartate from cerebrocortical synaptosomes, and induces tremorgenic syndromes in animals[1][2].
1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-
y,y-Carotene, 7,7',8,8',11,12-hexahydro-, cis-(9CI)
beta,beta-Dimethylacrylshikonin
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
3-Nitrobenzanthrone
[(1S,2R,3S,4S,6R,7R,14R)-4-Ethenyl-3-hydroxy-2,4,7,14-tetramethyl-9-oxo-6-tricyclo[5.4.3.01,8]tetradecanyl] 2-hydroxyacetate
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Pleuromutilin (Drosophilin B) inhibits bacterial protein synthesis by binding to the 50S ribosomal subunit of bacteria.
Indirubin-3'-monoxime
Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals
beta-Chamigrene
Beta-chamigrene is a member of the class of compounds known as chamigranes. Chamigranes are sesquiterpenoids characterized by a 1,1,5,9-tetramethylspiro[5,5]undecane skeleton, formally obtained by linking the C1-C6 and C6-C11 of farnesane together. They are predominantly isolated from algae. Beta-chamigrene can be found in lovage, which makes beta-chamigrene a potential biomarker for the consumption of this food product.
L-5-Oxoproline
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Henine
Lucidin is a dihydroxyanthraquinone. Lucidin is a natural product found in Rubia argyi, Ophiorrhiza pumila, and other organisms with data available. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells. Lucidin (NSC 30546) is a natural component of madder and can induce mutations in bacterial and mammalian cells.
Deguelin
Deguelin is a rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite, an angiogenesis inhibitor, an antiviral agent, a mitochondrial NADH:ubiquinone reductase inhibitor, an anti-inflammatory agent and an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor. It is a member of rotenones, an aromatic ether, an organic heteropentacyclic compound and a diether. Deguelin is a natural product found in Tephrosia vogelii, Derris montana, and other organisms with data available. A rotenone that is 13,13a-dihydro-3H-chromeno[3,4-b]pyrano[2,3-h]chromen-7(7aH)-one substituted by methoxy groups at positions 9 and 10, and by two methyl groups at position 3 (the 7aS,13aS-stereoisomer). It exists in abundant quantities in the bark, roots, and leaves of the Leguminosae family of plants and reported to exert anti-tumour effects in various cancers. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB. Deguelin, a naturally occurring rotenoid, acts as a chemopreventive agent by blocking multiple pathways like PI3K-Akt, IKK-NF-κB, and MAPK-mTOR-survivin-mediated apoptosis. Deguelin binding to Hsp90 leads to a decreased expression of numerous oncogenic proteins, including MEK1/2, Akt, HIF1α, COX-2, and NF-κB.
trifolrhizin
Trifolirhizin is a member of pterocarpans. Trifolirhizin is a natural product found in Sophora alopecuroides, Ononis arvensis, and other organisms with data available. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2]. Trifolirhizin is a pterocarpan flavonoid isolated from the roots of Sophora flavescens. Trifolirhizin possesses potent tyrosinase inhibitory activity with an IC50 of 506 μM[1]. Trifolirhizin exhibits potential anti-inflammatory and anticancer activities[2].
Vicenin
Isovitexin 8-C-beta-glucoside is a C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a trihydroxyflavone and a C-glycosyl compound. It is functionally related to an isovitexin. Vicenin-2 is a natural product found in Carex fraseriana, Pseudarrhenatherum longifolium, and other organisms with data available. A C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
UsnicAcid
(-)-usnic acid is the (-)-enantiomer of usnic acid. It has a role as an EC 1.13.11.27 (4-hydroxyphenylpyruvate dioxygenase) inhibitor. It is a conjugate acid of a (-)-usnic acid(2-). It is an enantiomer of a (+)-usnic acid. Usnic acid is a furandione found uniquely in lichen that is used widely in cosmetics, deodorants, toothpaste and medicinal creams as well as some herbal products. Taken orally, usnic acid can be toxic and has been linked to instances of clinically apparent, acute liver injury. (-)-Usnic acid is a natural product found in Dactylina arctica, Evernia divaricata, and other organisms with data available. The (-)-enantiomer of usnic acid. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2].
trans-Piceid
Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
3-Aminopropanenitrile
C471 - Enzyme Inhibitor β-Aminopropionitrile (BAPN) is a specific, irreversible and orally active lysyl oxidase (LOX) inhibitor. β-Aminopropionitrile targets the active site of LOX or LOXL isoenzymes[1][2].
Squalene
Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].
Amentoflavone
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
phytofluene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).
Chelidonin
Annotation level-1 http://casmi-contest.org/examples.shtml; CASMI2012 Example 1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.627 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.621 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2461; CONFIDENCE confident structure IPB_RECORD: 921; CONFIDENCE confident structure Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3]. Chelidonine, an isoquinoline alkaloid, can be isolated from Chelidonium majus L.. Chelidonine causes G2/M arrest and induces caspase-dependent and caspase-independent apoptosis, and prevents cell cycle progression of stem cells in Dugesia japonica. Chelidonine has cytotoxic activity against melanoma cell lines. with anticancer and antiviral activity[1][2][3].
Glycitein
A natural product found in Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.
INDIRUBIN-3-MONOXIME
A member of the class of biindoles that is indirubin in which the keto group at position 3 has undergone condensation with hydroxylamine to form the corresponding oxime. Indirubin-3'-monoxime is a potent GSK-3β inhibitor, and weakly inhibits 5-Lipoxygenase, with IC50s of 22 nM and 7.8-10 μM, respectively; Indirubin-3'-monoxime also shows inhibitory activities against CDK5/p25 and CDK1/cyclin B, with IC50s of 100 and 180 nM.
gamma-Tocotrienol
gamma-Tocotrienol, also known as 7,8-dimethyltocotrienol, belongs to the class of organic compounds known as tocotrienols. These are vitamin E derivatives containing an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain attached to the C6 atom of a benzopyran ring system. They differ from tocopherols that contain a saturated trimethyltridecyl chain. Thus, gamma-tocotrienol is considered to be a quinone lipid molecule. gamma-Tocotrienol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Tocotrienol targets cancer cells by inhibiting Id1, a key cancer-promoting protein. gamma-Tocotrienol was shown to trigger cell apoptosis and well as anti-proliferation of cancer cells. This mechanism was also observed in separate prostate cancer and melanoma cell line studies. Gamma-tocotrienol is a tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a radiation protective agent, an apoptosis inducer and a hepatoprotective agent. It is a tocotrienol and a vitamin E. gamma-Tocotrienol is a natural product found in Amaranthus cruentus, Triadica sebifera, and other organisms with data available. A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 7 and 8 and a farnesyl chain at position 2. A vitamin E family member that has potent anti-cancer properties against a wide-range of cancers. Constituent of palm oil. Nutriceutical with anticancer props. and a positive influence on the blood lipid profile. gamma-Tocotrienol is found in many foods, some of which are rye, corn, rosemary, and common grape. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].
Lasiocarpine
Lasiocarpine appears as colorless plates or beige crystalline solid. (NTP, 1992) Lasiocarpine is a natural product found in Heliotropium arbainense, Heliotropium suaveolens, and other organisms with data available. See also: Comfrey Leaf (part of); Comfrey Root (part of).
Gamma-tocopherol/beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). Beta-tocopherol is a tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. It has a role as a plant metabolite and a food component. It is a vitamin E and a tocopherol. beta-Tocopherol is a natural product found in Trachycarpus fortunei, Crataegus monogyna, and other organisms with data available. A natural tocopherol with less antioxidant activity than alpha-tocopherol. It exhibits antioxidant activity by virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus. As in GAMMA-TOCOPHEROL, it also has three methyl groups on the 6-chromanol nucleus but at different sites. A tocopherol in which the chroman-6-ol core is substituted by methyl groups at positions 5 and 8. While it is found in low concentrations in many vegetable oils, only cottonseed oil contains significant amounts. (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3]. β-Tocopherol is an analogue of vitamin E, exhibits antioxidant properties. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1][2][3].
AS 2-3
Deoxypodophyllotoxin is a member of the class of furonaphthodioxoles that is (5R,5aR,8aR)-5,8,8a,9-tetrahydro-2H-furo[3,4:6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one substituted at position 5 by a 3,4,5-trimethoxyphenyl group. It has a role as a plant metabolite, an antineoplastic agent and an apoptosis inducer. It is a lignan, a furonaphthodioxole, a gamma-lactone and a member of methoxybenzenes. Deoxypodophyllotoxin is a natural product found in Austrocedrus chilensis, Libocedrus bidwillii, and other organisms with data available. A member of the class of furonaphthodioxoles that is (5R,5aR,8aR)-5,8,8a,9-tetrahydro-2H-furo[3,4:6,7]naphtho[2,3-d][1,3]dioxol-6(5aH)-one substituted at position 5 by a 3,4,5-trimethoxyphenyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D007155 - Immunologic Factors > D018796 - Immunoconjugates D007155 - Immunologic Factors > D007136 - Immunoglobulins D007155 - Immunologic Factors > D000906 - Antibodies D009676 - Noxae > D000922 - Immunotoxins Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3]. Deoxypodophyllotoxin (DPT), a derivative of podophyllotoxin, is a lignan with potent antimitotic, anti-inflammatory and antiviral properties isolated from Anthriscus sylvestris. Deoxypodophyllotoxin, targets the microtubule, has a major impact in oncology not only as anti-mitotics but also as potent inhibitors of angiogenesis[1]. Deoxypodophyllotoxin induces cell autophagy and apoptosis[2]. Deoxypodophyllotoxin evokes increase of intracellular Ca2+ concentrations in DRG neurons[3].
Rhamnetin
Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
Tropolone
Tropolone is a cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. It has a role as a bacterial metabolite, a toxin and a fungicide. It is a cyclic ketone, an enol and an alpha-hydroxy ketone. It derives from a hydride of a cyclohepta-1,3,5-triene. A seven-membered aromatic ring compound. It is structurally related to a number of naturally occurring antifungal compounds (ANTIFUNGAL AGENTS). A cyclic ketone that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2. It is a toxin produced by the agricultural pathogen Burkholderia plantarii. Tropolone, a ?tropone derivative with a?hydroxyl group?in the 2-position, is a precursor?of manyazulene derivatives such as?methyl 2-methylazulene-1-carboxylate[1]. Tropolone is a potent inhibitor of mushroom tyrosinase with a IC50 of 0.4 μM, and the inhibition can be reversed by dialysis or by excess CU2+[2].
Indolin-2-one
1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. Indolin-2-one is an indolinone carrying an oxo group at position 2. It is an indolinone and a gamma-lactam. Oxindole is a natural product found in Penicillium with data available. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.
Albendazole oxide
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 1060
Repaglinide
C78276 - Agent Affecting Digestive System or Metabolism > C29711 - Anti-diabetic Agent > C98079 - Meglitinide Antidiabetic Agent A - Alimentary tract and metabolism > A10 - Drugs used in diabetes > A10B - Blood glucose lowering drugs, excl. insulins D007004 - Hypoglycemic Agents CONFIDENCE standard compound; INTERNAL_ID 2189 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3349
fenthion
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3155 CONFIDENCE standard compound; INTERNAL_ID 8480
Clothianidin
An N-nitro compound consisting of 2-nitroguanidine having a (2-chloro-1,3-thiazol-5-yl)methyl group at position 1 and a methyl group at position 3. D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2933
Difenoconazole
D016573 - Agrochemicals D010575 - Pesticides EAWAG_UCHEM_ID 2934; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2934
CAPTAN
D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; EAWAG_UCHEM_ID 3039
thiabendazole
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3180 Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
carisoprodol
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents > M03BA - Carbamic acid esters D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3327
meperidine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3331 EAWAG_UCHEM_ID 3331; CONFIDENCE standard compound
Hydrocodone
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3332
Phlorizin
Origin: Plant; Formula(Parent): C21H24O10; Bottle Name:Phloridzin; PRIME Parent Name:Phloretin-2-O-glucoside; PRIME in-house No.:S0307, Glycosides relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.713 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2021; CONFIDENCE confident structure Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
trans-Zeatin
The trans-isomer of zeatin. (e)-zeatin, also known as (E)-2-methyl-4-(1h-purin-6-ylamino)-2-buten-1-ol or n6-(4-hydroxyisopentenyl)adenine, is a member of the class of compounds known as 6-alkylaminopurines. 6-alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring (e)-zeatin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (e)-zeatin can be found in a number of food items such as chia, cornmint, java plum, and small-leaf linden, which makes (e)-zeatin a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 24 INTERNAL_ID 24; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.451 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.449 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.442 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.444 Acquisition and generation of the data is financially supported by the Max-Planck-Society CONFIDENCE standard compound; ML_ID 56 trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.
Procyanidin C1
Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2]. Procyanidin C1 (PCC1), a natural polyphenol with oral activity, causes DNA damage, cell cycle arrest and induces apoptosis. Procyanidin C1 decreases the level of Bcl-2, but enhances BAX, caspase 3 and 9 expression in cancer cells. Procyanidin C1 shows senotherapeutic activity and increases lifespan in mice[1][2].
dobutamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
TETRAMISOLE
C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant > C2141 - Chemo Immunostimulant Adjuvant C2140 - Adjuvant
Saikosaponin A
Annotation level-1 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1].
Morin
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D020011 - Protective Agents > D000975 - Antioxidants Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2]. Morin, a plant-derived flavonoid, possesses low antioxidant activity. Morin is a fluorescing chelating agent used in aluminum speciation[1][2].
Sclareol
Sclareol is a labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. It has a role as an antimicrobial agent, an apoptosis inducer, a fragrance, an antifungal agent and a plant metabolite. Sclareol is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. See also: Clary Sage Oil (part of). A labdane diterpenoid that is labd-14-ene substituted by hydroxy groups at positions 8 and 13. It has been isolated from Salvia sclarea. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.468 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.471 Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1]. Sclareol is isolated from Salvia sclarea with anticarcinogenic activity. Sclareol shows strong cytotoxic activity against mouse leukemia?(P-388), human epidermal?carcinoma?(KB) cells and human?leukemia?cell lines. Sclareol induces cell apoptosis[1].
Dehydrocholic acid
Dehydrocholic acid is a synthetic bile acid, manufactured by the oxidation of cholic acid. It acts as a hydrocholeretic, increasing bile output to clear increased bile acid load. 3,7,12-trioxo-5beta-cholanic acid is an oxo-5beta-cholanic acid in which three oxo substituents are located at positions 3, 7 and 12 on the cholanic acid skeleton. It has a role as a gastrointestinal drug. It is an oxo-5beta-cholanic acid, a 7-oxo steroid, a 12-oxo steroid and a 3-oxo-5beta-steroid. It is a conjugate acid of a 3,7,12-trioxo-5beta-cholan-24-oate. Dehydrocholic acid is a synthetic bile acid that was prepared from the oxidation of cholic acid with chromic acid. It has been used for stimulation of biliary lipid secretion. The use of dehydrocholic acid in over-the-counter products has been discontinued by Health Canada.
2-Deoxycytidine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite A pyrimidine 2-deoxyribonucleoside having cytosine as the nucleobase. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).
2-Deoxy-5-Guanylic Acid
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
flumazenil
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C1012 - Benzodiazepine D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D020011 - Protective Agents > D000931 - Antidotes Flumazenil is a competitive GABAA receptor antagonist, used in the treatment of benzodiazepine overdoses.
L-Pyroglutamicacid
C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent
Phytol
Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].
δ-Tocotrienol
A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2 and 8 and a farnesyl chain at position 2.
Ginsenoside Rf
Constituent of Panax ginseng (ginseng). The first pure ginseng constituent to show nearly all the activities of the plant extract. Ginsenoside Rf is found in tea. Annotation level-1 Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel.
Angelicin
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Origin: Plant, Coumarins Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
methamidophos
C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
17a-Hydroxypregnenolone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A hydroxypregnenolone carrying an alpha-hydroxy group at position 17. 17-α-hydroxypregnenolone, also known as (3beta)-3,17-dihydroxypregn-5-en-20-one or 5-pregnen-3b,17a-diol-20-one, belongs to gluco/mineralocorticoids, progestogins and derivatives class of compounds. Those are steroids with a structure based on a hydroxylated prostane moiety. Thus, 17-α-hydroxypregnenolone is considered to be a steroid lipid molecule. 17-α-hydroxypregnenolone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 17-α-hydroxypregnenolone can be found in a number of food items such as strawberry guava, java plum, conch, and chives, which makes 17-α-hydroxypregnenolone a potential biomarker for the consumption of these food products. 17-α-hydroxypregnenolone can be found primarily in blood, as well as in human adrenal cortex and testes tissues. In humans, 17-α-hydroxypregnenolone is involved in a couple of metabolic pathways, which include androgen and estrogen metabolism and steroidogenesis. 17-α-hydroxypregnenolone is also involved in several metabolic disorders, some of which include aromatase deficiency, adrenal hyperplasia type 3 or congenital adrenal hyperplasia due to 21-hydroxylase deficiency, adrenal hyperplasia type 5 or congenital adrenal hyperplasia due to 17 alpha-hydroxylase deficiency, and apparent mineralocorticoid excess syndrome. 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA).
PHYTANIC ACID
A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.
Dimethyl sulfone
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
granisetron
A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants > A04AA - Serotonin (5ht3) antagonists C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist > C94726 - 5-HT3 Receptor Antagonist D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Granisetron (BRL 43694) is a serotonin 5-HT3 receptor antagonist used as an antiemetic to treat nausea and vomiting following chemotherapy.
hydromorphone
A morphinane alkaloid that is a hydrogenated ketone derivative of morphine. A semi-synthetic drug, it is a centrally acting pain medication of the opioid class. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
oxymorphone
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
piceid
Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
Zeatin
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D003583 - Cytokinins trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation. trans-Zeatin is a plant cytokinin, which plays an important role in cell growth, differentiation, and division; trans-Zeatin also inhibits UV-induced MEK/ERK activation.
Rubiadin
Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1]. Rubiadin is a dihydroxy anthraquinone isolated from Rubia cordifolia. Rubiadin has a potent antixidant activity[1].
falcarindiol
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
mescaline
A phenethylamine alkaloid that is phenethylamine substituted at positions 3, 4 and 5 by methoxy groups. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens
HT-2 Toxin
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
CID 440908
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
2-Amino-3-methylimidazo(4,5-F)quinoline
CONFIDENCE standard compound; INTERNAL_ID 2437
visnadine
C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent Origin: Plant, Coumarins, Chromans
Fusarenon-X
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Merfect
D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AC - Imidazole and triazole derivatives P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CA - Benzimidazole derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Thiabendazole is an orally available benzimidazole fungicide with repellent and anticancer activities. Thiabendazole can result in developmental malformations. Thiabendazole can be used for modeling[1][2][3][4][5].
Carfentrazone-ethyl
D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Rocuronium
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist
SFE 10:0
A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].
Withanolide
A withanolide that is 5,6:22,26-diepoxyergosta-2,24-diene-1,26-dione substituted by hydroxy groups at positions 4 and 22 (the 4beta,5beta,6beta,22R stereoisomer). Isolated from Tubocapsicum anomalum and Withania somnifera, it exhibits cytotoxic activity. Withanolides, which are extracted from Withania somnifera, are employed in the treatment of arthritis and are known to be potent inhibitors of angiogenesis, inflammation and oxidative stress. Withanolides can indeed inhibit the activation of NF-κB and NF-κB-regulated gene expression, which could explain their anti-arthritic actions. W. somnifera root powder has suppressive effect on arthritis by reducing amplification and propagation of the inflammatory response, without causing any gastric damage. (PMID: 17475558, 3248848, 17084827) [HMDB]
Withanolide
ST 21:2;O3
A hydroxypregnenolone that is pregnenolone substituted by a alpha-hydroxy group at position 16. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone 17a-Hydroxypregnenolone is a pregnane steroid. 17a-Hydroxypregnenolone is a prohormone in the formation of dehydroepiandrosterone (DHEA). 21-Hydroxypregnenolone is an essential intermediate in corticosterone synthesis.
DL-Pyroglutamic acid
DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2]. DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2].
1-beta-D-Arabinofuranosylthymine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
Ethyl 1-(1-phenylethyl)-1H-imidazole-5-carboxylate
Etoposide Impurity B
D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D004791 - Enzyme Inhibitors
resmethrin
D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
chlorpropham
D006133 - Growth Substances > D010937 - Plant Growth Regulators D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Geranyl acetate
Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate has been reported in Cymbopogon martinii, Cymbopogon distans
93-15-2
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Myristicin
Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].
Ferulaldehyde
Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].
CHEBI:33277
γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3]. γ-Tocotrienol is an active form of vitamin E. γ-tocotrienol reverses the multidrug resistance (MDR) of breast cancer cells through the signaling pathway of NF-κB and P-gp. γ-Tocotrienol is also a novel radioprotector agent, can mitigate bone marrow radiation damage during targeted radionuclide treatment[1][2][3].
c0264
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Angecin
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D007364 - Intercalating Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM). Angelicin is a natural tricyclic aromatic hydrocarbon compound that is structurally related to psoralen and has anti-cancer, anti-inflammatory, anti-viral and other activities. Cytotoxic, IC50: 49.56 μM; inhibits MHV-68, IC50: 5.39 μg/ml (28.95 μM).
Xanthomicrol
A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 8 and hydroxy groups at positions 5 and 4.
Dimethyl sulfone
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D000893 - Anti-Inflammatory Agents Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3]. Dimethyl sulfone (Methyl Sulfonyl Methane) is a metabolic product of endogenous methanethiol metabolism and intestinal bacterial metabolism. Dimethyl sulfone inhibits choriocapillary endothelial (CCE) cell proliferation, also has many biological effects, including antiinflammatory, antioxidant, and local anesthetic effects that could be neuroprotective[1][2][3].
Nemerol
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AB - Phenylpiperidine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
58436-28-5
Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1]. Dihydroresveratrol, a potent phytoestrogen, is a hormone receptor modulator. Dihydroresveratrol exhibits proliferative effects in androgen-independent prostate and breast cancer cells at picomolar and nanomolar concentrations[1].
c0276
2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2]. 2-Hydroxyacetophenone is a principal root volatile of the Carissa edulis[1]. 2-Hydroxyacetophenone shows inhibitory effects on infection of HIV/SARS-CoV S pseudovirus with an IC50 of 1.8 mM[2].
Blasticidin S
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents A blasticidin that is an antibiotic obtained from Streptomyces griseochromogene. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors
Protodioscin
Protodioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. It has a role as a metabolite. It is a steroid saponin, a trisaccharide derivative, a beta-D-glucoside, a pentacyclic triterpenoid and a cyclic hemiketal. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Protodioscin is a natural product found in Dracaena draco, Borassus flabellifer, and other organisms with data available. See also: Fenugreek seed (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of 26-(beta-D-glucopyranosyloxy)-3beta,22-dihydroxyfurost-5-ene via a glycosidic linkage. Found in several plant species including yams, asparagus and funugreek. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties. Protodioscin, a major steroidal saponin in Trigonella foenum-graecum Linn., has been shown to exhibit multiple biological actions, such as anti-hyperlipidemia, anti-cancer, sexual effects and cardiovascular properties.
Isoarnebin I
Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
canthinone
Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. An indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].
DHSA
9,10-dihydroxyoctadecanoic acid is a hydroxy-fatty acid formally derived from octacecanoic (stearic) acid by hydroxy substitution at positions 9 and 10. It is a dihydroxy monocarboxylic acid and a hydroxyoctadecanoic acid. It is a conjugate acid of a 9,10-dihydroxystearate. 9,10-Dihydroxystearic acid is a natural product found in Trypanosoma brucei and Apis cerana with data available. A hydroxy-fatty acid formally derived from stearic acid by hydroxy substitution at positions 9 and 10.
astemizole
R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].
SULFANILIC ACID
An aminobenzenesulfonic acid that is aniline sulfonated at the para-position.
Caprolactam
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Retinyl palmitate
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Retinyl palmitate is an ester of Retinol and is the major form of vitamin A found in the epidermis. Retinyl palmitate has been widely used in pharmaceutical and cosmetic formulations.
Phenyl acetate
Phenyl acetate is an endogenous metabolite. Phenyl acetate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-79-2 (retrieved 2024-08-21) (CAS RN: 122-79-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
hydroxyprogesterone caproate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
tizanidine
M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D002491 - Central Nervous System Agents > D000700 - Analgesics Tizanidine is an α2-adrenergic receptor agonist and inhibits neurotransmitter release from CNS noradrenergic neurons. Target: α2-adrenergic receptor Tizanidine is a drug that is used as a muscle relaxant. It is a centrally acting α2 adrenergic agonist. It is used to treat the spasms, cramping, and tightness of muscles caused by medical problems such as multiple sclerosis, ALS, spastic diplegia, back pain, or certain other injuries to the spine or central nervous system. It is also prescribed off-label for migraine headaches, as a sleep aid, and as an anticonvulsant. It is also prescribed for some symptoms of fibromyalgia. Tizanidine has been found to be as effective as other antispasmodic drugs and has superior tolerability to that of baclofen and diazepam. Tizanidine can be very strong even at the 2 mg dose and may cause hypotension, so caution is advised when it is used in patients who have a history of orthostatic hypotension, or when switching from gel cap to tablet form and vice versa. Tizanidine can occasionally cause liver damage, generally the hepatocellular type. Clinical trials show that up to 5\% of patients treated with tizanidine had elevated liver function test values, though symptoms disappeared upon withdrawal of the drug. Care should be used when first beginning treatment with tizanidine with regular liver tests for the first 6 months of treatment.
Cefradine
A cephalosporin with a methyl substituent at position 3, and a (2R)-2-amino-2-cyclohexa-1,4-dien-1-ylacetamido substituent at position 7, of the cephem skeleton. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
PHENOXYACETIC ACID
A monocarboxylic acid that is the O-phenyl derivative of glycolic acid. A metabolite of 2-phenoxyethanol, it is used in the manufacture of pharmaceuticals, pesticides, fungicides and dyes. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
cyclobenzaprine
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant
NEDOCROMIL
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BC - Antiallergic agents, excl. corticosteroids R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AC - Antiallergic agents, excl. corticosteroids S - Sensory organs > S01 - Ophthalmologicals > S01G - Decongestants and antiallergics C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D000893 - Anti-Inflammatory Agents > D000082142 - Mast Cell Stabilizers D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D018926 - Anti-Allergic Agents D007155 - Immunologic Factors Nedocromil suppresses the action or formation of multiple mediators, including histamine, leukotriene C4 (LTC4), and prostaglandin D2 (PGD2).
bruneomycin
Complex cytotoxic antibiotic obtained from Streptomyces flocculus or S. rufochronmogenus. It is used in advanced carcinoma and causes leukopenia. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents
midodrine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Midodrine is an α1-receptor agonist, for the treatment of dysautonomia and orthostatic hypotension.
orciprenaline
R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CB - Non-selective beta-adrenoreceptor agonists R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AB - Non-selective beta-adrenoreceptor agonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D012102 - Reproductive Control Agents > D015149 - Tocolytic Agents
1,2,4-BENZENETRIOL
A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Guanosine-5-diphosphate
A purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
1-Indanone
D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics
pyridostigmine
N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors
Edrophonium
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D020011 - Protective Agents > D000931 - Antidotes V - Various > V04 - Diagnostic agents D004791 - Enzyme Inhibitors
clidinium
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics
L-m-Tyrosine
A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.
2-[(4-Nitrophenoxy)methyl]oxirane
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
aspidospermine
An indole alkaloid having the structure of aspirospermidine methoxylated at C-17 and acetylated at N-1.
(METHYLTHIO)ACETICACID
A sulfur-containing carboxylic consisting of thioglycolic acid carrying an S-methyl substituent.
3-Dehydroquinic acid
A 4-oxo monocarboxylic acid derived from quinic acid by oxidation of the hydroxy group at position 3 to the corresponding keto group.
N-Acetylglucosamine-1-phosphate
A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Trans-3-hydroxy-L-proline
The (3S)-trans-diastereomer of 3-hydroxy-L-proline.
S-Formylglutathione
A S-acylglutathione in which the acyl group specified is formyl.
Galbeta1,3GlcNAc
An amino disaccharide consisting of beta-D-galactose linked via a (1->3)-glycosidic bond to N-acetyl-D-glucosamine.
7alpha-Hydroxypregnenolone
A 20-oxo steroid that is pregnenolone carrying an additional hydroxy substituent at the 7alpha-position. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Epothilone D
An epithilone that is epithilone C in which the hydrogen at position 13 of the oxacyclohexadec-13-ene-2,6-dione macrocycle has been replaced by a methyl group. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
CoA 22:0
A very long-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of docosanoic (behenic) acid.
Tributyl phosphate
D020011 - Protective Agents > D011837 - Radiation-Protective Agents
Vinclozoline
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D000726 - Androgen Antagonists D016573 - Agrochemicals D010575 - Pesticides
1,4-Dianilinobenzene
D020011 - Protective Agents > D000975 - Antioxidants
Butyl hexanoate
A hexanoate ester obtained by the formal condensation of the carboxy group of hexanoic acid (caproic acid) with butan-1-ol. It is a volatile compound found in apples and peaches.
Dihydrolipoic acid
A thio-fatty acid that is reduced form of lipoic acid. A potent antioxidant shown to directly destroy superoxide, hydroperoxy and hydroxyl radicals; also has neuroprotective and anti-tumour effects. D020011 - Protective Agents > D000975 - Antioxidants
19(S)-HETE
A HETE having a (19S)-hydroxy group and all-cis double bonds at positions 5, 8, 11 and 14.
{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid
D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
2-Epi Docetaxel
D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents
17beta-Estradiol glucuronide
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Epothilone A
An epithilone that is epothilone C in which the double bond in the macrocyclic lactone ring has been oxidised to the corresponding epoxide (the 13R,14S diastereoisomer). C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Epothilone A is a competitive inhibitor of the binding of [3H] paclitaxel to tubulin polymers, with a Ki of 0.6-1.4 μM.